rocm_jax/tests/pytorch_interoperability_test.py
Peter Hawkins 70f91db853 Set PYTHONWARNINGS=error in bazel tests.
The goal of this change is to catch PRs that introduce new warnings sooner.

To help pass the environment variable more easily, rename the jax_test Bazel test macro to jax_multiplatform_test, and introduce a new jax_py_test macro that wraps py_test. Add code to both to set the environment variable.

Add code to suppress some new warnings uncovered in CI.

PiperOrigin-RevId: 678352286
2024-09-24 12:30:11 -07:00

173 lines
5.8 KiB
Python

# Copyright 2020 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from absl.testing import absltest
import jax
import jax.dlpack
from jax._src import config
from jax._src import test_util as jtu
from jax._src import xla_bridge
from jax._src.lib import xla_client
import jax.numpy as jnp
config.parse_flags_with_absl()
try:
import torch
import torch.utils.dlpack
except ImportError:
torch = None
torch_dtypes = [jnp.int8, jnp.int16, jnp.int32, jnp.int64,
jnp.uint8, jnp.float16, jnp.float32, jnp.float64,
jnp.bfloat16, jnp.complex64, jnp.complex128]
nonempty_nonscalar_array_shapes = [(4,), (3, 4), (2, 3, 4)]
empty_array_shapes = []
empty_array_shapes += [(0,), (0, 4), (3, 0), (2, 0, 1)]
nonempty_nonscalar_array_shapes += [(3, 1), (1, 4), (2, 1, 4)]
nonempty_array_shapes = [()] + nonempty_nonscalar_array_shapes
all_shapes = nonempty_array_shapes + empty_array_shapes
@unittest.skipIf(not torch, "Test requires PyTorch")
class DLPackTest(jtu.JaxTestCase):
def setUp(self):
super().setUp()
if not jtu.test_device_matches(["cpu", "gpu"]):
self.skipTest("DLPack only supported on CPU and GPU")
def testTorchToJaxFailure(self):
x = torch.arange(6).reshape((2, 3))
x = x.cuda() if jtu.test_device_matches(["gpu"]) else x
y = torch.utils.dlpack.to_dlpack(x[:, :2])
backend = xla_bridge.get_backend()
client = getattr(backend, "client", backend)
regex_str = (r'UNIMPLEMENTED: Only DLPack tensors with trivial \(compact\) '
r'striding are supported')
with self.assertRaisesRegex(RuntimeError, regex_str):
xla_client._xla.dlpack_managed_tensor_to_buffer(
y, client, client)
@jtu.sample_product(shape=all_shapes, dtype=torch_dtypes)
def testJaxToTorch(self, shape, dtype):
if not config.enable_x64.value and dtype in [
jnp.int64,
jnp.float64,
jnp.complex128,
]:
self.skipTest("x64 types are disabled by jax_enable_x64")
rng = jtu.rand_default(self.rng())
np = rng(shape, dtype)
x = jnp.array(np)
dlpack = jax.dlpack.to_dlpack(x)
y = torch.utils.dlpack.from_dlpack(dlpack)
if dtype == jnp.bfloat16:
# .numpy() doesn't work on Torch bfloat16 tensors.
self.assertAllClose(np,
y.cpu().view(torch.int16).numpy().view(jnp.bfloat16))
else:
self.assertAllClose(np, y.cpu().numpy())
@jtu.sample_product(shape=all_shapes, dtype=torch_dtypes)
def testJaxArrayToTorch(self, shape, dtype):
if not config.enable_x64.value and dtype in [
jnp.int64,
jnp.float64,
jnp.complex128,
]:
self.skipTest("x64 types are disabled by jax_enable_x64")
rng = jtu.rand_default(self.rng())
np = rng(shape, dtype)
# Test across all devices
for device in jax.local_devices():
x = jax.device_put(np, device)
y = torch.utils.dlpack.from_dlpack(x)
if dtype == jnp.bfloat16:
# .numpy() doesn't work on Torch bfloat16 tensors.
self.assertAllClose(
np, y.cpu().view(torch.int16).numpy().view(jnp.bfloat16)
)
else:
self.assertAllClose(np, y.cpu().numpy())
@jtu.ignore_warning(message="Calling from_dlpack with a DLPack tensor",
category=DeprecationWarning)
def testTorchToJaxInt64(self):
# See https://github.com/jax-ml/jax/issues/11895
x = jax.dlpack.from_dlpack(
torch.utils.dlpack.to_dlpack(torch.ones((2, 3), dtype=torch.int64)))
dtype_expected = jnp.int64 if config.enable_x64.value else jnp.int32
self.assertEqual(x.dtype, dtype_expected)
@jtu.sample_product(shape=all_shapes, dtype=torch_dtypes)
@jtu.ignore_warning(message="Calling from_dlpack with a DLPack tensor",
category=DeprecationWarning)
def testTorchToJax(self, shape, dtype):
if not config.enable_x64.value and dtype in [
jnp.int64,
jnp.float64,
jnp.complex128,
]:
self.skipTest("x64 types are disabled by jax_enable_x64")
rng = jtu.rand_default(self.rng())
x_np = rng(shape, dtype)
if dtype == jnp.bfloat16:
x = torch.tensor(x_np.view(jnp.int16)).view(torch.bfloat16)
else:
x = torch.tensor(x_np)
x = x.cuda() if jtu.test_device_matches(["gpu"]) else x
x = x.contiguous()
y = jax.dlpack.from_dlpack(torch.utils.dlpack.to_dlpack(x))
self.assertAllClose(x_np, y)
# Verify the resulting value can be passed to a jit computation.
z = jax.jit(lambda x: x + 1)(y)
self.assertAllClose(x_np + dtype(1), z)
@jtu.sample_product(shape=all_shapes, dtype=torch_dtypes)
def testTorchToJaxArray(self, shape, dtype):
if not config.enable_x64.value and dtype in [
jnp.int64,
jnp.float64,
jnp.complex128,
]:
self.skipTest("x64 types are disabled by jax_enable_x64")
rng = jtu.rand_default(self.rng())
x_np = rng(shape, dtype)
if dtype == jnp.bfloat16:
x = torch.tensor(x_np.view(jnp.int16)).view(torch.bfloat16)
else:
x = torch.tensor(x_np)
x = x.cuda() if jtu.test_device_matches(["gpu"]) else x
x = x.contiguous()
y = jax.dlpack.from_dlpack(x)
self.assertAllClose(x_np, y)
# Verify the resulting value can be passed to a jit computation.
z = jax.jit(lambda x: x + 1)(y)
self.assertAllClose(x_np + dtype(1), z)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())