rocm_jax/tests/ragged_collective_test.py
Matthew Johnson 66a6eb299e add autodiff rules for jax.lax.ragged_all_to_all collective
also update the ragged_all_to_all docstring. pseudocode in the style of the shard_map tutorial would be better and cleaner, but it needs the context of the tutorial to explain; i'll add ra2a to the shmap tutorial in the future.

PiperOrigin-RevId: 735957604
2025-03-11 18:22:02 -07:00

500 lines
18 KiB
Python

# Copyright 2025 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import unittest
from absl.testing import absltest
from absl.testing import parameterized
import jax
import jax.ad_checkpoint
from jax import lax
from jax.sharding import PartitionSpec as P
from jax._src import config
from jax._src import test_util as jtu
import jax.numpy as jnp
from jax.experimental.shard_map import shard_map
config.parse_flags_with_absl()
class RaggedCollectiveTest(jtu.JaxTestCase):
def setUp(self):
super().setUp()
if jtu.test_device_matches(['cpu']):
self.skipTest('ragged-all-to-all is not supported on CPU')
@parameterized.named_parameters(
dict(
testcase_name='_single_axis_name', axis_name='x', mesh_axes=dict(x=2)
),
)
def test_ragged_all_to_all(self, axis_name, mesh_axes):
device_type = jax.devices()[0].platform
if device_type == 'tpu' and jtu.get_tpu_version() < 4:
raise unittest.SkipTest(
'UNSUPPORTED: HLO opcode `ragged-all-to-all` is not supported by TPU'
f' v{jtu.get_tpu_version()}'
)
mesh = jtu.create_mesh(tuple(mesh_axes.values()), tuple(mesh_axes.keys()))
operand = jax.device_put(
jnp.array([[1, 2, 2], [3, 4, 0]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
output = jax.device_put(
jnp.zeros((2, 4), dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
input_offsets = jax.device_put(
jnp.array([[0, 1], [0, 1]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
send_sizes = jax.device_put(
jnp.array([[1, 2], [1, 1]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
output_offsets = jax.device_put(
jnp.array([[0, 0], [1, 2]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
recv_sizes = jax.device_put(
jnp.array([[1, 1], [2, 1]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
@jax.jit
@partial(
shard_map,
mesh=mesh,
in_specs=(
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
),
out_specs=P(axis_name),
check_rep=False,
)
def fwd(
operand, output, input_offsets, send_sizes, output_offsets, recv_sizes
):
operand = operand.reshape(operand.shape[1:])
output = output.reshape(output.shape[1:])
input_offsets = input_offsets.reshape(input_offsets.shape[1:])
send_sizes = send_sizes.reshape(send_sizes.shape[1:])
output_offsets = output_offsets.reshape(output_offsets.shape[1:])
recv_sizes = recv_sizes.reshape(recv_sizes.shape[1:])
return lax.ragged_all_to_all(
operand,
output,
input_offsets,
send_sizes,
output_offsets,
recv_sizes,
axis_name=axis_name,
)
mlir_module = fwd.lower(
operand, output, input_offsets, send_sizes, output_offsets, recv_sizes
).as_text()
self.assertIn('stablehlo.custom_call @ragged_all_to_all', mlir_module)
self.assertIn(
'replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>', mlir_module
)
c = fwd(
operand, output, input_offsets, send_sizes, output_offsets, recv_sizes
).reshape((2, 4))
self.assertAllClose(
c, jnp.array([[1, 3, 0, 0], [2, 2, 4, 0]], dtype=jnp.int32)
)
@parameterized.named_parameters(
dict(
testcase_name='_single_axis_name', axis_name='x', mesh_axes=dict(x=2)
),
)
def test_ragged_all_to_all_grad(self, axis_name, mesh_axes):
device_type = jax.devices()[0].platform
if device_type == 'tpu' and jtu.get_tpu_version() < 4:
raise unittest.SkipTest(
'UNSUPPORTED: HLO opcode `ragged-all-to-all` is not supported by TPU'
f' v{jtu.get_tpu_version()}'
)
mesh = jtu.create_mesh(tuple(mesh_axes.values()), tuple(mesh_axes.keys()))
operand = jax.device_put(
jnp.array([[1, 2, 2], [3, 4, 0]], dtype=jnp.float32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
output = jax.device_put(
jnp.zeros((2, 4), dtype=jnp.float32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
input_offsets = jax.device_put(
jnp.array([[0, 1], [0, 1]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
send_sizes = jax.device_put(
jnp.array([[1, 2], [1, 1]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
output_offsets = jax.device_put(
jnp.array([[0, 0], [1, 2]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
recv_sizes = jax.device_put(
jnp.array([[1, 1], [2, 1]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
@partial(
shard_map,
mesh=mesh,
in_specs=(
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
),
out_specs=P(axis_name),
check_rep=False,
)
def fwd(
operand, output, input_offsets, send_sizes, output_offsets, recv_sizes
):
operand = operand.reshape(operand.shape[1:])
output = output.reshape(output.shape[1:])
input_offsets = input_offsets.reshape(input_offsets.shape[1:])
send_sizes = send_sizes.reshape(send_sizes.shape[1:])
output_offsets = output_offsets.reshape(output_offsets.shape[1:])
recv_sizes = recv_sizes.reshape(recv_sizes.shape[1:])
return lax.ragged_all_to_all(
operand,
output,
input_offsets,
send_sizes,
output_offsets,
recv_sizes,
axis_name=axis_name,
)
args = input_offsets, send_sizes, output_offsets, recv_sizes
jtu.check_grads(lambda op, out: fwd(op, out, *args), (operand, output), order=1)
@parameterized.named_parameters(
dict(
testcase_name='_single_axis_name', axis_name='x', mesh_axes=dict(x=4)
),
)
def test_ragged_all_to_all_axis_index_groups(self, axis_name, mesh_axes):
device_type = jax.devices()[0].platform
if device_type == 'tpu' and jtu.get_tpu_version() < 4:
raise unittest.SkipTest(
'UNSUPPORTED: HLO opcode `ragged-all-to-all` is not supported by TPU'
f' v{jtu.get_tpu_version()}'
)
mesh = jtu.create_mesh(tuple(mesh_axes.values()), tuple(mesh_axes.keys()))
operand = jax.device_put(
jnp.array([[1, 2, 2], [3, 4, 0],
[10, 20, 20], [30, 40, 0]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
output = jax.device_put(
jnp.zeros((4, 4), dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
input_offsets = jax.device_put(
jnp.array([[0, 1], [0, 1],
[0, 1], [0, 1]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
send_sizes = jax.device_put(
jnp.array([[1, 2], [1, 1],
[1, 2], [1, 1]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
output_offsets = jax.device_put(
jnp.array([[0, 0], [1, 2],
[0, 0], [1, 2]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
recv_sizes = jax.device_put(
jnp.array([[1, 1], [2, 1],
[1, 1], [2, 1]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
axis_index_groups = ((0, 1), (2, 3))
@jax.jit
@partial(
shard_map,
mesh=mesh,
in_specs=(
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
),
out_specs=P(axis_name),
check_rep=False,
)
def fwd(
operand, output, input_offsets, send_sizes, output_offsets, recv_sizes
):
operand = operand.reshape(operand.shape[1:])
output = output.reshape(output.shape[1:])
input_offsets = input_offsets.reshape(input_offsets.shape[1:])
send_sizes = send_sizes.reshape(send_sizes.shape[1:])
output_offsets = output_offsets.reshape(output_offsets.shape[1:])
recv_sizes = recv_sizes.reshape(recv_sizes.shape[1:])
return lax.ragged_all_to_all(
operand,
output,
input_offsets,
send_sizes,
output_offsets,
recv_sizes,
axis_name=axis_name,
axis_index_groups=axis_index_groups,
)
mlir_module = fwd.lower(
operand, output, input_offsets, send_sizes, output_offsets,
recv_sizes).as_text()
self.assertIn('stablehlo.custom_call @ragged_all_to_all', mlir_module)
self.assertIn('replica_groups = dense<[[0, 1], [2, 3]]> :'
' tensor<2x2xi64>', mlir_module)
c = fwd(
operand, output, input_offsets, send_sizes, output_offsets, recv_sizes
).reshape((4, 4))
self.assertAllClose(
c, jnp.array([[1, 3, 0, 0], [2, 2, 4, 0],
[10, 30, 0, 0], [20, 20, 40, 0]], dtype=jnp.int32)
)
@parameterized.named_parameters(
dict(
testcase_name='_single_axis_name', axis_name='x', mesh_axes=dict(x=2)
),
)
def test_ragged_all_to_all_degenerate_groups(self, axis_name, mesh_axes):
device_type = jax.devices()[0].platform
if device_type == 'tpu':
raise unittest.SkipTest(
'UNSUPPORTED: HLO opcode `ragged-all-to-all` with singleton group is'
' not supported by TPU'
)
mesh = jtu.create_mesh(tuple(mesh_axes.values()), tuple(mesh_axes.keys()))
operand = jax.device_put(
jnp.array([[1, 0, 0, 0], [2, 3, 4, 0]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
output = jax.device_put(
jnp.zeros((2, 4), dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
input_offsets = jax.device_put(
jnp.array([[0], [0]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
send_sizes = jax.device_put(
jnp.array([[1], [3]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
output_offsets = jax.device_put(
jnp.array([[2], [1]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
recv_sizes = jax.device_put(
jnp.array([[1], [3]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
axis_index_groups = ((0,), (1,))
@jax.jit
@partial(
shard_map,
mesh=mesh,
in_specs=(
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
),
out_specs=P(axis_name),
check_rep=False,
)
def fwd(
operand, output, input_offsets, send_sizes, output_offsets, recv_sizes
):
operand = operand.reshape(operand.shape[1:])
output = output.reshape(output.shape[1:])
input_offsets = input_offsets.reshape(input_offsets.shape[1:])
send_sizes = send_sizes.reshape(send_sizes.shape[1:])
output_offsets = output_offsets.reshape(output_offsets.shape[1:])
recv_sizes = recv_sizes.reshape(recv_sizes.shape[1:])
return lax.ragged_all_to_all(
operand,
output,
input_offsets,
send_sizes,
output_offsets,
recv_sizes,
axis_name=axis_name,
axis_index_groups=axis_index_groups,
)
mlir_module = fwd.lower(
operand, output, input_offsets, send_sizes, output_offsets,
recv_sizes).as_text()
self.assertIn('stablehlo.custom_call @ragged_all_to_all', mlir_module)
self.assertIn('replica_groups = dense<[[0], [1]]> : tensor<2x1xi64>',
mlir_module)
c = fwd(
operand, output, input_offsets, send_sizes, output_offsets, recv_sizes
).reshape((2, 4))
self.assertAllClose(
c, jnp.array([[0, 0, 1, 0], [0, 2, 3, 4]], dtype=jnp.int32)
)
def test_ragged_all_to_all_errors(self):
operand = jnp.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=jnp.float32)
output = jnp.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], dtype=jnp.float32)
input_offsets = jnp.array([0, 1, 3], dtype=jnp.int32)
send_sizes = jnp.array([1, 2, 3], dtype=jnp.int32)
output_offsets = jnp.array([0, 1, 3], dtype=jnp.int32)
recv_sizes = jnp.array([1, 2, 3], dtype=jnp.int32)
axis_name = 'x'
with self.assertRaisesWithLiteralMatch(
ValueError, 'ragged_all_to_all input_offsets must be integer type.'
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, jnp.array([0.0, 1.0, 3.0], dtype=jnp.float32),
send_sizes, output_offsets, recv_sizes, axis_name=axis_name)
with self.assertRaisesWithLiteralMatch(
ValueError, 'ragged_all_to_all send_sizes must be integer type.'
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, input_offsets,
jnp.array([1.0, 2.0, 3.0], dtype=jnp.float32), output_offsets,
recv_sizes, axis_name=axis_name)
with self.assertRaisesWithLiteralMatch(
ValueError, 'ragged_all_to_all output_offsets must be integer type.'
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, input_offsets, send_sizes,
jnp.array([0.0, 1.0, 3.0], dtype=jnp.float32), recv_sizes,
axis_name=axis_name)
with self.assertRaisesWithLiteralMatch(
ValueError, 'ragged_all_to_all recv_sizes must be integer type.'
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, input_offsets, send_sizes, output_offsets,
jnp.array([1.0, 2.0, 3.0], dtype=jnp.float32), axis_name=axis_name)
with self.assertRaisesWithLiteralMatch(
ValueError,
'ragged_all_to_all input_offsets must be rank 1 with positive dimension'
' size, but got shape (1, 3)',
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, jnp.array([[0, 1, 3]], dtype=jnp.int32), send_sizes,
output_offsets, recv_sizes, axis_name=axis_name)
with self.assertRaisesWithLiteralMatch(
ValueError,
'ragged_all_to_all input_offsets must be rank 1 with positive dimension'
' size, but got shape (0,)',
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, jnp.array([], dtype=jnp.int32), send_sizes,
output_offsets, recv_sizes, axis_name=axis_name)
with self.assertRaisesWithLiteralMatch(
ValueError,
'ragged_all_to_all send_sizes must be rank 1 with positive dimension'
' size, but got shape (1, 3)',
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, input_offsets,
jnp.array([[1, 2, 3]], dtype=jnp.int32), output_offsets, recv_sizes,
axis_name=axis_name)
with self.assertRaisesWithLiteralMatch(
ValueError,
'ragged_all_to_all send_sizes must be rank 1 with positive dimension'
' size, but got shape (0,)',
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, input_offsets, jnp.array([], dtype=jnp.int32),
output_offsets, recv_sizes, axis_name=axis_name)
with self.assertRaisesWithLiteralMatch(
ValueError,
'ragged_all_to_all output_offsets must be rank 1 with positive'
' dimension size, but got shape (1, 3)',
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, input_offsets, send_sizes,
jnp.array([[0, 1, 3]], dtype=jnp.int32), recv_sizes,
axis_name=axis_name)
with self.assertRaisesWithLiteralMatch(
ValueError,
'ragged_all_to_all output_offsets must be rank 1 with positive'
' dimension size, but got shape (0,)',
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, input_offsets, send_sizes,
jnp.array([], dtype=jnp.int32), recv_sizes, axis_name=axis_name)
with self.assertRaisesWithLiteralMatch(
ValueError,
'ragged_all_to_all recv_sizes must be rank 1 with positive dimension'
' size, but got shape (1, 3)',
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, input_offsets, send_sizes, output_offsets,
jnp.array([[1, 2, 3]], dtype=jnp.int32), axis_name=axis_name)
with self.assertRaisesWithLiteralMatch(
ValueError,
'ragged_all_to_all recv_sizes must be rank 1 with positive dimension'
' size, but got shape (0,)',
):
jax.jit(lax.ragged_all_to_all, static_argnames='axis_name').lower(
operand, output, input_offsets, send_sizes, output_offsets,
jnp.array([], dtype=jnp.int32), axis_name=axis_name)
if __name__ == '__main__':
absltest.main(testLoader=jtu.JaxTestLoader())