mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 10:56:06 +00:00

In some environments this appears to import the config module rather than the config object.
67 lines
2.3 KiB
Python
67 lines
2.3 KiB
Python
# Copyright 2022 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from absl.testing import absltest
|
|
|
|
import operator
|
|
from functools import reduce
|
|
import numpy as np
|
|
|
|
import jax
|
|
from jax._src import test_util as jtu
|
|
import scipy.interpolate as sp_interp
|
|
import jax.scipy.interpolate as jsp_interp
|
|
|
|
|
|
jax.config.parse_flags_with_absl()
|
|
|
|
|
|
class LaxBackedScipyInterpolateTests(jtu.JaxTestCase):
|
|
"""Tests for LAX-backed scipy.interpolate implementations"""
|
|
|
|
@jtu.sample_product(
|
|
spaces=(((0., 10., 10),), ((-15., 20., 12), (3., 4., 24))),
|
|
method=("linear", "nearest"),
|
|
)
|
|
def testRegularGridInterpolator(self, spaces, method):
|
|
rng = jtu.rand_default(self.rng())
|
|
scipy_fun = lambda init_args, call_args: sp_interp.RegularGridInterpolator(
|
|
*init_args[:2], method, False, *init_args[2:])(*call_args)
|
|
lax_fun = lambda init_args, call_args: jsp_interp.RegularGridInterpolator(
|
|
*init_args[:2], method, False, *init_args[2:])(*call_args)
|
|
|
|
def args_maker():
|
|
points = tuple(map(lambda x: np.linspace(*x), spaces))
|
|
values = rng(reduce(operator.add, tuple(map(np.shape, points))), float)
|
|
fill_value = np.nan
|
|
|
|
init_args = (points, values, fill_value)
|
|
n_validation_points = 50
|
|
valid_points = tuple(
|
|
map(
|
|
lambda x: np.linspace(x[0] - 0.2 * (x[1] - x[0]), x[1] + 0.2 *
|
|
(x[1] - x[0]), n_validation_points),
|
|
spaces))
|
|
valid_points = np.squeeze(np.stack(valid_points, axis=1))
|
|
call_args = (valid_points,)
|
|
return init_args, call_args
|
|
|
|
self._CheckAgainstNumpy(
|
|
scipy_fun, lax_fun, args_maker, check_dtypes=False, tol=1e-4)
|
|
self._CompileAndCheck(lax_fun, args_maker, rtol={np.float64: 1e-14})
|
|
|
|
|
|
if __name__ == "__main__":
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|