mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 10:56:06 +00:00
149 lines
5.3 KiB
Python
149 lines
5.3 KiB
Python
# Copyright 2019 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from functools import partial
|
|
import math
|
|
|
|
import numpy as np
|
|
|
|
from absl.testing import absltest
|
|
import scipy.ndimage as osp_ndimage
|
|
|
|
import jax
|
|
from jax import grad
|
|
from jax._src import test_util as jtu
|
|
from jax import dtypes
|
|
from jax.scipy import ndimage as lsp_ndimage
|
|
|
|
jax.config.parse_flags_with_absl()
|
|
|
|
|
|
float_dtypes = jtu.dtypes.floating
|
|
int_dtypes = jtu.dtypes.integer
|
|
|
|
|
|
def _fixed_ref_map_coordinates(input, coordinates, order, mode, cval=0.0):
|
|
# SciPy's implementation of map_coordinates handles boundaries incorrectly,
|
|
# unless mode='reflect'. For order=1, this only affects interpolation outside
|
|
# the bounds of the original array.
|
|
# https://github.com/scipy/scipy/issues/2640
|
|
assert order <= 1
|
|
padding = [(max(-np.floor(c.min()).astype(int) + 1, 0),
|
|
max(np.ceil(c.max()).astype(int) + 1 - size, 0))
|
|
for c, size in zip(coordinates, input.shape)]
|
|
shifted_coords = [c + p[0] for p, c in zip(padding, coordinates)]
|
|
pad_mode = {
|
|
'nearest': 'edge', 'mirror': 'reflect', 'reflect': 'symmetric'
|
|
}.get(mode, mode)
|
|
if mode == 'constant':
|
|
padded = np.pad(input, padding, mode=pad_mode, constant_values=cval)
|
|
else:
|
|
padded = np.pad(input, padding, mode=pad_mode)
|
|
result = osp_ndimage.map_coordinates(
|
|
padded, shifted_coords, order=order, mode=mode, cval=cval)
|
|
return result
|
|
|
|
|
|
class NdimageTest(jtu.JaxTestCase):
|
|
|
|
@jtu.sample_product(
|
|
[dict(mode=mode, cval=cval)
|
|
for mode in ['wrap', 'constant', 'nearest', 'mirror', 'reflect']
|
|
for cval in ([0, -1] if mode == 'constant' else [0])
|
|
],
|
|
[dict(impl=impl, rng_factory=rng_factory)
|
|
for impl, rng_factory in [
|
|
("original", partial(jtu.rand_uniform, low=0, high=1)),
|
|
("fixed", partial(jtu.rand_uniform, low=-0.75, high=1.75)),
|
|
]
|
|
],
|
|
shape=[(5,), (3, 4), (3, 4, 5)],
|
|
coords_shape=[(7,), (2, 3, 4)],
|
|
dtype=float_dtypes + int_dtypes,
|
|
coords_dtype=float_dtypes,
|
|
order=[0, 1],
|
|
round_=[True, False],
|
|
)
|
|
def testMapCoordinates(self, shape, dtype, coords_shape, coords_dtype, order,
|
|
mode, cval, impl, round_, rng_factory):
|
|
|
|
def args_maker():
|
|
x = np.arange(math.prod(shape), dtype=dtype).reshape(shape)
|
|
coords = [(size - 1) * rng(coords_shape, coords_dtype) for size in shape]
|
|
if round_:
|
|
coords = [c.round().astype(int) for c in coords]
|
|
return x, coords
|
|
|
|
rng = rng_factory(self.rng())
|
|
lsp_op = lambda x, c: lsp_ndimage.map_coordinates(
|
|
x, c, order=order, mode=mode, cval=cval)
|
|
impl_fun = (osp_ndimage.map_coordinates if impl == "original"
|
|
else _fixed_ref_map_coordinates)
|
|
osp_op = lambda x, c: impl_fun(x, c, order=order, mode=mode, cval=cval)
|
|
|
|
with jtu.strict_promotion_if_dtypes_match([dtype, int if round else coords_dtype]):
|
|
if dtype in float_dtypes:
|
|
epsilon = max(dtypes.finfo(dtypes.canonicalize_dtype(d)).eps
|
|
for d in [dtype, coords_dtype])
|
|
self._CheckAgainstNumpy(osp_op, lsp_op, args_maker, tol=100*epsilon)
|
|
else:
|
|
self._CheckAgainstNumpy(osp_op, lsp_op, args_maker, tol=0)
|
|
|
|
def testMapCoordinatesErrors(self):
|
|
x = np.arange(5.0)
|
|
c = [np.linspace(0, 5, num=3)]
|
|
with self.assertRaisesRegex(NotImplementedError, 'requires order<=1'):
|
|
lsp_ndimage.map_coordinates(x, c, order=2)
|
|
with self.assertRaisesRegex(
|
|
NotImplementedError, 'does not yet support mode'):
|
|
lsp_ndimage.map_coordinates(x, c, order=1, mode='grid-wrap')
|
|
with self.assertRaisesRegex(ValueError, 'sequence of length'):
|
|
lsp_ndimage.map_coordinates(x, [c, c], order=1)
|
|
|
|
@jtu.sample_product(
|
|
dtype=float_dtypes + int_dtypes,
|
|
order=[0, 1],
|
|
)
|
|
def testMapCoordinatesRoundHalf(self, dtype, order):
|
|
x = np.arange(-3, 3, dtype=dtype)
|
|
c = np.array([[.5, 1.5, 2.5, 3.5]])
|
|
def args_maker():
|
|
return x, c
|
|
|
|
lsp_op = lambda x, c: lsp_ndimage.map_coordinates(x, c, order=order)
|
|
osp_op = lambda x, c: osp_ndimage.map_coordinates(x, c, order=order)
|
|
|
|
with jtu.strict_promotion_if_dtypes_match([dtype, c.dtype]):
|
|
self._CheckAgainstNumpy(osp_op, lsp_op, args_maker)
|
|
|
|
def testContinuousGradients(self):
|
|
# regression test for https://github.com/jax-ml/jax/issues/3024
|
|
|
|
def loss(delta):
|
|
x = np.arange(100.0)
|
|
border = 10
|
|
indices = np.arange(x.size, dtype=x.dtype) + delta
|
|
# linear interpolation of the linear function y=x should be exact
|
|
shifted = lsp_ndimage.map_coordinates(x, [indices], order=1)
|
|
return ((x - shifted) ** 2)[border:-border].mean()
|
|
|
|
# analytical gradient of (x - (x - delta)) ** 2 is 2 * delta
|
|
self.assertAllClose(grad(loss)(0.5), 1.0, check_dtypes=False)
|
|
self.assertAllClose(grad(loss)(1.0), 2.0, check_dtypes=False)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|