rocm_jax/tests/scipy_ndimage_test.py
2024-09-20 07:52:33 -07:00

149 lines
5.3 KiB
Python

# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import math
import numpy as np
from absl.testing import absltest
import scipy.ndimage as osp_ndimage
import jax
from jax import grad
from jax._src import test_util as jtu
from jax import dtypes
from jax.scipy import ndimage as lsp_ndimage
jax.config.parse_flags_with_absl()
float_dtypes = jtu.dtypes.floating
int_dtypes = jtu.dtypes.integer
def _fixed_ref_map_coordinates(input, coordinates, order, mode, cval=0.0):
# SciPy's implementation of map_coordinates handles boundaries incorrectly,
# unless mode='reflect'. For order=1, this only affects interpolation outside
# the bounds of the original array.
# https://github.com/scipy/scipy/issues/2640
assert order <= 1
padding = [(max(-np.floor(c.min()).astype(int) + 1, 0),
max(np.ceil(c.max()).astype(int) + 1 - size, 0))
for c, size in zip(coordinates, input.shape)]
shifted_coords = [c + p[0] for p, c in zip(padding, coordinates)]
pad_mode = {
'nearest': 'edge', 'mirror': 'reflect', 'reflect': 'symmetric'
}.get(mode, mode)
if mode == 'constant':
padded = np.pad(input, padding, mode=pad_mode, constant_values=cval)
else:
padded = np.pad(input, padding, mode=pad_mode)
result = osp_ndimage.map_coordinates(
padded, shifted_coords, order=order, mode=mode, cval=cval)
return result
class NdimageTest(jtu.JaxTestCase):
@jtu.sample_product(
[dict(mode=mode, cval=cval)
for mode in ['wrap', 'constant', 'nearest', 'mirror', 'reflect']
for cval in ([0, -1] if mode == 'constant' else [0])
],
[dict(impl=impl, rng_factory=rng_factory)
for impl, rng_factory in [
("original", partial(jtu.rand_uniform, low=0, high=1)),
("fixed", partial(jtu.rand_uniform, low=-0.75, high=1.75)),
]
],
shape=[(5,), (3, 4), (3, 4, 5)],
coords_shape=[(7,), (2, 3, 4)],
dtype=float_dtypes + int_dtypes,
coords_dtype=float_dtypes,
order=[0, 1],
round_=[True, False],
)
def testMapCoordinates(self, shape, dtype, coords_shape, coords_dtype, order,
mode, cval, impl, round_, rng_factory):
def args_maker():
x = np.arange(math.prod(shape), dtype=dtype).reshape(shape)
coords = [(size - 1) * rng(coords_shape, coords_dtype) for size in shape]
if round_:
coords = [c.round().astype(int) for c in coords]
return x, coords
rng = rng_factory(self.rng())
lsp_op = lambda x, c: lsp_ndimage.map_coordinates(
x, c, order=order, mode=mode, cval=cval)
impl_fun = (osp_ndimage.map_coordinates if impl == "original"
else _fixed_ref_map_coordinates)
osp_op = lambda x, c: impl_fun(x, c, order=order, mode=mode, cval=cval)
with jtu.strict_promotion_if_dtypes_match([dtype, int if round else coords_dtype]):
if dtype in float_dtypes:
epsilon = max(dtypes.finfo(dtypes.canonicalize_dtype(d)).eps
for d in [dtype, coords_dtype])
self._CheckAgainstNumpy(osp_op, lsp_op, args_maker, tol=100*epsilon)
else:
self._CheckAgainstNumpy(osp_op, lsp_op, args_maker, tol=0)
def testMapCoordinatesErrors(self):
x = np.arange(5.0)
c = [np.linspace(0, 5, num=3)]
with self.assertRaisesRegex(NotImplementedError, 'requires order<=1'):
lsp_ndimage.map_coordinates(x, c, order=2)
with self.assertRaisesRegex(
NotImplementedError, 'does not yet support mode'):
lsp_ndimage.map_coordinates(x, c, order=1, mode='grid-wrap')
with self.assertRaisesRegex(ValueError, 'sequence of length'):
lsp_ndimage.map_coordinates(x, [c, c], order=1)
@jtu.sample_product(
dtype=float_dtypes + int_dtypes,
order=[0, 1],
)
def testMapCoordinatesRoundHalf(self, dtype, order):
x = np.arange(-3, 3, dtype=dtype)
c = np.array([[.5, 1.5, 2.5, 3.5]])
def args_maker():
return x, c
lsp_op = lambda x, c: lsp_ndimage.map_coordinates(x, c, order=order)
osp_op = lambda x, c: osp_ndimage.map_coordinates(x, c, order=order)
with jtu.strict_promotion_if_dtypes_match([dtype, c.dtype]):
self._CheckAgainstNumpy(osp_op, lsp_op, args_maker)
def testContinuousGradients(self):
# regression test for https://github.com/jax-ml/jax/issues/3024
def loss(delta):
x = np.arange(100.0)
border = 10
indices = np.arange(x.size, dtype=x.dtype) + delta
# linear interpolation of the linear function y=x should be exact
shifted = lsp_ndimage.map_coordinates(x, [indices], order=1)
return ((x - shifted) ** 2)[border:-border].mean()
# analytical gradient of (x - (x - delta)) ** 2 is 2 * delta
self.assertAllClose(grad(loss)(0.5), 1.0, check_dtypes=False)
self.assertAllClose(grad(loss)(1.0), 2.0, check_dtypes=False)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())