rocm_jax/tests/scipy_spatial_test.py
2025-01-31 09:21:46 -08:00

349 lines
15 KiB
Python

# Copyright 2023 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from absl.testing import absltest
import jax
import scipy.version
from jax._src import test_util as jtu
from jax.scipy.spatial.transform import Rotation as jsp_Rotation
from scipy.spatial.transform import Rotation as osp_Rotation
from jax.scipy.spatial.transform import Slerp as jsp_Slerp
from scipy.spatial.transform import Slerp as osp_Slerp
import jax.numpy as jnp
import numpy as onp
jax.config.parse_flags_with_absl()
scipy_version = jtu.parse_version(scipy.version.version)
float_dtypes = jtu.dtypes.floating
real_dtypes = float_dtypes + jtu.dtypes.integer + jtu.dtypes.boolean
num_samples = 2
class LaxBackedScipySpatialTransformTests(jtu.JaxTestCase):
"""Tests for LAX-backed scipy.spatial implementations"""
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
vector_shape=[(3,), (num_samples, 3)],
inverse=[True, False],
)
@jax.default_matmul_precision("float32")
@jax.numpy_rank_promotion('allow') # This test explicitly exercises implicit rank promotion.
def testRotationApply(self, shape, vector_shape, dtype, inverse):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype), rng(vector_shape, dtype),)
jnp_fn = lambda q, v: jsp_Rotation.from_quat(q).apply(v, inverse=inverse)
np_fn = lambda q, v: osp_Rotation.from_quat(q).apply(v, inverse=inverse).astype(dtype)
tol = 5e-2 if jtu.test_device_matches(['tpu']) else 1e-4
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=tol)
self._CompileAndCheck(jnp_fn, args_maker, tol=tol)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
seq=['xyz', 'zyx', 'XYZ', 'ZYX'],
degrees=[True, False],
)
def testRotationAsEuler(self, shape, dtype, seq, degrees):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(q).as_euler(seq=seq, degrees=degrees)
np_fn = lambda q: osp_Rotation.from_quat(q).as_euler(seq=seq, degrees=degrees).astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
)
def testRotationAsMatrix(self, shape, dtype):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(q).as_matrix()
np_fn = lambda q: osp_Rotation.from_quat(q).as_matrix().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
)
def testRotationAsMrp(self, shape, dtype):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(q).as_mrp()
np_fn = lambda q: osp_Rotation.from_quat(q).as_mrp().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
degrees=[True, False],
)
def testRotationAsRotvec(self, shape, dtype, degrees):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(q).as_rotvec(degrees=degrees)
np_fn = lambda q: osp_Rotation.from_quat(q).as_rotvec(degrees=degrees).astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
)
def testRotationAsQuat(self, shape, dtype):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(q).as_quat()
np_fn = lambda q: osp_Rotation.from_quat(q).as_quat().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
)
def testRotationAsQuatCanonical(self, shape, dtype):
if scipy_version < (1, 11, 0):
self.skipTest("Scipy 1.11.0 added the `canonical` arg.")
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(q).as_quat(canonical=True)
np_fn = lambda q: osp_Rotation.from_quat(q).as_quat(canonical=True).astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
)
def testRotationAsQuatScalarFirst(self, shape, dtype):
if scipy_version < (1, 14, 0):
self.skipTest("Scipy 1.14.0 added the `scalar_first` arg.")
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(q).as_quat(scalar_first=True)
np_fn = lambda q: osp_Rotation.from_quat(q).as_quat(scalar_first=True).astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(num_samples, 4)],
other_shape=[(num_samples, 4)],
)
def testRotationConcatenate(self, shape, other_shape, dtype):
if scipy_version < (1, 8, 0):
self.skipTest("Scipy 1.8.0 needed for concatenate.")
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype), rng(other_shape, dtype),)
jnp_fn = lambda q, o: jsp_Rotation.concatenate([jsp_Rotation.from_quat(q), jsp_Rotation.from_quat(o)]).as_rotvec()
np_fn = lambda q, o: osp_Rotation.concatenate([osp_Rotation.from_quat(q), osp_Rotation.from_quat(o)]).as_rotvec().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(10, 4)],
indexer=[slice(1, 5), slice(0, 1), slice(-5, -3)],
)
def testRotationGetItem(self, shape, dtype, indexer):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(jnp.where(jnp.sum(q, axis=0) > 0, q, -q))[indexer].as_quat()
np_fn = lambda q: osp_Rotation.from_quat(onp.where(onp.sum(q, axis=0) > 0, q, -q))[indexer].as_quat().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
size=[1, num_samples],
seq=['x', 'xy', 'xyz', 'XYZ'],
degrees=[True, False],
)
@jax.numpy_rank_promotion('allow') # This test explicitly exercises implicit rank promotion.
def testRotationFromEuler(self, size, dtype, seq, degrees):
rng = jtu.rand_default(self.rng())
shape = (size, len(seq))
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda a: jsp_Rotation.from_euler(seq, a, degrees).as_rotvec()
np_fn = lambda a: osp_Rotation.from_euler(seq, a, degrees).as_rotvec().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(3, 3), (num_samples, 3, 3)],
)
def testRotationFromMatrix(self, shape, dtype):
rng = jtu.rand_default(self.rng())
def args_maker():
# Use QR to ensure valid positive-definite rotation matrix.
q, _ = onp.linalg.qr(rng(shape, dtype))
return [q]
jnp_fn = lambda m: jsp_Rotation.from_matrix(m).as_rotvec()
np_fn = lambda m: osp_Rotation.from_matrix(m).as_rotvec().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(3,), (num_samples, 3)],
)
def testRotationFromMrp(self, shape, dtype):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda m: jsp_Rotation.from_mrp(m).as_rotvec()
np_fn = lambda m: osp_Rotation.from_mrp(m).as_rotvec().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(3,), (num_samples, 3)],
)
def testRotationFromRotvec(self, shape, dtype):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda r: jsp_Rotation.from_rotvec(r).as_rotvec()
np_fn = lambda r: osp_Rotation.from_rotvec(r).as_rotvec().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
num=[None],
)
def testRotationIdentity(self, num, dtype):
args_maker = lambda: (num,)
jnp_fn = lambda n: jsp_Rotation.identity(n, dtype).as_rotvec()
np_fn = lambda n: osp_Rotation.identity(n).as_rotvec().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
)
def testRotationMagnitude(self, shape, dtype):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(q).magnitude()
np_fn = lambda q: jnp.array(osp_Rotation.from_quat(q).magnitude(), dtype=dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(num_samples, 4)],
rng_weights =[True, False],
)
def testRotationMean(self, shape, dtype, rng_weights):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype), jnp.abs(rng(shape[0], dtype)) if rng_weights else None)
jnp_fn = lambda q, w: jsp_Rotation.from_quat(q).mean(w).as_rotvec()
np_fn = lambda q, w: osp_Rotation.from_quat(q).mean(w).as_rotvec().astype(dtype)
tol = 5e-3 # 1e-4 too tight for TF32
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=tol)
self._CompileAndCheck(jnp_fn, args_maker, tol=tol)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
other_shape=[(4,), (num_samples, 4)],
)
@jax.numpy_rank_promotion('allow') # This test explicitly exercises implicit rank promotion.
def testRotationMultiply(self, shape, other_shape, dtype):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype), rng(other_shape, dtype))
jnp_fn = lambda q, o: (jsp_Rotation.from_quat(q) * jsp_Rotation.from_quat(o)).as_rotvec()
np_fn = lambda q, o: (osp_Rotation.from_quat(q) * osp_Rotation.from_quat(o)).as_rotvec().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
)
def testRotationInv(self, shape, dtype):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(q).inv().as_rotvec()
np_fn = lambda q: osp_Rotation.from_quat(q).inv().as_rotvec().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
)
def testRotationInvConjugate(self, shape, dtype):
if scipy_version < (1, 11, 0):
self.skipTest("Scipy prior to 1.11.0 used a negative conjugate.")
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(q).inv().as_quat()
np_fn = lambda q: osp_Rotation.from_quat(q).inv().as_quat().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(num_samples, 4)],
)
def testRotationLen(self, shape, dtype):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: len(jsp_Rotation.from_quat(q))
np_fn = lambda q: len(osp_Rotation.from_quat(q))
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(4,), (num_samples, 4)],
)
def testRotationSingle(self, shape, dtype):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
jnp_fn = lambda q: jsp_Rotation.from_quat(q).single
np_fn = lambda q: osp_Rotation.from_quat(q).single
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
@jtu.sample_product(
dtype=float_dtypes,
shape=[(num_samples, 4)],
compute_times=[0., onp.zeros(1), onp.zeros(2)],
)
def testSlerp(self, shape, dtype, compute_times):
rng = jtu.rand_default(self.rng())
args_maker = lambda: (rng(shape, dtype),)
times = jnp.arange(shape[0], dtype=dtype)
jnp_fn = lambda q: jsp_Slerp.init(times, jsp_Rotation.from_quat(q))(compute_times).as_rotvec()
np_fn = lambda q: osp_Slerp(times, osp_Rotation.from_quat(q))(compute_times).as_rotvec().astype(dtype)
self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=True, tol=1e-4)
self._CompileAndCheck(jnp_fn, args_maker, atol=1e-4)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())