rocm_jax/tests/sparse_nm_test.py

210 lines
7.0 KiB
Python

# Copyright 2024 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
from absl.testing import absltest
from absl.testing import parameterized
import jax
import jax.numpy as jnp
from jax import dtypes
from jax._src import config
from jax._src import test_util as jtu
from jax.experimental.sparse import nm
jax.config.parse_flags_with_absl()
class SpmmTest(jtu.JaxTestCase):
def setUp(self):
if not jtu.test_device_matches(["gpu"]):
self.skipTest("Only works on GPU")
if (jtu.test_device_matches(["cuda"]) and
not jtu.is_cuda_compute_capability_at_least("8.0")):
self.skipTest("Only works on GPUs with capability >= sm80")
super().setUp()
# ----- Test different input shapes
@parameterized.product(
tile_m=(32, 128),
tile_n=(32, 128),
tile_k=(32, 128),
batch=(None, 5),
sparse_idx=(0, 1),
)
@jtu.run_on_devices("gpu")
def test_shapes(self, tile_m, tile_n, tile_k, batch, sparse_idx):
# Build keyword arguments
kwargs = {
"dimension_numbers": (((1,), (1,)), (tuple(), tuple())),
"sparse_operand_idx": sparse_idx,
}
if batch:
kwargs["dimension_numbers"] = (((2,), (2,)), ((0,), (0,)))
# Build input data
batch_dims = (batch,) if batch else tuple()
lhs = (
(np.arange((batch or 1) * tile_m * tile_k) % 11)
.astype(dtypes.bfloat16)
.reshape(batch_dims + (tile_m, tile_k))
)
rhs = (
(np.arange((batch or 1) * tile_n * tile_k) % 13)
.astype(dtypes.bfloat16)
.reshape(batch_dims + (tile_n, tile_k))
)
# Build sparsity mask and metadata
sp = [lhs, rhs][sparse_idx]
mask = np.tile([True, False], math.prod(sp.shape) // 2).reshape(sp.shape)
sparse = sp[mask].reshape(sp.shape[:-1] + (sp.shape[-1] // 2,))
meta = nm.nm_pack(mask)
# Calculate sparse and dense dots
if sparse_idx == 0:
dot_sparse = nm.nm_spmm(sparse, rhs, meta, **kwargs)
dot_dense = jnp.einsum("...mk,...nk->...mn", (lhs * mask), rhs)
else:
dot_sparse = nm.nm_spmm(lhs, sparse, meta, **kwargs)
dot_dense = jnp.einsum("...mk,...nk->...mn", lhs, (rhs * mask))
# Verify the result
jtu.check_eq(dot_sparse, dot_dense.astype(dtypes.bfloat16))
# ----- Test different input types
@parameterized.product(
lhs_type=[jnp.int8, jnp.int16, jnp.float16, jnp.bfloat16],
rhs_type=[jnp.bfloat16],
output_type=[jnp.bfloat16, jnp.float32],
)
@jtu.run_on_devices("gpu")
def test_types(self, lhs_type, rhs_type, output_type):
tile_m, tile_n, tile_k = 64, 32, 128
# Build input data
lhs = (
(np.arange(tile_m * tile_k) % 17)
.astype(lhs_type)
.reshape((tile_m, tile_k))
)
rhs = (
(np.arange(tile_k * tile_n) % 19)
.astype(rhs_type)
.reshape((tile_k, tile_n))
)
# Build sparsity mask and metadata
mask = np.tile([True, False], tile_m * tile_k // 2).reshape(lhs.shape)
sparse = lhs[mask].reshape(tile_m, tile_k // 2)
meta = nm.nm_pack(mask)
# Calculate sparse and dense dots
dot_sparse = nm.nm_spmm(sparse, rhs, meta, output_dtype=output_type)
dot_dense = (lhs * mask) @ rhs
# Verify the result
jtu.check_close(dot_sparse, dot_dense.astype(output_type), rtol=0.01)
# ----- Test validation
@jtu.run_on_devices("gpu")
def test_validate_nm_pack(self):
with self.assertRaisesRegex(TypeError, "Mask should be bool"):
nm.nm_pack(jnp.zeros(16, jnp.int8))
with self.assertRaisesRegex(
TypeError, "Inner dimension size should be divisible by 16"
):
nm.nm_pack(jnp.array([False] * 8))
@jtu.run_on_devices("gpu")
def test_validate_nm_spmm(self):
batch, tile_m, tile_n, tile_k = 2, 64, 32, 128
lhs = jnp.zeros((batch, tile_m, tile_k // 2), dtype=jnp.bfloat16)
rhs = jnp.zeros((batch, tile_k, tile_n), dtype=jnp.bfloat16)
meta = jnp.zeros((batch, tile_m, tile_k // 16), dtype=jnp.uint16)
if config.enable_x64.value:
with self.assertRaisesRegex(TypeError, "Unsupported lhs input type"):
nm.nm_spmm(jnp.zeros(lhs.shape, dtype=jnp.int64), rhs, meta)
with self.assertRaisesRegex(TypeError, "Unsupported rhs input type"):
nm.nm_spmm(lhs, jnp.zeros(rhs.shape, dtype=jnp.int64), meta)
with self.assertRaisesRegex(TypeError, "Unsupported output type"):
nm.nm_spmm(lhs, rhs, meta, output_dtype=jnp.int64)
# Check dimension numbers
nm_spmm_with_dnums = lambda c, b: nm.nm_spmm(
lhs, rhs, meta, dimension_numbers=(c, b)
)
with self.assertRaisesRegex(
TypeError, "Only single contracting dimension is supported"
):
nm_spmm_with_dnums(((0, 2), (0, 1)), (tuple(), tuple()))
with self.assertRaisesRegex(
TypeError, "Incorrect dimension numbers for lhs"
):
nm_spmm_with_dnums(((2,), (1,)), ((2,), (0,)))
with self.assertRaisesRegex(
TypeError, "Incorrect dimension numbers for rhs"
):
nm_spmm_with_dnums(((2,), (1,)), ((0,), (1,)))
with self.assertRaisesRegex(
TypeError, "Only single non-contracting dimension is supported"
):
nm_spmm_with_dnums(((2,), (1,)), (tuple(), tuple()))
with self.assertRaisesRegex(
TypeError, "Batch dimension sizes do not match"
):
nm.nm_spmm(
lhs,
rhs.reshape(1, tile_k, tile_n * batch),
meta,
dimension_numbers=(((2,), (1,)), ((0,), (0,))),
)
# Check metadata
nm_spmm_with_meta = lambda m: nm.nm_spmm(
lhs, rhs, m, dimension_numbers=(((2,), (1,)), ((0,), (0,)))
)
with self.assertRaisesRegex(TypeError, "Metadata must be uint16"):
nm_spmm_with_meta(jnp.zeros(meta.shape, dtype=jnp.uint8))
with self.assertRaisesRegex(
TypeError, "Metadata shape must match the operand shape"
):
nm_spmm_with_meta(meta.reshape(1, batch * tile_m, tile_k // 16))
with self.assertRaisesRegex(
TypeError,
"Metadata must be exactly 8 times less than the contracting dimension"
" for 2:4 structured sparsity",
):
nm_spmm_with_meta(jnp.repeat(meta, 2, axis=-1))
with self.assertRaisesRegex(
TypeError, "Contracting dimension must be the minor one"
):
nm.nm_spmm(lhs, rhs, meta, dimension_numbers=(((1,), (1,)), ((0,), (0,))))
with self.assertRaisesRegex(
TypeError, "Contracting dimension sizes should have 2:4 ratio"
):
nm.nm_spmm(
lhs,
jnp.repeat(rhs, 2, axis=1),
meta,
dimension_numbers=(((2,), (1,)), ((0,), (0,))),
)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())