rocm_jax/tests/stax_test.py
Sergei Lebedev 0ff234049b Removed trivial docstrings from JAX tests
These docstrings do not make the tests any more clear and typically just duplicate the test module name.

PiperOrigin-RevId: 737611977
2025-03-17 07:49:37 -07:00

233 lines
8.0 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from absl.testing import absltest
import numpy as np
import jax
from jax._src import test_util as jtu
from jax import random
from jax.example_libraries import stax
from jax import dtypes
jax.config.parse_flags_with_absl()
def random_inputs(rng, input_shape):
if type(input_shape) is tuple:
return rng.randn(*input_shape).astype(dtypes.canonicalize_dtype(float))
elif type(input_shape) is list:
return [random_inputs(rng, shape) for shape in input_shape]
else:
raise TypeError(type(input_shape))
def _CheckShapeAgreement(test_case, init_fun, apply_fun, input_shape):
rng_key = random.PRNGKey(0)
rng_key, init_key = random.split(rng_key)
result_shape, params = init_fun(init_key, input_shape)
inputs = random_inputs(test_case.rng(), input_shape)
if params:
inputs = inputs.astype(np.dtype(params[0]))
result = apply_fun(params, inputs, rng=rng_key)
test_case.assertEqual(result.shape, result_shape)
# stax makes use of implicit rank promotion, so we allow it in the tests.
@jtu.with_config(jax_numpy_rank_promotion="allow",
jax_legacy_prng_key="allow")
class StaxTest(jtu.JaxTestCase):
@jtu.sample_product(shape=[(2, 3), (5,)])
def testRandnInitShape(self, shape):
key = random.PRNGKey(0)
out = stax.randn()(key, shape)
self.assertEqual(out.shape, shape)
@jtu.sample_product(shape=[(2, 3), (2, 3, 4)])
def testGlorotInitShape(self, shape):
key = random.PRNGKey(0)
out = stax.glorot()(key, shape)
self.assertEqual(out.shape, shape)
@jtu.sample_product(
channels=[2, 3],
filter_shape=[(1, 1), (2, 3)],
padding=["SAME", "VALID"],
strides=[None, (2, 1)],
input_shape=[(2, 10, 11, 1)],
)
def testConvShape(self, channels, filter_shape, padding, strides,
input_shape):
init_fun, apply_fun = stax.Conv(channels, filter_shape, strides=strides,
padding=padding)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@jtu.sample_product(
channels=[2, 3],
filter_shape=[(1, 1), (2, 3), (3, 3)],
padding=["SAME", "VALID"],
strides=[None, (2, 1), (2, 2)],
input_shape=[(2, 10, 11, 1)],
)
def testConvTransposeShape(self, channels, filter_shape, padding, strides,
input_shape):
init_fun, apply_fun = stax.ConvTranspose(channels, filter_shape, # 2D
strides=strides, padding=padding)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@jtu.sample_product(
channels=[2, 3],
filter_shape=[(1,), (2,), (3,)],
padding=["SAME", "VALID"],
strides=[None, (1,), (2,)],
input_shape=[(2, 10, 1)],
)
def testConv1DTransposeShape(self, channels, filter_shape, padding, strides,
input_shape):
init_fun, apply_fun = stax.Conv1DTranspose(channels, filter_shape,
strides=strides, padding=padding)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@jtu.sample_product(
out_dim=[3, 4],
input_shape=[(2, 3), (3, 4)],
)
def testDenseShape(self, out_dim, input_shape):
init_fun, apply_fun = stax.Dense(out_dim)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@jtu.sample_product(
input_shape=[(2, 3), (2, 3, 4)],
nonlinear=["Relu", "Sigmoid", "Elu", "LeakyRelu"],
)
def testNonlinearShape(self, input_shape, nonlinear):
init_fun, apply_fun = getattr(stax, nonlinear)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@jtu.sample_product(
window_shape=[(1, 1), (2, 3)],
padding=["VALID"],
strides=[None, (2, 1)],
input_shape=[(2, 5, 6, 4)],
max_pool=[False, True],
spec=["NHWC", "NCHW", "WHNC", "WHCN"],
)
def testPoolingShape(self, window_shape, padding, strides, input_shape,
max_pool, spec):
layer = stax.MaxPool if max_pool else stax.AvgPool
init_fun, apply_fun = layer(window_shape, padding=padding, strides=strides,
spec=spec)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@jtu.sample_product(input_shape=[(2, 3), (2, 3, 4)])
def testFlattenShape(self, input_shape):
init_fun, apply_fun = stax.Flatten
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@jtu.sample_product(
input_shape=[(2, 5, 6, 1)],
spec=[
[stax.Conv(3, (2, 2))],
[stax.Conv(3, (2, 2)), stax.Flatten, stax.Dense(4)],
],
)
def testSerialComposeLayersShape(self, input_shape, spec):
init_fun, apply_fun = stax.serial(*spec)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@jtu.sample_product(input_shape=[(3, 4), (2, 5, 6, 1)])
def testDropoutShape(self, input_shape):
init_fun, apply_fun = stax.Dropout(0.9)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@jtu.sample_product(input_shape=[(3, 4), (2, 5, 6, 1)])
def testFanInSum(self, input_shape):
init_fun, apply_fun = stax.FanInSum
_CheckShapeAgreement(self, init_fun, apply_fun, [input_shape, input_shape])
@jtu.sample_product(
[dict(input_shapes=input_shapes, axis=axis)
for input_shapes, axis in [
([(2, 3), (2, 1)], 1),
([(2, 3), (2, 1)], -1),
([(1, 2, 4), (1, 1, 4)], 1),
]
],
)
def testFanInConcat(self, input_shapes, axis):
init_fun, apply_fun = stax.FanInConcat(axis)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shapes)
def testIssue182(self):
key = random.PRNGKey(0)
init_fun, apply_fun = stax.Softmax
input_shape = (10, 3)
inputs = np.arange(30.).astype("float32").reshape(input_shape)
out_shape, params = init_fun(key, input_shape)
out = apply_fun(params, inputs)
assert out_shape == out.shape
assert np.allclose(np.sum(np.asarray(out), -1), 1.)
def testBatchNormNoScaleOrCenter(self):
key = random.PRNGKey(0)
axes = (0, 1, 2)
init_fun, apply_fun = stax.BatchNorm(axis=axes, center=False, scale=False)
input_shape = (4, 5, 6, 7)
inputs = random_inputs(self.rng(), input_shape)
out_shape, params = init_fun(key, input_shape)
out = apply_fun(params, inputs)
means = np.mean(out, axis=(0, 1, 2))
std_devs = np.std(out, axis=(0, 1, 2))
assert np.allclose(means, np.zeros_like(means), atol=1e-4)
assert np.allclose(std_devs, np.ones_like(std_devs), atol=1e-4)
def testBatchNormShapeNHWC(self):
key = random.PRNGKey(0)
init_fun, apply_fun = stax.BatchNorm(axis=(0, 1, 2))
input_shape = (4, 5, 6, 7)
out_shape, params = init_fun(key, input_shape)
inputs = random_inputs(self.rng(), input_shape).astype(params[0].dtype)
out = apply_fun(params, inputs)
self.assertEqual(out_shape, input_shape)
beta, gamma = params
self.assertEqual(beta.shape, (7,))
self.assertEqual(gamma.shape, (7,))
self.assertEqual(out_shape, out.shape)
def testBatchNormShapeNCHW(self):
key = random.PRNGKey(0)
# Regression test for https://github.com/jax-ml/jax/issues/461
init_fun, apply_fun = stax.BatchNorm(axis=(0, 2, 3))
input_shape = (4, 5, 6, 7)
out_shape, params = init_fun(key, input_shape)
inputs = random_inputs(self.rng(), input_shape).astype(params[0].dtype)
out = apply_fun(params, inputs)
self.assertEqual(out_shape, input_shape)
beta, gamma = params
self.assertEqual(beta.shape, (5,))
self.assertEqual(gamma.shape, (5,))
self.assertEqual(out_shape, out.shape)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())