mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 11:56:07 +00:00

addressable_shards Benchmark: ``` name old time/op new time/op delta bench_addressable_shards_index 53.0µs ± 2% 2.6µs ± 4% -95.07% (p=0.008 n=5+5) bench_addressable_shards_replica_id 51.7µs ± 2% 2.6µs ± 2% -94.92% (p=0.008 n=5+5) ``` PiperOrigin-RevId: 517977244
734 lines
27 KiB
Python
734 lines
27 KiB
Python
# Copyright 2021 The JAX Authors.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# https://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
from __future__ import annotations
|
||
|
||
import math
|
||
import operator as op
|
||
import numpy as np
|
||
import functools
|
||
from typing import (Sequence, Tuple, Callable, Union, Optional, cast, List, Set,
|
||
TYPE_CHECKING)
|
||
|
||
import jax
|
||
from jax._src import abstract_arrays
|
||
from jax._src import api_util
|
||
from jax._src import basearray
|
||
from jax._src import core
|
||
from jax._src import dispatch
|
||
from jax._src import dtypes
|
||
from jax._src import profiler
|
||
from jax._src.config import config
|
||
from jax._src.util import use_cpp_class, use_cpp_method
|
||
from jax._src.lib import xla_client as xc
|
||
from jax._src.lib import xla_extension_version
|
||
from jax._src import api
|
||
from jax._src.typing import ArrayLike
|
||
from jax.interpreters import mlir
|
||
from jax._src.interpreters import pxla
|
||
from jax._src.interpreters import xla
|
||
from jax._src.sharding import Sharding
|
||
from jax._src.sharding_impls import (
|
||
SingleDeviceSharding, XLACompatibleSharding, PmapSharding,
|
||
device_replica_id_map)
|
||
|
||
Shape = Tuple[int, ...]
|
||
Device = xc.Device
|
||
DeviceArray = xc.Buffer
|
||
Index = Tuple[slice, ...]
|
||
|
||
|
||
class Shard:
|
||
"""A single data shard of an Array.
|
||
|
||
Attributes:
|
||
device : Which device this shard resides on.
|
||
index : The index into the global array of this shard.
|
||
replica_id : Integer id indicating which replica of the global array this
|
||
shard is part of. Always 0 for fully sharded data
|
||
(i.e. when there’s only 1 replica).
|
||
data : The data of this shard. None if ``device`` is non-local.
|
||
"""
|
||
|
||
def __init__(self, device: Device, sharding: Sharding, global_shape: Shape,
|
||
data: Optional[ArrayImpl] = None):
|
||
self._device = device
|
||
self._sharding = sharding
|
||
self._global_shape = global_shape
|
||
self._data = data
|
||
|
||
def __repr__(self):
|
||
try:
|
||
return (f'Shard(device={repr(self.device)}, index={self.index}, '
|
||
f'replica_id={self.replica_id}, data={self.data})')
|
||
except ValueError:
|
||
return f'Shard(device={repr(self.device)}, data={self.data})'
|
||
|
||
@functools.cached_property
|
||
def index(self) -> Index:
|
||
try:
|
||
device_indices_map_fn = self._sharding.devices_indices_map
|
||
except AttributeError:
|
||
raise ValueError('Cannot calculate indices from sharding: '
|
||
f'{self._sharding}. Please create a device to index '
|
||
'mapping for your sharding.') from None
|
||
index = device_indices_map_fn(self._global_shape)[self.device]
|
||
assert index is not None
|
||
return index
|
||
|
||
@functools.cached_property
|
||
def replica_id(self) -> int:
|
||
return device_replica_id_map(self._sharding, self._global_shape)[self.device]
|
||
|
||
@property
|
||
def device(self):
|
||
return self._device
|
||
|
||
@property
|
||
def data(self):
|
||
return self._data
|
||
|
||
|
||
def _reconstruct_array(fun, args, arr_state, aval_state):
|
||
"""Method to reconstruct a device array from a serialized state."""
|
||
np_value = fun(*args)
|
||
np_value.__setstate__(arr_state)
|
||
jnp_value = api.device_put(np_value)
|
||
jnp_value.aval = jnp_value.aval.update(**aval_state)
|
||
return jnp_value
|
||
|
||
|
||
def _single_device_array_from_buf(buf, committed) -> ArrayImpl:
|
||
if isinstance(buf, ArrayImpl) and buf._committed == committed: # type: ignore
|
||
return buf
|
||
db = dispatch._set_aval(buf)
|
||
return ArrayImpl(db.aval, SingleDeviceSharding(db.device()), [db],
|
||
committed=committed, _skip_checks=True)
|
||
|
||
|
||
def _is_reduced_on_dim(idx):
|
||
# TODO(yashkatariya): This handles very narrow use case where we know XLA will
|
||
# not return an output with uneven sharding. Remove this after we have the
|
||
# ability to catch uneven shardings in lower_sharding_computation and raise
|
||
# a special exception for that which can be caught here to fallback to
|
||
# bouncing via host.
|
||
if not isinstance(idx, tuple):
|
||
idx = (idx,)
|
||
return all(isinstance(i, int) or
|
||
(isinstance(i, slice) and i == slice(None)) or
|
||
(isinstance(i, (np.ndarray, jax.Array)) and not i.shape and
|
||
np.issubdtype(i.dtype, np.integer))
|
||
for i in idx)
|
||
|
||
|
||
class ArrayImpl(basearray.Array):
|
||
# TODO(yashkatariya): Add __slots__ here.
|
||
|
||
aval: core.ShapedArray
|
||
_sharding: Sharding
|
||
_arrays: List[DeviceArray]
|
||
_committed: bool
|
||
_skip_checks: bool
|
||
_npy_value: Optional[np.ndarray]
|
||
|
||
@use_cpp_method()
|
||
def __init__(self, aval: core.ShapedArray, sharding: Sharding,
|
||
arrays: Union[Sequence[DeviceArray], Sequence[ArrayImpl]],
|
||
committed: bool, _skip_checks: bool = False):
|
||
# NOTE: the actual implementation of the constructor is moved to C++.
|
||
|
||
self.aval = aval
|
||
self._sharding = sharding
|
||
# Extract DeviceArrays from arrays with `SingleDeviceSharding` to keep the
|
||
# code handling `self._arrays` simpler.
|
||
# TODO(yashkatariya): This will be slower as it will happen during
|
||
# `__init__` on single controller environment. Make it lazy.
|
||
self._arrays = [a if isinstance(a, DeviceArray) else a._arrays[0] for a in arrays]
|
||
# See https://jax.readthedocs.io/en/latest/faq.html#controlling-data-and-computation-placement-on-devices
|
||
# for what committed means.
|
||
self._committed = committed
|
||
self._npy_value = None
|
||
|
||
# Don't rearrange if skip_checks is enabled because this assumes that the
|
||
# input buffers are already arranged properly. This usually happens when
|
||
# Array's are created as output of a JAX transformation
|
||
# (like pjit, xmap, etc).
|
||
if not _skip_checks or config.jax_enable_checks:
|
||
self._check_and_rearrange()
|
||
|
||
def _check_and_rearrange(self):
|
||
for db in self._arrays:
|
||
if db.dtype != self.dtype:
|
||
raise ValueError(
|
||
"Input buffers to `Array` must have matching dtypes. "
|
||
f"Got {db.dtype}, expected {self.dtype} for buffer: {db}")
|
||
|
||
device_id_to_buffer = {db.device().id: db for db in self._arrays}
|
||
|
||
addressable_dev = self.sharding.addressable_devices
|
||
if len(self._arrays) != len(addressable_dev):
|
||
raise ValueError(
|
||
f"Expected {len(addressable_dev)} per-device arrays "
|
||
"(this is how many devices are addressable by the sharding), but "
|
||
f"got {len(self._arrays)}")
|
||
|
||
array_device_ids = set(device_id_to_buffer.keys())
|
||
addressable_device_ids = set(d.id for d in addressable_dev)
|
||
# Calculate a symmetric difference because the device ids between sharding
|
||
# and _arrays should match.
|
||
diff = set(array_device_ids) ^ set(addressable_device_ids)
|
||
if diff:
|
||
dev_in_sharding_not_in_arrays = set(addressable_device_ids) - set(array_device_ids)
|
||
dev_in_arrays_not_in_sharding = set(array_device_ids) - set(addressable_device_ids)
|
||
err_msg = (
|
||
"Addressable devices and per-device arrays devices do not match.")
|
||
if dev_in_sharding_not_in_arrays:
|
||
err_msg += (f" Sharding contains devices {dev_in_sharding_not_in_arrays} "
|
||
"that are not present in per-device arrays.")
|
||
if dev_in_arrays_not_in_sharding:
|
||
err_msg += (f" Per-device arrays contain devices {dev_in_arrays_not_in_sharding} "
|
||
"that are not present in the sharding.")
|
||
raise ValueError(err_msg)
|
||
|
||
ss = self.sharding.shard_shape(self.shape)
|
||
for db in self._arrays:
|
||
if db.shape != ss:
|
||
raise ValueError(
|
||
f"Expected shard shape {ss} doesn't match the buffer "
|
||
f"shape {db.shape} for buffer: {db}")
|
||
|
||
# Rearrange arrays based on the device assignment.
|
||
if isinstance(self.sharding, XLACompatibleSharding):
|
||
addressable_da = self.sharding._addressable_device_assignment
|
||
self._arrays = [device_id_to_buffer[device.id] for device in addressable_da]
|
||
|
||
@property
|
||
def shape(self) -> Shape:
|
||
return self.aval.shape
|
||
|
||
@property
|
||
def dtype(self):
|
||
return self.aval.dtype
|
||
|
||
@property
|
||
def ndim(self):
|
||
return len(self.shape)
|
||
|
||
@property
|
||
def size(self):
|
||
return math.prod(self.shape)
|
||
|
||
@property
|
||
def sharding(self):
|
||
return self._sharding
|
||
|
||
@property
|
||
def weak_type(self):
|
||
return self.aval.weak_type
|
||
|
||
def __str__(self):
|
||
return str(self._value)
|
||
|
||
def __len__(self):
|
||
try:
|
||
return self.shape[0]
|
||
except IndexError as err:
|
||
raise TypeError("len() of unsized object") from err # same as numpy error
|
||
|
||
def __bool__(self):
|
||
return bool(self._value)
|
||
|
||
def __nonzero__(self):
|
||
return bool(self._value)
|
||
|
||
def __float__(self):
|
||
return self._value.__float__()
|
||
|
||
def __int__(self):
|
||
return self._value.__int__()
|
||
|
||
def __complex__(self):
|
||
return self._value.__complex__()
|
||
|
||
def __hex__(self):
|
||
assert self.ndim == 0, 'hex only works on scalar values'
|
||
return hex(self._value) # type: ignore
|
||
|
||
def __oct__(self):
|
||
assert self.ndim == 0, 'oct only works on scalar values'
|
||
return oct(self._value) # type: ignore
|
||
|
||
def __index__(self):
|
||
return op.index(self._value)
|
||
|
||
def tobytes(self, order="C"):
|
||
return self._value.tobytes(order)
|
||
|
||
def tolist(self):
|
||
return self._value.tolist()
|
||
|
||
def __format__(self, format_spec):
|
||
# Simulates behavior of https://github.com/numpy/numpy/pull/9883
|
||
if self.ndim == 0:
|
||
return format(self._value[()], format_spec)
|
||
else:
|
||
return format(self._value, format_spec)
|
||
|
||
def __getitem__(self, idx):
|
||
from jax._src.numpy import lax_numpy
|
||
self._check_if_deleted()
|
||
|
||
if isinstance(self.sharding, PmapSharding):
|
||
if not isinstance(idx, tuple):
|
||
cidx = (idx,) + (slice(None),) * (len(self.shape) - 1)
|
||
else:
|
||
cidx = idx + (slice(None),) * (len(self.shape) - len(idx))
|
||
if self._npy_value is None:
|
||
indices = tuple(self.sharding.devices_indices_map(self.shape).values())
|
||
try:
|
||
arr_idx = indices.index(cidx)
|
||
except ValueError:
|
||
arr_idx = None
|
||
if arr_idx is not None:
|
||
arr = self._arrays[arr_idx]
|
||
return _single_device_array_from_buf(arr, committed=False)
|
||
return lax_numpy._rewriting_take(self, idx)
|
||
elif (dispatch.is_single_device_sharding(self.sharding) or
|
||
self.is_fully_replicated or _is_reduced_on_dim(idx)):
|
||
return lax_numpy._rewriting_take(self, idx)
|
||
else:
|
||
# TODO(yashkatariya): Don't bounce to host and use `_rewriting_take` or
|
||
# the fast path (see PmapSharding branch above) after after uneven
|
||
# partitioning support is added
|
||
return api.device_put(self._value[idx])
|
||
|
||
def __iter__(self):
|
||
if self.ndim == 0:
|
||
raise TypeError("iteration over a 0-d array") # same as numpy error
|
||
else:
|
||
assert self.is_fully_replicated or self.is_fully_addressable
|
||
if dispatch.is_single_device_sharding(self.sharding) or self.is_fully_replicated:
|
||
return (sl for chunk in self._chunk_iter(100) for sl in chunk._unstack()) # type: ignore
|
||
elif isinstance(self.sharding, PmapSharding):
|
||
return (self[i] for i in range(self.shape[0])) # type: ignore
|
||
else:
|
||
# TODO(yashkatariya): Don't bounce to host and use `_chunk_iter` path
|
||
# here after uneven partitioning support is added.
|
||
return (api.device_put(self._value[i]) for i in range(self.shape[0]))
|
||
|
||
@property
|
||
def is_fully_replicated(self) -> bool:
|
||
return self.shape == self._arrays[0].shape
|
||
|
||
def __repr__(self):
|
||
prefix = 'Array('
|
||
if self.aval is not None and self.aval.weak_type:
|
||
dtype_str = f'dtype={self.dtype.name}, weak_type=True)'
|
||
else:
|
||
dtype_str = f'dtype={self.dtype.name})'
|
||
|
||
if self.is_fully_addressable or self.is_fully_replicated:
|
||
line_width = np.get_printoptions()["linewidth"]
|
||
s = np.array2string(self._value, prefix=prefix, suffix=',',
|
||
separator=', ', max_line_width=line_width)
|
||
last_line_len = len(s) - s.rfind('\n') + 1
|
||
sep = ' '
|
||
if last_line_len + len(dtype_str) + 1 > line_width:
|
||
sep = ' ' * len(prefix)
|
||
return f"{prefix}{s},{sep}{dtype_str}"
|
||
else:
|
||
return f"{prefix}{self.shape}, {dtype_str}"
|
||
|
||
@functools.cached_property
|
||
def is_fully_addressable(self) -> bool:
|
||
return self.sharding.is_fully_addressable
|
||
|
||
def __array__(self, dtype=None, context=None):
|
||
return np.asarray(self._value, dtype=dtype)
|
||
|
||
def __dlpack__(self):
|
||
from jax.dlpack import to_dlpack # pylint: disable=g-import-not-at-top
|
||
return to_dlpack(self)
|
||
|
||
def __reduce__(self):
|
||
fun, args, arr_state = self._value.__reduce__() # type: ignore
|
||
aval_state = {'weak_type': self.aval.weak_type,
|
||
'named_shape': self.aval.named_shape}
|
||
return (_reconstruct_array, (fun, args, arr_state, aval_state))
|
||
|
||
@use_cpp_method(xla_extension_version >= 138)
|
||
def unsafe_buffer_pointer(self):
|
||
if len(self._arrays) != 1:
|
||
raise ValueError("unsafe_buffer_pointer() is supported only for unsharded"
|
||
" arrays.")
|
||
return self._arrays[0].unsafe_buffer_pointer()
|
||
|
||
@property
|
||
@use_cpp_method(xla_extension_version >= 138)
|
||
def __cuda_array_interface__(self):
|
||
if len(self._arrays) != 1:
|
||
raise ValueError("__cuda_array_interface__() is supported only for "
|
||
"unsharded arrays.")
|
||
return self._arrays[0].__cuda_array_interface__ # pytype: disable=attribute-error # bind-properties
|
||
|
||
@use_cpp_method(xla_extension_version >= 138)
|
||
def on_device_size_in_bytes(self):
|
||
"""Returns the total global on-device size of the array in bytes."""
|
||
arr = self._arrays[0]
|
||
per_shard_size = arr.on_device_size_in_bytes() # type: ignore
|
||
return per_shard_size * len(self.sharding.device_set)
|
||
|
||
# TODO(yashkatariya): Remove this method when everyone is using devices().
|
||
def device(self) -> Device:
|
||
self._check_if_deleted()
|
||
device_set = self.sharding.device_set
|
||
if len(device_set) == 1:
|
||
single_device, = device_set
|
||
return single_device
|
||
raise ValueError('Length of devices is greater than 1. '
|
||
'Please use `.devices()`.')
|
||
|
||
def devices(self) -> Set[Device]:
|
||
self._check_if_deleted()
|
||
return self.sharding.device_set
|
||
|
||
# TODO(https://github.com/google/jax/issues/12380): Remove this when DA is
|
||
# deleted.
|
||
@property
|
||
def device_buffer(self) -> ArrayImpl:
|
||
self._check_if_deleted()
|
||
if len(self._arrays) == 1:
|
||
return _single_device_array_from_buf(self._arrays[0], self._committed)
|
||
raise ValueError('Length of buffers is greater than 1. Please use '
|
||
'`.device_buffers` instead.')
|
||
|
||
# TODO(https://github.com/google/jax/issues/12380): Remove this when SDA is
|
||
# deleted.
|
||
@property
|
||
def device_buffers(self) -> Sequence[ArrayImpl]:
|
||
self._check_if_deleted()
|
||
return [_single_device_array_from_buf(a, self._committed)
|
||
for a in self._arrays]
|
||
|
||
def addressable_data(self, index: int) -> ArrayImpl:
|
||
self._check_if_deleted()
|
||
return _single_device_array_from_buf(self._arrays[index], self._committed)
|
||
|
||
@functools.cached_property
|
||
def addressable_shards(self) -> Sequence[Shard]:
|
||
self._check_if_deleted()
|
||
out = []
|
||
for db in self._arrays:
|
||
# Wrap the device arrays in `Array` until C++ returns an Array instead
|
||
# of a DA.
|
||
array = _single_device_array_from_buf(db, self._committed)
|
||
out.append(Shard(db.device(), self.sharding, self.shape, array))
|
||
return out
|
||
|
||
@property
|
||
def global_shards(self) -> Sequence[Shard]:
|
||
"""Returns list of all `Shard`s of the Array across all devices.
|
||
|
||
The result includes shards that are not addressable by the current process.
|
||
If a `Shard` is not addressable, then its `data` will be `None`.
|
||
"""
|
||
self._check_if_deleted()
|
||
if self.is_fully_addressable: # pylint: disable=using-constant-test
|
||
return self.addressable_shards
|
||
|
||
out = []
|
||
device_id_to_buffer = {db.device().id: db for db in self._arrays}
|
||
for global_d in self.sharding.device_set:
|
||
if device_id_to_buffer.get(global_d.id, None) is not None:
|
||
array = _single_device_array_from_buf(
|
||
device_id_to_buffer[global_d.id], self._committed)
|
||
else:
|
||
array = None
|
||
out.append(Shard(global_d, self.sharding, self.shape, array))
|
||
return out
|
||
|
||
@use_cpp_method(xla_extension_version >= 138)
|
||
def delete(self):
|
||
if self._arrays is None:
|
||
return
|
||
for buf in self._arrays:
|
||
buf.delete()
|
||
self._arrays = None
|
||
self._npy_value = None
|
||
|
||
@use_cpp_method()
|
||
def is_deleted(self):
|
||
if self._arrays is None:
|
||
return True
|
||
# This path is taken when a view of `Array` is created and the original
|
||
# Array is deleted. In that case, the buffers the view represents also get
|
||
# deleted.
|
||
return any(buf.is_deleted() for buf in self._arrays)
|
||
|
||
def _check_if_deleted(self):
|
||
if self.is_deleted():
|
||
raise RuntimeError("Array has been deleted.")
|
||
|
||
@use_cpp_method()
|
||
def block_until_ready(self):
|
||
self._check_if_deleted()
|
||
for db in self._arrays:
|
||
db.block_until_ready()
|
||
return self
|
||
|
||
@use_cpp_method(xla_extension_version >= 138)
|
||
def _single_device_array_to_np_array(self):
|
||
return np.asarray(self._arrays[0])
|
||
|
||
@use_cpp_method(xla_extension_version >= 138)
|
||
def _copy_single_device_array_to_host_async(self):
|
||
self._arrays[0].copy_to_host_async()
|
||
|
||
@profiler.annotate_function
|
||
def copy_to_host_async(self):
|
||
self._check_if_deleted()
|
||
if self._npy_value is None:
|
||
if self.is_fully_replicated:
|
||
self._copy_single_device_array_to_host_async()
|
||
return
|
||
# Only calculate the device_to_replica_id map once for performance
|
||
device_to_replica_id_map = (
|
||
device_replica_id_map(self.sharding, self.shape))
|
||
for arr in self._arrays:
|
||
if device_to_replica_id_map[arr.device()] == 0:
|
||
if isinstance(arr, ArrayImpl):
|
||
arr._copy_single_device_array_to_host_async()
|
||
else:
|
||
arr.copy_to_host_async()
|
||
|
||
@property
|
||
@functools.partial(profiler.annotate_function, name="np.asarray(jax.Array)")
|
||
def _value(self) -> np.ndarray:
|
||
self._check_if_deleted()
|
||
|
||
if self._npy_value is None:
|
||
if self.is_fully_replicated:
|
||
self._npy_value = self._single_device_array_to_np_array() # type: ignore
|
||
self._npy_value.flags.writeable = False
|
||
return cast(np.ndarray, self._npy_value)
|
||
|
||
if not self.is_fully_addressable:
|
||
raise RuntimeError("Fetching value for `jax.Array` that spans "
|
||
"non-addressable devices is not possible. You can use "
|
||
"`jax.experimental.multihost_utils.process_allgather` "
|
||
"for this use case.")
|
||
|
||
# Only calculate the device_to_replica_id map once for performance
|
||
device_to_replica_id_map = device_replica_id_map(self.sharding, self.shape)
|
||
# device() is slow so compute it only once for the rest of the function.
|
||
devices = [arr.device() for arr in self._arrays]
|
||
for arr, d in zip(self._arrays, devices):
|
||
if device_to_replica_id_map[d] == 0:
|
||
if isinstance(arr, ArrayImpl):
|
||
arr._copy_single_device_array_to_host_async()
|
||
else:
|
||
arr.copy_to_host_async()
|
||
# Only calculate the device_to_index map once for performance
|
||
device_to_index_map = self.sharding.devices_indices_map(self.shape)
|
||
npy_value = np.empty(self.shape, self.dtype)
|
||
for arr, d in zip(self._arrays, devices):
|
||
if device_to_replica_id_map[d] == 0:
|
||
if isinstance(arr, ArrayImpl):
|
||
npy_value[device_to_index_map[d]] = (
|
||
arr._single_device_array_to_np_array())
|
||
else:
|
||
npy_value[device_to_index_map[d]] = np.asarray(arr)
|
||
self._npy_value = npy_value # type: ignore
|
||
self._npy_value.flags.writeable = False
|
||
# https://docs.python.org/3/library/typing.html#typing.cast
|
||
return cast(np.ndarray, self._npy_value)
|
||
|
||
|
||
# TODO(b/273265390): ideally we would write this as a decorator on the ArrayImpl
|
||
# class, however this triggers a pytype bug. Workaround: apply the decorator
|
||
# after the fact.
|
||
if not TYPE_CHECKING:
|
||
ArrayImpl = use_cpp_class(xc.ArrayImpl)(ArrayImpl)
|
||
|
||
|
||
# explicitly set to be unhashable. Same as what device_array.py does.
|
||
setattr(ArrayImpl, "__hash__", None)
|
||
setattr(ArrayImpl, "__array_priority__", 100)
|
||
|
||
def make_array_from_callback(
|
||
shape: Shape, sharding: Sharding,
|
||
data_callback: Callable[[Optional[Index]], ArrayLike]) -> ArrayImpl:
|
||
"""Returns a ``jax.Array`` via data fetched from ``data_callback``.
|
||
|
||
``data_callback`` is used to fetch the data for each addressable shard of the
|
||
returned ``jax.Array``.
|
||
|
||
Args:
|
||
shape : Shape of the ``jax.Array``.
|
||
sharding: A ``Sharding`` instance which describes how the ``jax.Array`` is
|
||
laid out across devices.
|
||
data_callback : Callback that takes indices into the global array value as
|
||
input and returns the corresponding data of the global array value.
|
||
The data can be returned as any array-like object, e.g. a ``numpy.ndarray``.
|
||
|
||
Returns:
|
||
A ``jax.Array`` via data fetched from ``data_callback``.
|
||
|
||
Example:
|
||
|
||
>>> import math
|
||
>>> from jax.sharding import Mesh
|
||
>>> from jax.sharding import PartitionSpec as P
|
||
>>> import numpy as np
|
||
...
|
||
>>> input_shape = (8, 8)
|
||
>>> global_input_data = np.arange(math.prod(input_shape)).reshape(input_shape)
|
||
>>> global_mesh = Mesh(np.array(jax.devices()).reshape(2, 4), ('x', 'y'))
|
||
>>> inp_sharding = jax.sharding.NamedSharding(global_mesh, P('x', 'y'))
|
||
...
|
||
>>> def cb(index):
|
||
... return global_input_data[index]
|
||
...
|
||
>>> arr = jax.make_array_from_callback(input_shape, inp_sharding, cb)
|
||
>>> arr.addressable_data(0).shape
|
||
(4, 2)
|
||
"""
|
||
device_to_index_map = sharding.devices_indices_map(shape)
|
||
# Use addressable_devices here instead of `_addressable_device_assignment`
|
||
# because `_addressable_device_assignment` is only available on
|
||
# `XLACompatibleSharding` and this function is supposed to work for every
|
||
# `Sharding`.
|
||
arrays = [
|
||
api.device_put(data_callback(device_to_index_map[device]), device)
|
||
for device in sharding.addressable_devices
|
||
]
|
||
aval = core.ShapedArray(shape, arrays[0].dtype, weak_type=False)
|
||
return ArrayImpl(aval, sharding, arrays, committed=True)
|
||
|
||
|
||
def make_array_from_single_device_arrays(
|
||
shape: Shape, sharding: Sharding, arrays: Sequence[basearray.Array]
|
||
) -> ArrayImpl:
|
||
r"""Returns a ``jax.Array`` from a sequence of ``jax.Array``\s on a single device.
|
||
|
||
``jax.Array`` on a single device is analogous to a ``DeviceArray``. You can use
|
||
this function if you have already ``jax.device_put`` the value on a single
|
||
device and want to create a global Array. The smaller ``jax.Array``\s should be
|
||
addressable and belong to the current process.
|
||
|
||
Args:
|
||
shape : Shape of the ``jax.Array``.
|
||
sharding: A ``Sharding`` instance which describes how the ``jax.Array`` is
|
||
laid out across devices.
|
||
arrays: Sequence of ``jax.Array``\s that are on a single device.
|
||
|
||
Returns:
|
||
A ``jax.Array`` from a sequence of ``jax.Array``\s on a single device.
|
||
|
||
Example:
|
||
|
||
>>> import math
|
||
>>> from jax.sharding import Mesh
|
||
>>> from jax.sharding import PartitionSpec as P
|
||
>>> import numpy as np
|
||
...
|
||
>>> shape = (8, 8)
|
||
>>> global_mesh = Mesh(np.array(jax.devices()).reshape(2, 4), ('x', 'y'))
|
||
>>> sharding = jax.sharding.NamedSharding(global_mesh, P('x', 'y'))
|
||
>>> inp_data = np.arange(math.prod(shape)).reshape(shape)
|
||
...
|
||
>>> arrays = [
|
||
... jax.device_put(inp_data[index], d)
|
||
... for d, index in sharding.addressable_devices_indices_map(shape).items()]
|
||
...
|
||
>>> arr = jax.make_array_from_single_device_arrays(shape, sharding, arrays)
|
||
>>> arr.addressable_data(0).shape
|
||
(4, 2)
|
||
"""
|
||
# All input arrays should be committed. Checking it is expensive on
|
||
# single-controller systems.
|
||
aval = core.ShapedArray(shape, arrays[0].dtype, weak_type=False)
|
||
# TODO(phawkins): ideally the cast() could be checked. Revisit this after
|
||
# removing DeviceArray.
|
||
return ArrayImpl(aval, sharding, cast(Sequence[ArrayImpl], arrays),
|
||
committed=True)
|
||
|
||
|
||
core.pytype_aval_mappings[ArrayImpl] = abstract_arrays.canonical_concrete_aval
|
||
xla.pytype_aval_mappings[ArrayImpl] = op.attrgetter('aval')
|
||
xla.canonicalize_dtype_handlers[ArrayImpl] = pxla.identity
|
||
api_util._shaped_abstractify_handlers[ArrayImpl] = op.attrgetter('aval')
|
||
# TODO(jakevdp) replace this with true inheritance at the C++ level.
|
||
basearray.Array.register(ArrayImpl)
|
||
|
||
|
||
def _array_mlir_constant_handler(val, canonicalize_types=True):
|
||
return mlir.ir_constants(val._value,
|
||
canonicalize_types=canonicalize_types)
|
||
mlir.register_constant_handler(ArrayImpl, _array_mlir_constant_handler)
|
||
|
||
|
||
def _array_shard_arg(x, devices, indices, sharding):
|
||
x._check_if_deleted()
|
||
|
||
x_indices = x.sharding.addressable_devices_indices_map(x.shape).values()
|
||
if not x.is_fully_addressable:
|
||
if tuple(x_indices) == tuple(indices):
|
||
return x
|
||
else:
|
||
raise NotImplementedError(
|
||
"Cannot reshard an input that is not fully addressable")
|
||
else:
|
||
if tuple(x_indices) == tuple(indices):
|
||
return xc.copy_array_to_devices_with_sharding(
|
||
x, list(devices), sharding)
|
||
# Resharding starts here:
|
||
if dispatch.is_single_device_sharding(x.sharding):
|
||
return pxla.shard_device_array(x, devices, indices, sharding)
|
||
else:
|
||
return pxla.shard_sharded_device_array_slow_path(
|
||
x, devices, indices, sharding)
|
||
|
||
|
||
pxla.shard_arg_handlers[ArrayImpl] = _array_shard_arg
|
||
|
||
|
||
def _array_global_result_handler(global_aval, out_sharding, committed,
|
||
is_out_sharding_from_xla):
|
||
if global_aval.dtype == dtypes.float0:
|
||
return lambda _: np.zeros(global_aval.shape, dtypes.float0) # type: ignore
|
||
if core.is_opaque_dtype(global_aval.dtype):
|
||
return global_aval.dtype._rules.global_sharded_result_handler(
|
||
global_aval, out_sharding, committed, is_out_sharding_from_xla)
|
||
return xc.array_result_handler(
|
||
global_aval, out_sharding, committed=committed, _skip_checks=True
|
||
)
|
||
pxla.global_result_handlers[(core.ShapedArray, pxla.OutputType.Array)] = _array_global_result_handler
|
||
pxla.global_result_handlers[(core.ConcreteArray, pxla.OutputType.Array)] = _array_global_result_handler
|
||
pxla.global_result_handlers[(core.AbstractToken, pxla.OutputType.Array)] = lambda *_: lambda *_: core.token
|
||
|
||
|
||
# Only used for Arrays that come out of pmap.
|
||
def _array_local_result_handler(aval, sharding, indices):
|
||
if aval.dtype == dtypes.float0:
|
||
return lambda _: np.zeros(aval.shape, dtypes.float0) # type: ignore
|
||
if core.is_opaque_dtype(aval.dtype):
|
||
return aval.dtype._rules.local_sharded_result_handler(
|
||
aval, sharding, indices)
|
||
return xc.array_result_handler(
|
||
aval, sharding, committed=True, _skip_checks=True
|
||
)
|
||
pxla.local_result_handlers[(core.ShapedArray, pxla.OutputType.Array)] = _array_local_result_handler
|
||
pxla.local_result_handlers[(core.ConcreteArray, pxla.OutputType.Array)] = _array_local_result_handler
|