rocm_jax/jax/_src/scipy/special.py
Peter Hawkins 26e9ebcdae Move jax.api to jax._src.api.
PiperOrigin-RevId: 368233837
2021-04-13 09:43:24 -07:00

660 lines
22 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import numpy as np
import scipy.special as osp_special
from jax._src import api
from jax import lax, core
from jax.interpreters import ad
from jax._src.numpy import lax_numpy as jnp
from jax._src.numpy.lax_numpy import (asarray, _reduction_dims, _constant_like,
_promote_args_inexact)
from jax._src.numpy.util import _wraps
@_wraps(osp_special.gammaln)
def gammaln(x):
x, = _promote_args_inexact("gammaln", x)
return lax.lgamma(x)
@_wraps(osp_special.betaln)
def betaln(x, y):
x, y = _promote_args_inexact("betaln", x, y)
return lax.lgamma(x) + lax.lgamma(y) - lax.lgamma(x + y)
@_wraps(osp_special.betainc)
def betainc(a, b, x):
a, b, x = _promote_args_inexact("betainc", a, b, x)
return lax.betainc(a, b, x)
@_wraps(osp_special.digamma, update_doc=False)
def digamma(x):
x, = _promote_args_inexact("digamma", x)
return lax.digamma(x)
ad.defjvp(lax.digamma_p, lambda g, x: lax.mul(g, polygamma(1, x)))
@_wraps(osp_special.gammainc, update_doc=False)
def gammainc(a, x):
a, x = _promote_args_inexact("gammainc", a, x)
return lax.igamma(a, x)
@_wraps(osp_special.gammaincc, update_doc=False)
def gammaincc(a, x):
a, x = _promote_args_inexact("gammaincc", a, x)
return lax.igammac(a, x)
@_wraps(osp_special.erf)
def erf(x):
x, = _promote_args_inexact("erf", x)
return lax.erf(x)
@_wraps(osp_special.erfc, update_doc=False)
def erfc(x):
x, = _promote_args_inexact("erfc", x)
return lax.erfc(x)
@_wraps(osp_special.erfinv)
def erfinv(x):
x, = _promote_args_inexact("erfinv", x)
return lax.erf_inv(x)
@api.custom_jvp
@_wraps(osp_special.logit, update_doc=False)
def logit(x):
x = asarray(x)
return lax.log(lax.div(x, lax.sub(lax._const(x, 1), x)))
logit.defjvps(
lambda g, ans, x: lax.div(g, lax.mul(x, lax.sub(lax._const(x, 1), x))))
@api.custom_jvp
@_wraps(osp_special.expit, update_doc=False)
def expit(x):
x = asarray(x)
one = lax._const(x, 1)
return lax.div(one, lax.add(one, lax.exp(lax.neg(x))))
expit.defjvps(lambda g, ans, x: g * ans * (lax._const(ans, 1) - ans))
@_wraps(osp_special.logsumexp)
def logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False):
if b is not None:
a, b = _promote_args_inexact("logsumexp", a, b)
a = jnp.where(b != 0, a, -jnp.inf)
else:
a, = _promote_args_inexact("logsumexp", a)
pos_dims, dims = _reduction_dims(a, axis)
amax = jnp.max(a, axis=dims, keepdims=keepdims)
amax = lax.stop_gradient(lax.select(lax.is_finite(amax), amax, lax.full_like(amax, 0)))
amax_with_dims = amax if keepdims else lax.expand_dims(amax, pos_dims)
if b is None:
out = lax.add(lax.log(jnp.sum(lax.exp(lax.sub(a, amax_with_dims)),
axis=dims, keepdims=keepdims)),
amax)
sign = jnp.where(jnp.isnan(out), np.nan, 1.0).astype(out.dtype)
sign = jnp.where(out == -np.inf, 0.0, sign)
else:
sumexp = jnp.sum(lax.mul(lax.exp(lax.sub(a, amax_with_dims)), b),
axis=dims, keepdims=keepdims)
sign = lax.stop_gradient(lax.sign(sumexp))
out = lax.add(lax.log(lax.abs(sumexp)), amax)
if return_sign:
return (out, sign)
if b is not None:
out = jnp.where(sign < 0, np.nan, out)
return out
@_wraps(osp_special.xlogy)
def xlogy(x, y):
x, y = _promote_args_inexact("xlogy", x, y)
x_ok = x != 0.
safe_x = jnp.where(x_ok, x, 1.)
safe_y = jnp.where(x_ok, y, 1.)
return jnp.where(x_ok, lax.mul(safe_x, lax.log(safe_y)), jnp.zeros_like(x))
@_wraps(osp_special.xlog1py, update_doc=False)
def xlog1py(x, y):
x, y = _promote_args_inexact("xlog1py", x, y)
x_ok = x != 0.
safe_x = jnp.where(x_ok, x, 1.)
safe_y = jnp.where(x_ok, y, 1.)
return jnp.where(x_ok, lax.mul(safe_x, lax.log1p(safe_y)), jnp.zeros_like(x))
@_wraps(osp_special.entr)
def entr(x):
x, = _promote_args_inexact("entr", x)
return lax.select(lax.lt(x, _constant_like(x, 0)),
lax.full_like(x, -np.inf),
lax.neg(xlogy(x, x)))
@_wraps(osp_special.multigammaln, update_doc=False)
def multigammaln(a, d):
d = core.concrete_or_error(int, d, "d argument of multigammaln")
a, d_ = _promote_args_inexact("multigammaln", a, d)
constant = lax.mul(lax.mul(lax.mul(_constant_like(a, 0.25), d_),
lax.sub(d_, _constant_like(a, 1))),
lax.log(_constant_like(a, np.pi)))
res = jnp.sum(gammaln(jnp.expand_dims(a, axis=-1) -
lax.div(jnp.arange(d, dtype=d_.dtype),
_constant_like(a, 2))),
axis=-1)
return res + constant
# coefs of (2k)! / B_{2k} where B are bernoulli numbers
# those numbers are obtained using https://www.wolframalpha.com
_BERNOULLI_COEFS = [
12,
-720,
30240,
-1209600,
47900160,
-1307674368000 / 691,
74724249600,
-10670622842880000 / 3617,
5109094217170944000 / 43867,
-802857662698291200000 / 174611,
14101100039391805440000 / 77683,
-1693824136731743669452800000 / 236364091,
186134520519971831808000000 / 657931,
-37893265687455865519472640000000 / 3392780147,
759790291646040068357842010112000000 / 1723168255201,
-134196726836183700385281186201600000000 / 7709321041217,
]
@_wraps(osp_special.zeta)
def zeta(x, q=None):
assert q is not None, "Riemann zeta function is not implemented yet."
# Reference: Johansson, Fredrik.
# "Rigorous high-precision computation of the Hurwitz zeta function and its derivatives."
# Numerical Algorithms 69.2 (2015): 253-270.
# https://arxiv.org/abs/1309.2877 - formula (5)
# here we keep the same notation as in reference
s, a = _promote_args_inexact("zeta", x, q)
dtype = lax.dtype(a).type
s_, a_ = jnp.expand_dims(s, -1), jnp.expand_dims(a, -1)
# precision ~ N, M
N = M = dtype(8) if lax.dtype(a) == jnp.float32 else dtype(16)
assert M <= len(_BERNOULLI_COEFS)
k = np.arange(N, dtype=N.dtype)
S = jnp.sum((a_ + k) ** -s_, -1)
I = lax.div((a + N) ** (dtype(1) - s), s - dtype(1))
T0 = (a + N) ** -s
s_over_a = (s_ + np.arange(2 * M, dtype=M.dtype)) / (a_ + N)
T1 = jnp.cumprod(s_over_a, -1)[..., ::2]
T1 = jnp.clip(T1, a_max=jnp.finfo(dtype).max)
coefs = np.array(_BERNOULLI_COEFS[:T1.shape[-1]], dtype=dtype)
T1 = T1 / coefs
T = T0 * (dtype(0.5) + T1.sum(-1))
return S + I + T
@_wraps(osp_special.polygamma, update_doc=False)
def polygamma(n, x):
assert jnp.issubdtype(lax.dtype(n), jnp.integer)
n, x = _promote_args_inexact("polygamma", n, x)
shape = lax.broadcast_shapes(n.shape, x.shape)
return _polygamma(jnp.broadcast_to(n, shape), jnp.broadcast_to(x, shape))
@api.custom_jvp
def _polygamma(n, x):
dtype = lax.dtype(n).type
n_plus = n + dtype(1)
sign = dtype(1) - (n_plus % dtype(2)) * dtype(2)
return jnp.where(n == 0, digamma(x), sign * jnp.exp(gammaln(n_plus)) * zeta(n_plus, x))
_polygamma.defjvps(None, lambda g, ans, n, x: lax.mul(g, _polygamma(n + 1, x)))
# Normal distributions
# Functions "ndtr" and "ndtri" are derived from calculations made in:
# https://root.cern.ch/doc/v608/SpecFuncCephesInv_8cxx_source.html
# In the following email exchange, the author gives his consent to redistribute
# derived works under an Apache 2.0 license.
#
# From: Stephen Moshier <steve@moshier.net>
# Date: Sat, Jun 9, 2018 at 2:36 PM
# Subject: Re: Licensing cephes under Apache (BSD-like) license.
# To: rif <rif@google.com>
#
#
#
# Hello Rif,
#
# Yes, Google may distribute Cephes files under the Apache 2 license.
#
# If clarification is needed, I do not favor BSD over other free licenses.
# I would agree that Apache 2 seems to cover the concern you mentioned
# about sublicensees.
#
# Best wishes for good luck with your projects!
# Steve Moshier
#
#
#
# On Thu, 31 May 2018, rif wrote:
#
# > Hello Steve.
# > My name is Rif. I work on machine learning software at Google.
# >
# > Your cephes software continues to be incredibly useful and widely used. I
# > was wondering whether it would be permissible for us to use the Cephes code
# > under the Apache 2.0 license, which is extremely similar in permissions to
# > the BSD license (Wikipedia comparisons). This would be quite helpful to us
# > in terms of avoiding multiple licenses on software.
# >
# > I'm sorry to bother you with this (I can imagine you're sick of hearing
# > about this by now), but I want to be absolutely clear we're on the level and
# > not misusing your important software. In former conversation with Eugene
# > Brevdo (ebrevdo@google.com), you wrote "If your licensing is similar to BSD,
# > the formal way that has been handled is simply to add a statement to the
# > effect that you are incorporating the Cephes software by permission of the
# > author." I wanted to confirm that (a) we could use the Apache license, (b)
# > that we don't need to (and probably you don't want to) keep getting
# > contacted about individual uses, because your intent is generally to allow
# > this software to be reused under "BSD-like" license, and (c) you're OK
# > letting incorporators decide whether a license is sufficiently BSD-like?
# >
# > Best,
# >
# > rif
# >
# >
# >
# log_ndtr uses different functions over the ranges
# (-infty, lower](lower, upper](upper, infty)
# Lower bound values were chosen by examining where the support of ndtr
# appears to be zero, relative to scipy's (which is always 64bit). They were
# then made more conservative just to be safe. (Conservative means use the
# expansion more than we probably need to.)
_LOGNDTR_FLOAT64_LOWER = np.array(-20, np.float64)
_LOGNDTR_FLOAT32_LOWER = np.array(-10, np.float32)
# Upper bound values were chosen by examining for which values of 'x'
# Log[cdf(x)] is 0, after which point we need to use the approximation
# Log[cdf(x)] = Log[1 - cdf(-x)] approx -cdf(-x). We chose a value slightly
# conservative, meaning we use the approximation earlier than needed.
_LOGNDTR_FLOAT64_UPPER = np.array(8, np.float64)
_LOGNDTR_FLOAT32_UPPER = np.array(5, np.float32)
def ndtr(x):
r"""Normal distribution function.
Returns the area under the Gaussian probability density function, integrated
from minus infinity to x:
.. math::
\begin{align}
\mathrm{ndtr}(x) =&
\ \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt \\
=&\ \frac{1}{2} (1 + \mathrm{erf}(\frac{x}{\sqrt{2}})) \\
=&\ \frac{1}{2} \mathrm{erfc}(\frac{x}{\sqrt{2}})
\end{align}
Args:
x: An array of type `float32`, `float64`.
Returns:
An array with `dtype=x.dtype`.
Raises:
TypeError: if `x` is not floating-type.
"""
x = jnp.asarray(x)
dtype = lax.dtype(x)
if dtype not in (jnp.float32, jnp.float64):
raise TypeError(
"x.dtype={} is not supported, see docstring for supported types."
.format(dtype))
return _ndtr(x)
def _ndtr(x):
"""Implements ndtr core logic."""
dtype = lax.dtype(x).type
half_sqrt_2 = dtype(0.5) * np.sqrt(2., dtype=dtype)
w = x * half_sqrt_2
z = lax.abs(w)
y = lax.select(lax.lt(z, half_sqrt_2),
dtype(1.) + lax.erf(w),
lax.select(lax.gt(w, dtype(0.)),
dtype(2.) - lax.erfc(z),
lax.erfc(z)))
return dtype(0.5) * y
def ndtri(p):
r"""The inverse of the CDF of the Normal distribution function.
Returns `x` such that the area under the PDF from :math:`-\infty` to `x` is equal
to `p`.
A piece-wise rational approximation is done for the function.
This is a based on the implementation in netlib.
Args:
p: an array of type `float32`, `float64`.
Returns:
an array with `dtype=p.dtype`.
Raises:
TypeError: if `p` is not floating-type.
"""
dtype = lax.dtype(p)
if dtype not in (jnp.float32, jnp.float64):
raise TypeError(
"x.dtype={} is not supported, see docstring for supported types."
.format(dtype))
return _ndtri(p)
def _ndtri(p):
"""Implements ndtri core logic."""
# Constants used in piece-wise rational approximations. Taken from the cephes
# library:
# https://root.cern.ch/doc/v608/SpecFuncCephesInv_8cxx_source.html
p0 = list(reversed([-5.99633501014107895267E1,
9.80010754185999661536E1,
-5.66762857469070293439E1,
1.39312609387279679503E1,
-1.23916583867381258016E0]))
q0 = list(reversed([1.0,
1.95448858338141759834E0,
4.67627912898881538453E0,
8.63602421390890590575E1,
-2.25462687854119370527E2,
2.00260212380060660359E2,
-8.20372256168333339912E1,
1.59056225126211695515E1,
-1.18331621121330003142E0]))
p1 = list(reversed([4.05544892305962419923E0,
3.15251094599893866154E1,
5.71628192246421288162E1,
4.40805073893200834700E1,
1.46849561928858024014E1,
2.18663306850790267539E0,
-1.40256079171354495875E-1,
-3.50424626827848203418E-2,
-8.57456785154685413611E-4]))
q1 = list(reversed([1.0,
1.57799883256466749731E1,
4.53907635128879210584E1,
4.13172038254672030440E1,
1.50425385692907503408E1,
2.50464946208309415979E0,
-1.42182922854787788574E-1,
-3.80806407691578277194E-2,
-9.33259480895457427372E-4]))
p2 = list(reversed([3.23774891776946035970E0,
6.91522889068984211695E0,
3.93881025292474443415E0,
1.33303460815807542389E0,
2.01485389549179081538E-1,
1.23716634817820021358E-2,
3.01581553508235416007E-4,
2.65806974686737550832E-6,
6.23974539184983293730E-9]))
q2 = list(reversed([1.0,
6.02427039364742014255E0,
3.67983563856160859403E0,
1.37702099489081330271E0,
2.16236993594496635890E-1,
1.34204006088543189037E-2,
3.28014464682127739104E-4,
2.89247864745380683936E-6,
6.79019408009981274425E-9]))
dtype = lax.dtype(p).type
shape = jnp.shape(p)
def _create_polynomial(var, coeffs):
"""Compute n_th order polynomial via Horner's method."""
coeffs = np.array(coeffs, dtype)
if not coeffs.size:
return jnp.zeros_like(var)
return coeffs[0] + _create_polynomial(var, coeffs[1:]) * var
maybe_complement_p = jnp.where(p > dtype(-np.expm1(-2.)), dtype(1.) - p, p)
# Write in an arbitrary value in place of 0 for p since 0 will cause NaNs
# later on. The result from the computation when p == 0 is not used so any
# number that doesn't result in NaNs is fine.
sanitized_mcp = jnp.where(
maybe_complement_p <= dtype(0.),
jnp.full(shape, dtype(0.5)),
maybe_complement_p)
# Compute x for p > exp(-2): x/sqrt(2pi) = w + w**3 P0(w**2)/Q0(w**2).
w = sanitized_mcp - dtype(0.5)
ww = lax.square(w)
x_for_big_p = w + w * ww * (_create_polynomial(ww, p0)
/ _create_polynomial(ww, q0))
x_for_big_p *= -dtype(np.sqrt(2. * np.pi))
# Compute x for p <= exp(-2): x = z - log(z)/z - (1/z) P(1/z) / Q(1/z),
# where z = sqrt(-2. * log(p)), and P/Q are chosen between two different
# arrays based on whether p < exp(-32).
z = lax.sqrt(dtype(-2.) * lax.log(sanitized_mcp))
first_term = z - lax.log(z) / z
second_term_small_p = (
_create_polynomial(dtype(1.) / z, p2) /
_create_polynomial(dtype(1.) / z, q2) / z)
second_term_otherwise = (
_create_polynomial(dtype(1.) / z, p1) /
_create_polynomial(dtype(1.) / z, q1) / z)
x_for_small_p = first_term - second_term_small_p
x_otherwise = first_term - second_term_otherwise
x = jnp.where(sanitized_mcp > dtype(np.exp(-2.)),
x_for_big_p,
jnp.where(z >= dtype(8.0), x_for_small_p, x_otherwise))
x = jnp.where(p > dtype(1. - np.exp(-2.)), x, -x)
infinity = jnp.full(shape, dtype(np.inf))
x_nan_replaced = jnp.where(
p <= dtype(0.0), -infinity, jnp.where(p >= dtype(1.0), infinity, x))
return x_nan_replaced
@partial(api.custom_jvp, nondiff_argnums=(1,))
def log_ndtr(x, series_order=3):
r"""Log Normal distribution function.
For details of the Normal distribution function see `ndtr`.
This function calculates :math:`\log(\mathrm{ndtr}(x))` by either calling
:math:`\log(\mathrm{ndtr}(x))` or using an asymptotic series. Specifically:
- For `x > upper_segment`, use the approximation `-ndtr(-x)` based on
:math:`\log(1-x) \approx -x, x \ll 1`.
- For `lower_segment < x <= upper_segment`, use the existing `ndtr` technique
and take a log.
- For `x <= lower_segment`, we use the series approximation of `erf` to compute
the log CDF directly.
The `lower_segment` is set based on the precision of the input:
.. math::
\begin{align}
\mathit{lower\_segment} =&
\ \begin{cases}
-20 & x.\mathrm{dtype}=\mathit{float64} \\
-10 & x.\mathrm{dtype}=\mathit{float32} \\
\end{cases} \\
\mathit{upper\_segment} =&
\ \begin{cases}
8& x.\mathrm{dtype}=\mathit{float64} \\
5& x.\mathrm{dtype}=\mathit{float32} \\
\end{cases}
\end{align}
When `x < lower_segment`, the `ndtr` asymptotic series approximation is:
.. math::
\begin{align}
\mathrm{ndtr}(x) =&\ \mathit{scale} * (1 + \mathit{sum}) + R_N \\
\mathit{scale} =&\ \frac{e^{-0.5 x^2}}{-x \sqrt{2 \pi}} \\
\mathit{sum} =&\ \sum_{n=1}^N {-1}^n (2n-1)!! / (x^2)^n \\
R_N =&\ O(e^{-0.5 x^2} (2N+1)!! / |x|^{2N+3})
\end{align}
where :math:`(2n-1)!! = (2n-1) (2n-3) (2n-5) ... (3) (1)` is a
`double-factorial
<https://en.wikipedia.org/wiki/Double_factorial>`_ operator.
Args:
x: an array of type `float32`, `float64`.
series_order: Positive Python integer. Maximum depth to
evaluate the asymptotic expansion. This is the `N` above.
Returns:
an array with `dtype=x.dtype`.
Raises:
TypeError: if `x.dtype` is not handled.
TypeError: if `series_order` is a not Python `integer.`
ValueError: if `series_order` is not in `[0, 30]`.
"""
if not isinstance(series_order, int):
raise TypeError("series_order must be a Python integer.")
if series_order < 0:
raise ValueError("series_order must be non-negative.")
if series_order > 30:
raise ValueError("series_order must be <= 30.")
x = jnp.asarray(x)
dtype = lax.dtype(x)
if dtype == jnp.float64:
lower_segment = _LOGNDTR_FLOAT64_LOWER
upper_segment = _LOGNDTR_FLOAT64_UPPER
elif dtype == jnp.float32:
lower_segment = _LOGNDTR_FLOAT32_LOWER
upper_segment = _LOGNDTR_FLOAT32_UPPER
else:
raise TypeError("x.dtype={} is not supported.".format(np.dtype(dtype)))
# The basic idea here was ported from:
# https://root.cern.ch/doc/v608/SpecFuncCephesInv_8cxx_source.html
# We copy the main idea, with a few changes
# * For x >> 1, and X ~ Normal(0, 1),
# Log[P[X < x]] = Log[1 - P[X < -x]] approx -P[X < -x],
# which extends the range of validity of this function.
# * We use one fixed series_order for all of 'x', rather than adaptive.
# * Our docstring properly reflects that this is an asymptotic series, not a
# Taylor series. We also provided a correct bound on the remainder.
# * We need to use the max/min in the _log_ndtr_lower arg to avoid nan when
# x=0. This happens even though the branch is unchosen because when x=0
# the gradient of a select involves the calculation 1*dy+0*(-inf)=nan
# regardless of whether dy is finite. Note that the minimum is a NOP if
# the branch is chosen.
return jnp.where(
lax.gt(x, upper_segment),
-_ndtr(-x), # log(1-x) ~= -x, x << 1
jnp.where(lax.gt(x, lower_segment),
lax.log(_ndtr(lax.max(x, lower_segment))),
_log_ndtr_lower(lax.min(x, lower_segment),
series_order)))
def _log_ndtr_jvp(series_order, primals, tangents):
(x,), (t,) = primals, tangents
ans = log_ndtr(x, series_order=series_order)
t_out = lax.mul(t, lax.exp(lax.sub(_norm_logpdf(x), ans)))
return ans, t_out
log_ndtr.defjvp(_log_ndtr_jvp)
def _log_ndtr_lower(x, series_order):
"""Asymptotic expansion version of `Log[cdf(x)]`, appropriate for `x<<-1`."""
dtype = lax.dtype(x).type
x_2 = lax.square(x)
# Log of the term multiplying (1 + sum)
log_scale = -dtype(0.5) * x_2 - lax.log(-x) - dtype(0.5 * np.log(2. * np.pi))
return log_scale + lax.log(_log_ndtr_asymptotic_series(x, series_order))
def _log_ndtr_asymptotic_series(x, series_order):
"""Calculates the asymptotic series used in log_ndtr."""
dtype = lax.dtype(x).type
if series_order <= 0:
return np.array(1, dtype)
x_2 = lax.square(x)
even_sum = jnp.zeros_like(x)
odd_sum = jnp.zeros_like(x)
x_2n = x_2 # Start with x^{2*1} = x^{2*n} with n = 1.
for n in range(1, series_order + 1):
y = np.array(_double_factorial(2 * n - 1), dtype) / x_2n
if n % 2:
odd_sum += y
else:
even_sum += y
x_2n *= x_2
return dtype(1.) + even_sum - odd_sum
def _double_factorial(n):
"""The double factorial function for small Python integer `n`."""
return np.prod(np.arange(n, 1, -2))
_norm_logpdf_constant = np.log(np.sqrt(2 * np.pi))
def _norm_logpdf(x):
neg_half = _constant_like(x, -0.5)
log_normalizer = _constant_like(x, _norm_logpdf_constant)
return lax.sub(lax.mul(neg_half, lax.square(x)), log_normalizer)
@_wraps(osp_special.i0e)
def i0e(x):
x, = _promote_args_inexact("i0e", x)
return lax.bessel_i0e(x)
@_wraps(osp_special.i0)
def i0(x):
x, = _promote_args_inexact("i0", x)
return lax.mul(lax.exp(lax.abs(x)), lax.bessel_i0e(x))
@_wraps(osp_special.i1e)
def i1e(x):
x, = _promote_args_inexact("i1e", x)
return lax.bessel_i1e(x)
@_wraps(osp_special.i1)
def i1(x):
x, = _promote_args_inexact("i1", x)
return lax.mul(lax.exp(lax.abs(x)), lax.bessel_i1e(x))