rocm_jax/tests/lax_numpy_ufuncs_test.py
Sergei Lebedev 0ff234049b Removed trivial docstrings from JAX tests
These docstrings do not make the tests any more clear and typically just duplicate the test module name.

PiperOrigin-RevId: 737611977
2025-03-17 07:49:37 -07:00

506 lines
18 KiB
Python

# Copyright 2023 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
from functools import partial
from absl.testing import absltest
import numpy as np
import jax
import jax.numpy as jnp
from jax._src import test_util as jtu
jax.config.parse_flags_with_absl()
def scalar_add(x, y):
assert np.shape(x) == np.shape(y) == ()
return x + y
def scalar_div(x, y):
assert np.shape(x) == np.shape(y) == ()
return x / y
def scalar_mul(x, y):
assert np.shape(x) == np.shape(y) == ()
return x * y
def scalar_sub(x, y):
assert np.shape(x) == np.shape(y) == ()
return x - y
SCALAR_FUNCS = [
{'func': scalar_add, 'nin': 2, 'nout': 1, 'identity': 0},
{'func': scalar_div, 'nin': 2, 'nout': 1, 'identity': None},
{'func': scalar_mul, 'nin': 2, 'nout': 1, 'identity': 1},
{'func': scalar_sub, 'nin': 2, 'nout': 1, 'identity': None},
]
def _jnp_ufunc_props(name):
jnp_func = getattr(jnp, name)
assert isinstance(jnp_func, jnp.ufunc)
np_func = getattr(np, name)
dtypes = [np.dtype(c) for c in "Ffi?" if f"{c}{c}->{c}" in np_func.types or f"{c}->{c}" in np_func.types]
return [dict(name=name, dtype=dtype) for dtype in dtypes]
JAX_NUMPY_UFUNCS = [
name for name in dir(jnp) if isinstance(getattr(jnp, name), jnp.ufunc)
]
BINARY_UFUNCS = [
name for name in JAX_NUMPY_UFUNCS if getattr(jnp, name).nin == 2
]
UNARY_UFUNCS = [
name for name in JAX_NUMPY_UFUNCS if getattr(jnp, name).nin == 1
]
JAX_NUMPY_UFUNCS_WITH_DTYPES = list(itertools.chain.from_iterable(
_jnp_ufunc_props(name) for name in JAX_NUMPY_UFUNCS
))
BINARY_UFUNCS_WITH_DTYPES = list(itertools.chain.from_iterable(
_jnp_ufunc_props(name) for name in BINARY_UFUNCS
))
UNARY_UFUNCS_WITH_DTYPES = list(itertools.chain.from_iterable(
_jnp_ufunc_props(name) for name in UNARY_UFUNCS
))
broadcast_compatible_shapes = [(), (1,), (3,), (1, 3), (4, 1), (4, 3)]
nonscalar_shapes = [(3,), (4,), (4, 3)]
def cast_outputs(fun):
def wrapped(*args, **kwargs):
dtype = np.asarray(args[0]).dtype
return jax.tree.map(lambda x: np.asarray(x, dtype=dtype), fun(*args, **kwargs))
return wrapped
class LaxNumpyUfuncTests(jtu.JaxTestCase):
@jtu.sample_product(SCALAR_FUNCS)
def test_frompyfunc_properties(self, func, nin, nout, identity):
jnp_fun = jnp.frompyfunc(func, nin=nin, nout=nout, identity=identity)
self.assertEqual(jnp_fun.identity, identity)
self.assertEqual(jnp_fun.nin, nin)
self.assertEqual(jnp_fun.nout, nout)
self.assertEqual(jnp_fun.nargs, nin)
@jtu.sample_product(name=JAX_NUMPY_UFUNCS)
def test_ufunc_properties(self, name):
jnp_fun = getattr(jnp, name)
np_fun = getattr(np, name)
self.assertEqual(jnp_fun.identity, np_fun.identity)
self.assertEqual(jnp_fun.nin, np_fun.nin)
self.assertEqual(jnp_fun.nout, np_fun.nout)
self.assertEqual(jnp_fun.nargs, np_fun.nargs - 1) # -1 because NumPy accepts `out`
@jtu.sample_product(SCALAR_FUNCS)
def test_frompyfunc_properties_readonly(self, func, nin, nout, identity):
jnp_fun = jnp.frompyfunc(func, nin=nin, nout=nout, identity=identity)
for attr in ['nargs', 'nin', 'nout', 'identity', '_func']:
getattr(jnp_fun, attr) # no error on attribute access.
with self.assertRaises(AttributeError):
setattr(jnp_fun, attr, None) # error when trying to mutate.
@jtu.sample_product(name=JAX_NUMPY_UFUNCS)
def test_ufunc_properties_readonly(self, name):
jnp_fun = getattr(jnp, name)
for attr in ['nargs', 'nin', 'nout', 'identity', '_func']:
getattr(jnp_fun, attr) # no error on attribute access.
with self.assertRaises(AttributeError):
setattr(jnp_fun, attr, None) # error when trying to mutate.
@jtu.sample_product(SCALAR_FUNCS)
def test_frompyfunc_hash(self, func, nin, nout, identity):
jnp_fun = jnp.frompyfunc(func, nin=nin, nout=nout, identity=identity)
jnp_fun_2 = jnp.frompyfunc(func, nin=nin, nout=nout, identity=identity)
self.assertEqual(jnp_fun, jnp_fun_2)
self.assertEqual(hash(jnp_fun), hash(jnp_fun_2))
other_fun = jnp.frompyfunc(jnp.add, nin=2, nout=1, identity=0)
self.assertNotEqual(jnp_fun, other_fun)
# Note: don't test hash for non-equality because it may collide.
@jtu.sample_product(
SCALAR_FUNCS,
lhs_shape=broadcast_compatible_shapes,
rhs_shape=broadcast_compatible_shapes,
dtype=jtu.dtypes.floating,
)
@jax.numpy_rank_promotion('allow') # This test explicitly exercises implicit rank promotion.
def test_frompyfunc_call(self, func, nin, nout, identity, lhs_shape, rhs_shape, dtype):
jnp_fun = jnp.frompyfunc(func, nin=nin, nout=nout, identity=identity)
np_fun = cast_outputs(np.frompyfunc(func, nin=nin, nout=nout, identity=identity))
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
self._CheckAgainstNumpy(jnp_fun, np_fun, args_maker)
self._CompileAndCheck(jnp_fun, args_maker)
@jtu.sample_product(
UNARY_UFUNCS_WITH_DTYPES,
shape=broadcast_compatible_shapes,
)
def test_unary_ufunc_call(self, name, dtype, shape):
jnp_fun = getattr(jnp, name)
np_fun = getattr(np, name)
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(shape, dtype)]
self._CheckAgainstNumpy(jnp_fun, np_fun, args_maker)
self._CompileAndCheck(jnp_fun, args_maker)
@jtu.sample_product(
BINARY_UFUNCS_WITH_DTYPES,
lhs_shape=broadcast_compatible_shapes,
rhs_shape=broadcast_compatible_shapes,
)
@jax.numpy_rank_promotion('allow') # This test explicitly exercises implicit rank promotion.
def test_binary_ufunc_call(self, name, dtype, lhs_shape, rhs_shape):
jnp_fun = getattr(jnp, name)
np_fun = getattr(np, name)
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
tol = {np.float32: 1E-4} if jtu.test_device_matches(['tpu']) else None
self._CheckAgainstNumpy(jnp_fun, np_fun, args_maker, tol=tol)
self._CompileAndCheck(jnp_fun, args_maker)
@jtu.sample_product(
SCALAR_FUNCS,
lhs_shape=broadcast_compatible_shapes,
rhs_shape=broadcast_compatible_shapes,
dtype=jtu.dtypes.floating,
)
def test_frompyfunc_outer(self, func, nin, nout, identity, lhs_shape, rhs_shape, dtype):
if (nin, nout) != (2, 1):
self.skipTest(f"outer requires (nin, nout)=(2, 1); got {(nin, nout)=}")
jnp_fun = jnp.frompyfunc(func, nin=nin, nout=nout, identity=identity).outer
np_fun = cast_outputs(np.frompyfunc(func, nin=nin, nout=nout, identity=identity).outer)
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
self._CheckAgainstNumpy(jnp_fun, np_fun, args_maker)
self._CompileAndCheck(jnp_fun, args_maker)
@jtu.sample_product(
BINARY_UFUNCS_WITH_DTYPES,
lhs_shape=broadcast_compatible_shapes,
rhs_shape=broadcast_compatible_shapes,
)
def test_binary_ufunc_outer(self, name, lhs_shape, rhs_shape, dtype):
jnp_fun = getattr(jnp, name)
np_fun = getattr(np, name)
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
tol = {np.float32: 1E-4} if jtu.test_device_matches(['tpu']) else None
self._CheckAgainstNumpy(jnp_fun.outer, np_fun.outer, args_maker, tol=tol)
self._CompileAndCheck(jnp_fun.outer, args_maker)
@jtu.sample_product(
SCALAR_FUNCS,
[{'shape': shape, 'axis': axis}
for shape in nonscalar_shapes
for axis in [None, *range(-len(shape), len(shape))]],
dtype=jtu.dtypes.floating,
)
def test_frompyfunc_reduce(self, func, nin, nout, identity, shape, axis, dtype):
if (nin, nout) != (2, 1):
self.skipTest(f"reduce requires (nin, nout)=(2, 1); got {(nin, nout)=}")
jnp_fun = partial(jnp.frompyfunc(func, nin=nin, nout=nout, identity=identity).reduce, axis=axis)
np_fun = cast_outputs(partial(np.frompyfunc(func, nin=nin, nout=nout, identity=identity).reduce, axis=axis))
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(shape, dtype)]
self._CheckAgainstNumpy(jnp_fun, np_fun, args_maker)
self._CompileAndCheck(jnp_fun, args_maker)
@jtu.sample_product(
BINARY_UFUNCS_WITH_DTYPES,
[{'shape': shape, 'axis': axis}
for shape in nonscalar_shapes
for axis in [None, *range(-len(shape), len(shape))]],
)
def test_binary_ufunc_reduce(self, name, shape, axis, dtype):
jnp_fun = getattr(jnp, name)
np_fun = getattr(np, name)
if jnp_fun.identity is None and axis is None and len(shape) > 1:
self.skipTest("Multiple-axis reduction over non-reorderable ufunc.")
jnp_fun_reduce = partial(jnp_fun.reduce, axis=axis)
np_fun_reduce = partial(np_fun.reduce, axis=axis)
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(shape, dtype)]
tol = {np.float32: 1E-4} if jtu.test_device_matches(['tpu']) else None
self._CheckAgainstNumpy(jnp_fun_reduce, np_fun_reduce, args_maker, tol=tol)
self._CompileAndCheck(jnp_fun_reduce, args_maker)
@jtu.sample_product(
SCALAR_FUNCS,
[{'shape': shape, 'axis': axis}
for shape in nonscalar_shapes
for axis in [None, *range(-len(shape), len(shape))]],
dtype=jtu.dtypes.floating,
)
def test_frompyfunc_reduce_where(self, func, nin, nout, identity, shape, axis, dtype):
if (nin, nout) != (2, 1):
self.skipTest(f"reduce requires (nin, nout)=(2, 1); got {(nin, nout)=}")
# Need initial if identity is None
initial = 1 if identity is None else None
def jnp_fun(arr, where):
return jnp.frompyfunc(func, nin, nout, identity=identity).reduce(
arr, where=where, axis=axis, initial=initial)
@cast_outputs
def np_fun(arr, where):
# Workaround for https://github.com/numpy/numpy/issues/24530
# TODO(jakevdp): remove this when possible.
initial_workaround = identity if initial is None else initial
return np.frompyfunc(func, nin=nin, nout=nout, identity=identity).reduce(
arr, where=where, axis=axis, initial=initial_workaround)
rng = jtu.rand_default(self.rng())
rng_where = jtu.rand_bool(self.rng())
args_maker = lambda: [rng(shape, dtype), rng_where(shape, bool)]
self._CheckAgainstNumpy(jnp_fun, np_fun, args_maker)
self._CompileAndCheck(jnp_fun, args_maker)
@jtu.sample_product(
BINARY_UFUNCS_WITH_DTYPES,
[{'shape': shape, 'axis': axis}
for shape in nonscalar_shapes
for axis in [None, *range(-len(shape), len(shape))]],
)
def test_binary_ufunc_reduce_where(self, name, shape, axis, dtype):
jnp_fun = getattr(jnp, name)
np_fun = getattr(np, name)
if jnp_fun.identity is None:
self.skipTest("reduce with where requires identity")
jnp_fun_reduce = lambda a, where: jnp_fun.reduce(a, axis=axis, where=where)
np_fun_reduce = lambda a, where: np_fun.reduce(a, axis=axis, where=where)
rng = jtu.rand_default(self.rng())
rng_where = jtu.rand_bool(self.rng())
args_maker = lambda: [rng(shape, dtype), rng_where(shape, bool)]
tol = {np.float32: 1E-4} if jtu.test_device_matches(['tpu']) else None
self._CheckAgainstNumpy(jnp_fun_reduce, np_fun_reduce, args_maker, tol=tol)
self._CompileAndCheck(jnp_fun_reduce, args_maker)
@jtu.sample_product(
SCALAR_FUNCS,
[{'shape': shape, 'axis': axis}
for shape in nonscalar_shapes
for axis in range(-len(shape), len(shape))],
dtype=jtu.dtypes.floating,
)
def test_frompyfunc_accumulate(self, func, nin, nout, identity, shape, axis, dtype):
if (nin, nout) != (2, 1):
self.skipTest(f"accumulate requires (nin, nout)=(2, 1); got {(nin, nout)=}")
jnp_fun = partial(jnp.frompyfunc(func, nin=nin, nout=nout, identity=identity).accumulate, axis=axis)
np_fun = cast_outputs(partial(np.frompyfunc(func, nin=nin, nout=nout, identity=identity).accumulate, axis=axis))
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(shape, dtype)]
self._CheckAgainstNumpy(jnp_fun, np_fun, args_maker)
self._CompileAndCheck(jnp_fun, args_maker)
@jtu.sample_product(
BINARY_UFUNCS_WITH_DTYPES,
[{'shape': shape, 'axis': axis}
for shape in nonscalar_shapes
for axis in range(-len(shape), len(shape))]
)
def test_binary_ufunc_accumulate(self, name, shape, axis, dtype):
jnp_fun = getattr(jnp, name)
np_fun = getattr(np, name)
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(shape, dtype)]
jnp_fun_accumulate = partial(jnp_fun.accumulate, axis=axis)
def np_fun_accumulate(x):
# numpy accumulate has different dtype casting behavior.
result = np_fun.accumulate(x, axis=axis)
return result if x.dtype == bool else result.astype(x.dtype)
tol = {np.float32: 1E-4} if jtu.test_device_matches(['tpu']) else None
self._CheckAgainstNumpy(jnp_fun_accumulate, np_fun_accumulate, args_maker, tol=tol)
self._CompileAndCheck(jnp_fun_accumulate, args_maker, tol=tol)
@jtu.sample_product(
SCALAR_FUNCS,
shape=nonscalar_shapes,
idx_shape=[(), (2,)],
dtype=jtu.dtypes.floating,
)
def test_frompyfunc_at(self, func, nin, nout, identity, shape, idx_shape, dtype):
if (nin, nout) != (2, 1):
self.skipTest(f"accumulate requires (nin, nout)=(2, 1); got {(nin, nout)=}")
jnp_fun = partial(jnp.frompyfunc(func, nin=nin, nout=nout, identity=identity).at, inplace=False)
def np_fun(x, idx, y):
x_copy = x.copy()
np.frompyfunc(func, nin=nin, nout=nout, identity=identity).at(x_copy, idx, y)
return x_copy
rng = jtu.rand_default(self.rng())
idx_rng = jtu.rand_int(self.rng(), low=-shape[0], high=shape[0])
args_maker = lambda: [rng(shape, dtype), idx_rng(idx_shape, 'int32'), rng(idx_shape[1:], dtype)]
self._CheckAgainstNumpy(jnp_fun, np_fun, args_maker)
self._CompileAndCheck(jnp_fun, args_maker)
@jtu.sample_product(
UNARY_UFUNCS_WITH_DTYPES,
shape=nonscalar_shapes,
idx_shape=[(), (2,)],
)
def test_unary_ufunc_at(self, name, shape, idx_shape, dtype):
jnp_fun = getattr(jnp, name)
np_fun = getattr(np, name)
rng = jtu.rand_default(self.rng())
idx_rng = jtu.rand_int(self.rng(), low=-shape[0], high=shape[0])
args_maker = lambda: [rng(shape, dtype), idx_rng(idx_shape, 'int32')]
jnp_fun_at = partial(jnp_fun.at, inplace=False)
def np_fun_at(x, idx):
x_copy = x.copy()
np_fun.at(x_copy, idx)
return x_copy
tol = {np.float32: 1E-4} if jtu.test_device_matches(['tpu']) else None
self._CheckAgainstNumpy(jnp_fun_at, np_fun_at, args_maker, tol=tol)
self._CompileAndCheck(jnp_fun_at, args_maker)
@jtu.sample_product(
BINARY_UFUNCS_WITH_DTYPES,
shape=nonscalar_shapes,
idx_shape=[(), (2,)],
)
def test_binary_ufunc_at(self, name, shape, idx_shape, dtype):
jnp_fun = getattr(jnp, name)
np_fun = getattr(np, name)
rng = jtu.rand_default(self.rng())
idx_rng = jtu.rand_int(self.rng(), low=-shape[0], high=shape[0])
args_maker = lambda: [rng(shape, dtype), idx_rng(idx_shape, 'int32'), rng(idx_shape[1:], dtype)]
jnp_fun_at = partial(jnp_fun.at, inplace=False)
def np_fun_at(x, idx, y):
x_copy = x.copy()
np_fun.at(x_copy, idx, y)
return x_copy
tol = {np.float32: 1E-4} if jtu.test_device_matches(['tpu']) else None
self._CheckAgainstNumpy(jnp_fun_at, np_fun_at, args_maker, tol=tol)
self._CompileAndCheck(jnp_fun_at, args_maker)
def test_frompyfunc_at_broadcasting(self):
# Regression test for https://github.com/jax-ml/jax/issues/18004
args_maker = lambda: [np.ones((5, 3)), np.array([0, 4, 2]),
np.arange(9.0).reshape(3, 3)]
def np_fun(x, idx, y):
x_copy = np.copy(x)
np.add.at(x_copy, idx, y)
return x_copy
jnp_fun = partial(jnp.frompyfunc(jnp.add, nin=2, nout=1, identity=0).at, inplace=False)
self._CheckAgainstNumpy(jnp_fun, np_fun, args_maker)
self._CompileAndCheck(jnp_fun, args_maker)
@jtu.sample_product(
SCALAR_FUNCS,
[{'shape': shape, 'axis': axis}
for shape in nonscalar_shapes
for axis in [*range(-len(shape), len(shape))]],
idx_shape=[(0,), (3,), (5,)],
dtype=jtu.dtypes.floating,
)
def test_frompyfunc_reduceat(self, func, nin, nout, identity, shape, axis, idx_shape, dtype):
if (nin, nout) != (2, 1):
self.skipTest(f"accumulate requires (nin, nout)=(2, 1); got {(nin, nout)=}")
jnp_fun = partial(jnp.frompyfunc(func, nin=nin, nout=nout, identity=identity).reduceat, axis=axis)
np_fun = cast_outputs(partial(np.frompyfunc(func, nin=nin, nout=nout, identity=identity).reduceat, axis=axis))
rng = jtu.rand_default(self.rng())
idx_rng = jtu.rand_int(self.rng(), low=0, high=shape[axis])
args_maker = lambda: [rng(shape, dtype), idx_rng(idx_shape, 'int32')]
self._CheckAgainstNumpy(jnp_fun, np_fun, args_maker)
self._CompileAndCheck(jnp_fun, args_maker)
@jtu.sample_product(
BINARY_UFUNCS_WITH_DTYPES,
[{'shape': shape, 'axis': axis}
for shape in nonscalar_shapes
for axis in [*range(-len(shape), len(shape))]],
idx_shape=[(0,), (3,), (5,)],
)
def test_binary_ufunc_reduceat(self, name, shape, axis, idx_shape, dtype):
jnp_fun = getattr(jnp, name)
np_fun = getattr(np, name)
if (jnp_fun.nin, jnp_fun.nout) != (2, 1):
self.skipTest(f"accumulate requires (nin, nout)=(2, 1); got {(jnp_fun.nin, jnp_fun.nout)=}")
if name in ['add', 'multiply'] and dtype == bool:
# TODO(jakevdp): figure out how to fix thest cases.
self.skipTest(f"known failure for {name}.reduceat with {dtype=}")
rng = jtu.rand_default(self.rng())
idx_rng = jtu.rand_int(self.rng(), low=0, high=shape[axis])
args_maker = lambda: [rng(shape, dtype), idx_rng(idx_shape, 'int32')]
def np_fun_reduceat(x, i):
# Numpy has different casting behavior.
return np_fun.reduceat(x, i).astype(x.dtype)
tol = {np.float32: 1E-4} if jtu.test_device_matches(['tpu']) else None
self._CheckAgainstNumpy(jnp_fun.reduceat, np_fun_reduceat, args_maker, tol=tol)
self._CompileAndCheck(jnp_fun.reduceat, args_maker)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())