mirror of
https://github.com/ROCm/jax.git
synced 2025-04-27 05:36:07 +00:00

These docstrings do not make the tests any more clear and typically just duplicate the test module name. PiperOrigin-RevId: 737611977
366 lines
13 KiB
Python
366 lines
13 KiB
Python
# Copyright 2024 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
import jax
|
|
from jax import random as jax_random
|
|
from jax._src import test_util as jtu
|
|
from jax._src.pallas.mosaic import random as plrandom
|
|
from jax.experimental import pallas as pl
|
|
from jax.experimental import shard_map
|
|
from jax.experimental.pallas import tpu as pltpu
|
|
from jax.experimental.pallas.ops.tpu.random import philox # pylint: disable=unused-import # noqa: F401
|
|
from jax.experimental.pallas.ops.tpu.random import threefry # pylint: disable=unused-import # noqa: F401
|
|
import jax.numpy as jnp
|
|
import numpy as np
|
|
|
|
P = jax.sharding.PartitionSpec
|
|
|
|
|
|
jax.config.parse_flags_with_absl()
|
|
|
|
|
|
class PRNGTest(jtu.JaxTestCase):
|
|
|
|
def setUp(self):
|
|
if not jtu.test_device_matches(["tpu"]):
|
|
self.skipTest("Need TPU devices")
|
|
super().setUp()
|
|
|
|
@parameterized.parameters(True, False)
|
|
@jax.legacy_prng_key('allow')
|
|
def test_to_pallas_key_under_vmap(self, use_legacy_key: bool):
|
|
if use_legacy_key:
|
|
key = jax.random.PRNGKey(42)
|
|
else:
|
|
key = jax.random.key(42, impl="rbg")
|
|
key = jax.random.split(key, 10)
|
|
batched_key = plrandom.to_pallas_key(key)
|
|
batched_key_data = jax.random.key_data(batched_key)
|
|
vmapped_key = jax.vmap(plrandom.to_pallas_key)(key)
|
|
vmapped_key_data = jax.random.key_data(vmapped_key)
|
|
np.testing.assert_array_equal(batched_key_data, vmapped_key_data)
|
|
|
|
def test_pallas_key_raise_not_implemented_outside_of_kernel(self):
|
|
key = jax_random.key(0, impl="rbg")
|
|
pallas_key = plrandom.to_pallas_key(key)
|
|
# Using a pallas key outside of a kernel should raise an error when
|
|
# trying to lower TPU-specific ops to XLA.
|
|
# TODO(justinfu): Make this error more specific to pallas PRNG usage.
|
|
with self.assertRaisesRegex(NotImplementedError,
|
|
"MLIR translation rule .* not found"):
|
|
jax.random.uniform(
|
|
pallas_key, shape=(1,), minval=0.0, maxval=1.0)
|
|
|
|
def test_seeded_reproducibility(self):
|
|
# Test whether generating random bits with the same seed
|
|
# produces the same result (and different seeds produce
|
|
# different results).
|
|
def seeded_body(seed: int):
|
|
def body(o_ref):
|
|
pltpu.prng_seed(seed)
|
|
o_ref[...] = pltpu.prng_random_bits(o_ref[...].shape)
|
|
return body
|
|
|
|
out = jax.ShapeDtypeStruct((8, 128), jnp.int32)
|
|
result_1a = pl.pallas_call(seeded_body(0), out_shape=out)()
|
|
result_1b = pl.pallas_call(seeded_body(0), out_shape=out)()
|
|
result_2 = pl.pallas_call(seeded_body(1), out_shape=out)()
|
|
with self.subTest("same_seed_same_result"):
|
|
np.testing.assert_array_equal(result_1a, result_1b)
|
|
with self.subTest("diff_seed_diff_result"):
|
|
np.testing.assert_array_compare(np.not_equal, result_1a, result_2)
|
|
|
|
@parameterized.parameters(
|
|
((32, 256),),
|
|
((8, 16),),
|
|
)
|
|
def test_prng_non_vreg_shape_output(self, shape):
|
|
# Tests that RNG generation works with output shapes
|
|
# not equal to a native-sized VREG.
|
|
# This test makes sure that vector layout tiling
|
|
# is implemented correctly.
|
|
def body(o_ref):
|
|
pltpu.prng_seed(0)
|
|
samples = pltpu.prng_random_bits(o_ref[...].shape)
|
|
o_ref[...] = samples
|
|
|
|
o_shape = jax.ShapeDtypeStruct(shape, jnp.int32)
|
|
result = pl.pallas_call(body, out_shape=o_shape)()
|
|
# Check that random_bits generates (mostly) unique values.
|
|
unique_frac = float(len(jnp.unique(result))) / np.prod(shape)
|
|
self.assertGreater(unique_frac, 0.99)
|
|
self.assertLessEqual(jnp.max(result), np.iinfo(jnp.int32).max)
|
|
self.assertGreaterEqual(jnp.min(result), np.iinfo(jnp.int32).min)
|
|
|
|
def test_stateful_uniform_sample(self):
|
|
# Test stateful RNG using the jax.random API wrappers.
|
|
def body(key_ref, o_ref):
|
|
plrandom.set_seed(key_ref[...])
|
|
o_ref[...] = plrandom.uniform(
|
|
shape=o_ref[...].shape, minval=0.0, maxval=1.0)
|
|
|
|
rbg_key = jax_random.key(0, impl="rbg")
|
|
key = plrandom.to_pallas_key(rbg_key)
|
|
o_shape = jax.ShapeDtypeStruct((8, 128), jnp.float32)
|
|
result = pl.pallas_call(
|
|
body,
|
|
in_specs=[pl.BlockSpec(memory_space=pltpu.TPUMemorySpace.SMEM)],
|
|
out_shape=o_shape,
|
|
)(key)
|
|
self.assertGreaterEqual(jnp.min(result), 0)
|
|
self.assertLessEqual(jnp.max(result), 1.0)
|
|
|
|
def test_stateless_uniform_sample(self):
|
|
# Test keyed RNG using the jax.random API.
|
|
def body(key_ref, o_ref):
|
|
o_ref[...] = jax_random.uniform(
|
|
key_ref[...], shape=o_ref[...].shape, minval=0.0, maxval=1.0
|
|
)
|
|
|
|
rbg_key = jax_random.key(0, impl="rbg")
|
|
key = plrandom.to_pallas_key(rbg_key)
|
|
o_shape = jax.ShapeDtypeStruct((8, 128), jnp.float32)
|
|
result = pl.pallas_call(
|
|
body,
|
|
in_specs=[pl.BlockSpec(memory_space=pltpu.TPUMemorySpace.SMEM)],
|
|
out_shape=o_shape,
|
|
)(key)
|
|
self.assertGreaterEqual(jnp.min(result), 0)
|
|
self.assertLessEqual(jnp.max(result), 1.0)
|
|
|
|
def test_key_data(self):
|
|
def body(key_ref, o_ref):
|
|
o_ref[...] = jax.random.key_data(key_ref[...])
|
|
rbg_key = jax_random.key(0, impl="rbg")
|
|
key = plrandom.to_pallas_key(rbg_key)
|
|
expected_key_data = jax.random.key_data(key)
|
|
o_shape = jax.ShapeDtypeStruct(expected_key_data.shape,
|
|
expected_key_data.dtype)
|
|
result = pl.pallas_call(
|
|
body,
|
|
in_specs=[pl.BlockSpec(memory_space=pltpu.TPUMemorySpace.SMEM)],
|
|
out_shape=o_shape,
|
|
)(key)
|
|
self.assertEqual(result, expected_key_data)
|
|
|
|
def test_fold_in(self):
|
|
# Test that folding in a value results in different random numbers.
|
|
def body(key_ref, o_ref):
|
|
key = key_ref[...]
|
|
o_ref[0, ...] = jax_random.uniform(
|
|
key, shape=o_ref[0, ...].shape, minval=0.0, maxval=1.0
|
|
)
|
|
|
|
key = jax_random.fold_in(key, 2)
|
|
o_ref[1, ...] = jax_random.uniform(
|
|
key, shape=o_ref[1, ...].shape, minval=0.0, maxval=1.0
|
|
)
|
|
|
|
rbg_key = jax_random.key(0, impl="rbg")
|
|
key = plrandom.to_pallas_key(rbg_key)
|
|
o_shape = jax.ShapeDtypeStruct((2, 8, 128), jnp.float32)
|
|
result = pl.pallas_call(
|
|
body,
|
|
in_specs=[pl.BlockSpec(memory_space=pltpu.TPUMemorySpace.SMEM)],
|
|
out_shape=o_shape,
|
|
)(key)
|
|
result_a = result[0]
|
|
result_b = result[1]
|
|
np.testing.assert_array_compare(np.not_equal, result_a, result_b)
|
|
|
|
|
|
class BlockInvarianceTest(parameterized.TestCase):
|
|
|
|
def setUp(self):
|
|
if not jtu.test_device_matches(["tpu"]):
|
|
self.skipTest("Need TPU devices")
|
|
super().setUp()
|
|
|
|
def test_block_invariance(self):
|
|
|
|
def make_kernel_body(index_map):
|
|
def body(key_ref, o_ref):
|
|
key = key_ref[...]
|
|
samples = plrandom.sample_block(
|
|
jax.random.uniform,
|
|
key,
|
|
block_size=o_ref[...].shape,
|
|
tile_size=(16, 128),
|
|
total_size=(64, 512),
|
|
block_index=index_map(pl.program_id(0), pl.program_id(1)),
|
|
minval=0.0,
|
|
maxval=1.0)
|
|
o_ref[...] = samples
|
|
return body
|
|
|
|
global_key = jax_random.key(0, impl="pallas_tpu")
|
|
o_shape = jnp.ones((64, 512), dtype=jnp.float32)
|
|
key_spec = pl.BlockSpec(memory_space=pltpu.TPUMemorySpace.SMEM)
|
|
out_spec = pl.BlockSpec((16, 128), lambda i, j: (i, j))
|
|
result_16x128 = pl.pallas_call(
|
|
make_kernel_body(index_map=lambda i, j: (i, j)),
|
|
out_shape=o_shape,
|
|
in_specs=[key_spec],
|
|
out_specs=out_spec,
|
|
grid=(4, 4),
|
|
)(global_key)
|
|
|
|
out_spec = pl.BlockSpec((32, 256), lambda i, j: (j, i))
|
|
result_32x256 = pl.pallas_call(
|
|
make_kernel_body(index_map=lambda i, j: (j, i)),
|
|
in_specs=[key_spec],
|
|
out_shape=o_shape,
|
|
out_specs=out_spec,
|
|
grid=(2, 2),
|
|
)(global_key)
|
|
np.testing.assert_array_equal(result_16x128, result_32x256)
|
|
|
|
|
|
class ThreefryTest(parameterized.TestCase):
|
|
|
|
def setUp(self):
|
|
if not jtu.test_device_matches(["tpu"]):
|
|
self.skipTest("Need TPU devices")
|
|
super().setUp()
|
|
|
|
@parameterized.parameters(
|
|
((8, 128),),
|
|
((32, 256),),
|
|
((4, 16, 128),),
|
|
)
|
|
def test_uniform_matches_jax_threefry(self, shape):
|
|
def body(key_ref, o_ref):
|
|
key = jax.random.wrap_key_data(key_ref[0, ...], impl='threefry2x32')
|
|
o_ref[...] = jax_random.uniform(
|
|
key, shape=o_ref[...].shape, minval=0.0, maxval=1.0
|
|
)
|
|
|
|
threefry_key = jax_random.key(0, impl="threefry2x32").reshape((1,))
|
|
o_shape = jax.ShapeDtypeStruct(shape, jnp.float32)
|
|
with jax.threefry_partitionable(True):
|
|
# TODO(justinfu): support passing keys into VMEM.
|
|
result = pl.pallas_call(
|
|
body,
|
|
in_specs=[pl.BlockSpec(memory_space=pltpu.TPUMemorySpace.VMEM)],
|
|
out_shape=o_shape,
|
|
)(jax.random.key_data(threefry_key))
|
|
jax_result = jax_random.uniform(
|
|
threefry_key[0], shape=o_shape.shape, minval=0.0, maxval=1.0
|
|
)
|
|
np.testing.assert_array_equal(result, jax_result)
|
|
|
|
@parameterized.parameters(
|
|
((512, 512),),
|
|
((137, 275),), # Non block-aligned shape
|
|
((4, 512, 512),), # Greater than 2D shape
|
|
((34,),), # 1D
|
|
(tuple(),), # 0D
|
|
)
|
|
def test_threefry_kernel_matches_jax_threefry(self, shape):
|
|
with jax.threefry_partitionable(True):
|
|
key_jax = jax_random.key(0, impl="threefry2x32")
|
|
jax_gen = jax_random.bits(key_jax, shape=shape)
|
|
key_pl = jax_random.key(0, impl="pallas_threefry2x32")
|
|
pl_gen = jax_random.bits(key_pl, shape=shape)
|
|
|
|
np.testing.assert_array_equal(jax_gen, pl_gen)
|
|
|
|
@parameterized.parameters(
|
|
((256, 256),),
|
|
((35, 113),), # Non block-aligned shape
|
|
((331,),), # 1D
|
|
)
|
|
def test_threefry_kernel_matches_jax_threefry_sharded(self, shape):
|
|
if jax.device_count() < 2:
|
|
self.skipTest("Need at least 2 devices")
|
|
num_devices = jax.device_count()
|
|
partition = P("x")
|
|
mesh = jax.make_mesh((num_devices,), ("x",))
|
|
sharding = jax.sharding.NamedSharding(mesh, partition)
|
|
|
|
with jax.threefry_partitionable(True):
|
|
key_jax = jax_random.split(
|
|
jax_random.key(0, impl="threefry2x32"), num_devices)
|
|
key_pallas = jax_random.split(
|
|
jax_random.key(0, impl="pallas_threefry2x32"), num_devices)
|
|
key_jax = jax.device_put(key_jax, sharding)
|
|
key_pallas = jax.device_put(key_pallas, sharding)
|
|
generate = shard_map.shard_map(
|
|
lambda x: jax_random.bits(x[0], shape=shape),
|
|
mesh=mesh,
|
|
in_specs=partition,
|
|
out_specs=partition,
|
|
)
|
|
jax_gen = generate(key_jax)
|
|
pl_gen = generate(key_pallas)
|
|
|
|
np.testing.assert_array_equal(jax_gen, pl_gen)
|
|
|
|
|
|
class PhiloxTest(parameterized.TestCase):
|
|
|
|
def setUp(self):
|
|
if not jtu.test_device_matches(["tpu"]):
|
|
self.skipTest("Need TPU devices")
|
|
super().setUp()
|
|
|
|
@parameterized.parameters(
|
|
((512, 512),),
|
|
((137, 275),), # Non block-aligned shape
|
|
((4, 512, 512),), # Greater than 2D shape
|
|
((34,),), # 1D
|
|
(tuple(),), # 0D
|
|
)
|
|
def test_generate_uniform(self, shape):
|
|
key = jax_random.key(0, impl="pallas_philox4x32")
|
|
values = jax_random.uniform(key, shape=shape)
|
|
minval = jnp.min(values)
|
|
maxval = jnp.max(values)
|
|
self.assertGreaterEqual(minval, 0.0)
|
|
self.assertLessEqual(maxval, 1.0)
|
|
|
|
def test_split(self):
|
|
key = jax_random.key(0, impl="pallas_philox4x32")
|
|
key1, key2 = jax_random.split(key)
|
|
key_data = jax.random.key_data(key)
|
|
key1_data = jax.random.key_data(key1)
|
|
key2_data = jax.random.key_data(key2)
|
|
# Assert all keys are different.
|
|
with self.assertRaises(AssertionError):
|
|
np.testing.assert_array_equal(key_data, key1_data)
|
|
with self.assertRaises(AssertionError):
|
|
np.testing.assert_array_equal(key_data, key2_data)
|
|
with self.assertRaises(AssertionError):
|
|
np.testing.assert_array_equal(key1_data, key2_data)
|
|
|
|
def test_foldin(self):
|
|
key = jax_random.key(0, impl="pallas_philox4x32")
|
|
new_key_1 = jax_random.fold_in(key, 1)
|
|
new_key_2 = jax_random.fold_in(key, 2)
|
|
key_data = jax.random.key_data(key)
|
|
key1_data = jax.random.key_data(new_key_1)
|
|
key2_data = jax.random.key_data(new_key_2)
|
|
# Assert all keys are different.
|
|
with self.assertRaises(AssertionError):
|
|
np.testing.assert_array_equal(key_data, key1_data)
|
|
with self.assertRaises(AssertionError):
|
|
np.testing.assert_array_equal(key_data, key2_data)
|
|
with self.assertRaises(AssertionError):
|
|
np.testing.assert_array_equal(key1_data, key2_data)
|
|
|
|
if __name__ == "__main__":
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|