rocm_jax/tests/xmap_test.py
Skye Wanderman-Milne 120125f3dd Make pytest-xdist work on TPU and update Cloud TPU CI.
This change also marks multiaccelerator test files in a way pytest can
understand (if pytest is installed).

By running single-device tests on a single TPU chip, running the test
suite goes from 1hr 45m to 35m (both timings are running slow tests).

I tried using bazel at first, which already supported parallel
execution across TPU cores, but somehow it still takes 2h 20m! I'm not
sure why it's so slow. It appears that bazel creates many new test
processes over time, vs. pytest reuses the number of processes
initially specified, and starting and stopping the TPU runtime takes a
few seconds so that may be adding up. It also appears that
single-process bazel is slower than single-process pytest, which I
haven't looked into yet.
2022-11-18 22:05:13 +00:00

2057 lines
82 KiB
Python

# Copyright 2020 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import functools
import itertools as it
import os
import re
from itertools import product, permutations
from typing import (Tuple, List, Dict, Generator, Iterator, Union, Optional)
from unittest import SkipTest
import numpy as np
from absl.testing import absltest
from absl.testing import parameterized
from functools import partial
import jax
import jax.numpy as jnp
import jax.scipy as jscipy
from jax._src import test_util as jtu
from jax import vmap
from jax import lax
from jax import core
from jax.core import NamedShape
from jax.experimental import maps
from jax.experimental import global_device_array
from jax._src import array
from jax._src.sharding import NamedSharding
from jax.experimental.pjit import pjit, with_sharding_constraint
from jax.experimental.pjit import PartitionSpec as P
from jax.experimental.maps import xmap, serial_loop, SerialLoop
from jax.errors import JAXTypeError
from jax._src import config as jax_config
from jax._src.nn import initializers as nn_initializers
from jax._src.lib import xla_bridge
from jax._src.lib import xla_client
from jax._src.lib import mlir_api_version
from jax._src.util import unzip2, prod, safe_zip
from jax._src.lax import parallel as lax_parallel
from jax._src.lax.parallel import pgather
from jax.interpreters import batching, pxla
from jax.ad_checkpoint import checkpoint
from jax.config import config
config.parse_flags_with_absl()
with contextlib.suppress(ImportError):
import pytest
pytestmark = pytest.mark.multiaccelerator
# TODO(mattjj): de-duplicate setUpModule and tearDownModule with pmap_test.py
# Run all tests with 8 CPU devices.
def setUpModule():
global prev_xla_flags
prev_xla_flags = os.getenv("XLA_FLAGS")
flags_str = prev_xla_flags or ""
# Don't override user-specified device count, or other XLA flags.
if "xla_force_host_platform_device_count" not in flags_str:
os.environ["XLA_FLAGS"] = (flags_str +
" --xla_force_host_platform_device_count=8")
# Clear any cached backends so new CPU backend will pick up the env var.
xla_bridge.get_backend.cache_clear()
# Reset to previous configuration in case other test modules will be run.
def tearDownModule():
if prev_xla_flags is None:
del os.environ["XLA_FLAGS"]
else:
os.environ["XLA_FLAGS"] = prev_xla_flags
xla_bridge.get_backend.cache_clear()
def create_array(global_shape, global_mesh, mesh_axes, global_data=None):
if global_data is None:
global_data = np.arange(
prod(global_shape), dtype=np.float32).reshape(global_shape)
sharding = NamedSharding(global_mesh, mesh_axes)
return array.make_array_from_callback(
global_shape, sharding, lambda idx: global_data[idx]), global_data
# -------------------- Itertools helpers --------------------
def partitions(s, k):
for indices in product(range(k), repeat=len(s)):
outs = [[] for _ in range(k)]
for i, elt in zip(indices, s):
outs[i].append(elt)
yield outs
def powerset(s):
s = list(s)
return it.chain.from_iterable(it.combinations(s, r) for r in range(len(s)+1))
# -------------------- vmap test helpers --------------------
ensure_bdim_p = core.Primitive('ensure_bdim')
ensure_bdim_p.def_abstract_eval(lambda x, **kwargs: core.raise_to_shaped(x))
def _ensure_bdim_batcher(axis_size, frame_name, main_type, vals_in, dims_in, axis_name, bdim):
v, = vals_in
d, = dims_in
assert d is not batching.not_mapped
return jnp.moveaxis(v, d, bdim), bdim
batching.axis_primitive_batchers[ensure_bdim_p] = _ensure_bdim_batcher
batching.primitive_batchers[ensure_bdim_p] = lambda v, d: (v[0], d[0])
core.axis_substitution_rules[ensure_bdim_p] = partial(
lax_parallel._subst_all_names_in_param, 'axis_name')
def ensure_bdim(x, axis_name, bdim):
return ensure_bdim_p.bind(x, axis_name=(axis_name,), bdim=bdim)
# When we use the SPMD lowering, we vmap the xmap body to make all named
# axes positional again. This lowering can introduce constants, which we
# have to handle properly in the lowering rule.
constant_introducing_p = core.Primitive('introduce_constant')
constant_introducing_p.def_abstract_eval(lambda x, **_: core.raise_to_shaped(x))
def _constant_introducing_batcher(_1, _2, _3, xs, ds, axis_name):
(x,), (d,) = xs, ds
# Introduce a constant
return (x + np.arange(x.size, dtype=x.dtype).reshape(x.shape)), d
batching.axis_primitive_batchers[constant_introducing_p] = _constant_introducing_batcher
core.axis_substitution_rules[constant_introducing_p] = partial(
lax_parallel._subst_all_names_in_param, 'axis_name')
# -------------------- Axis resources generation --------------------
AxisResources = Dict[str, Union[str, Tuple[str, ...]]]
def schedules(sizes: Dict[str, int]
) -> Generator[Tuple[AxisResources, jtu.MeshSpec], None, None]:
"""Test utility generating xmap parallel schedules from logical names & sizes.
Args:
sizes: dict mapping logical axis name to its corresponding size.
Returns:
A generator producing finitely many values, where each value is a pair in
which the first element is a value suitable for xmap's axis_resources
argument and the second element is a list of pairs with the first element
representing a generated physical mesh axis name and the second element
representing a corresponding generated mesh axis size. The generated mesh
names/sizes can be used to define a physical mesh in tests.
This function doesn't generate schedules which map distinct logical axis names
to the same parallel resource name. It only generates parallel resources; the
rest are implicitly left for vectorization. Parallel resource names are
generated by prepending an 'r', 'r1', or 'r2' to the corresponding logical
name.
Examples:
>>> for sched in schedules({'i': 2, 'j': 4}):
... print(sched)
({}, [])
({'i': 'ri'}, [('ri', 1)])
({'i': 'ri'}, [('ri', 2)])
({'i': ('r1i', 'r2i')}, [('r1i', 1), ('r2i', 1)])
({'i': ('r1i', 'r2i')}, [('r1i', 1), ('r2i', 2)])
({'i': ('r1i', 'r2i')}, [('r1i', 2), ('r2i', 1)])
({'j': 'rj'}, [('rj', 1)])
({'j': 'rj'}, [('rj', 2)])
({'j': 'rj'}, [('rj', 4)])
({'j': ('r1j', 'r2j')}, [('r1j', 1), ('r2j', 1)])
({'j': ('r1j', 'r2j')}, [('r1j', 1), ('r2j', 2)])
({'j': ('r1j', 'r2j')}, [('r1j', 1), ('r2j', 4)])
({'j': ('r1j', 'r2j')}, [('r1j', 2), ('r2j', 1)])
({'j': ('r1j', 'r2j')}, [('r1j', 2), ('r2j', 2)])
({'j': ('r1j', 'r2j')}, [('r1j', 4), ('r2j', 1)])
({'i': 'ri', 'j': 'rj'}, [('ri', 1), ('rj', 1)])
({'i': 'ri', 'j': 'rj'}, [('ri', 1), ('rj', 2)])
({'i': 'ri', 'j': 'rj'}, [('ri', 1), ('rj', 4)])
({'i': 'ri', 'j': 'rj'}, [('ri', 2), ('rj', 1)])
({'i': 'ri', 'j': 'rj'}, [('ri', 2), ('rj', 2)])
({'i': 'ri', 'j': 'rj'}, [('ri', 2), ('rj', 4)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 1), ('r1j', 1), ('r2j', 1)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 1), ('r1j', 1), ('r2j', 2)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 1), ('r1j', 1), ('r2j', 4)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 1), ('r1j', 2), ('r2j', 1)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 1), ('r1j', 2), ('r2j', 2)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 1), ('r1j', 4), ('r2j', 1)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 2), ('r1j', 1), ('r2j', 1)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 2), ('r1j', 1), ('r2j', 2)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 2), ('r1j', 1), ('r2j', 4)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 2), ('r1j', 2), ('r2j', 1)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 2), ('r1j', 2), ('r2j', 2)])
({'i': 'ri', 'j': ('r1j', 'r2j')}, [('ri', 2), ('r1j', 4), ('r2j', 1)])
({'j': 'rj', 'i': ('r1i', 'r2i')}, [('rj', 1), ('r1i', 1), ('r2i', 1)])
({'j': 'rj', 'i': ('r1i', 'r2i')}, [('rj', 1), ('r1i', 1), ('r2i', 2)])
({'j': 'rj', 'i': ('r1i', 'r2i')}, [('rj', 1), ('r1i', 2), ('r2i', 1)])
({'j': 'rj', 'i': ('r1i', 'r2i')}, [('rj', 2), ('r1i', 1), ('r2i', 1)])
({'j': 'rj', 'i': ('r1i', 'r2i')}, [('rj', 2), ('r1i', 1), ('r2i', 2)])
({'j': 'rj', 'i': ('r1i', 'r2i')}, [('rj', 2), ('r1i', 2), ('r2i', 1)])
({'j': 'rj', 'i': ('r1i', 'r2i')}, [('rj', 4), ('r1i', 1), ('r2i', 1)])
({'j': 'rj', 'i': ('r1i', 'r2i')}, [('rj', 4), ('r1i', 1), ('r2i', 2)])
({'j': 'rj', 'i': ('r1i', 'r2i')}, [('rj', 4), ('r1i', 2), ('r2i', 1)])
"""
def divisors(n: int) -> List[int]:
return [m for m in range(1, n + 1) if not n % m]
def divisors2(n: int) -> Iterator[Tuple[int, int]]:
for k1 in divisors(n):
for k2 in divisors(n // k1):
yield (k1, k2)
# choose a subset of logical axis names to map to parallel resources
for names in powerset(sizes):
# partition that set of logical axis names into two subsets: one subset to
# map to one parallel resource axis and a second subset to map to two
# parallel resource axes.
for names1, names2 in partitions(names, 2):
# to avoid generating too many complex cases, we skip generating cases
# where more than one logical axis name is to be mapped to two parallel
# resource axes. comment out this line to generate more complex tests.
if len(names2) > 1: continue
# make up parallel resource axis names for each logical axis
axis_resources1 = ((name, 'r' + name) for name in names1)
axis_resources2 = ((name, ('r1' + name, 'r2' + name)) for name in names2)
axis_resources = dict(it.chain(axis_resources1, axis_resources2))
# make up sizes for each resource axis, where the size must divide the
# corresponding logical axis
for mesh_sizes1 in product(*(divisors(sizes[n]) for n in names1)):
for mesh_sizes2 in product(*(divisors2(sizes[n]) for n in names2)):
mesh_data1 = (('r' + name, size) for name, size in zip(names1, mesh_sizes1))
mesh_data2 = (pair for name, (size1, size2) in zip(names2, mesh_sizes2)
for pair in [('r1' + name, size1), ('r2' + name, size2)])
mesh_data = list(it.chain(mesh_data1, mesh_data2))
yield axis_resources, mesh_data
class XMapTestCase(jtu.BufferDonationTestCase):
pass
# A mixin that enables SPMD lowering tests
class SPMDTestMixin:
def setUp(self):
super().setUp()
jtu.set_spmd_lowering_flag(True)
def tearDown(self):
jtu.restore_spmd_lowering_flag()
class ManualSPMDTestMixin:
def setUp(self):
if not hasattr(xla_client.OpSharding.Type, "MANUAL"):
raise SkipTest
super().setUp()
jtu.set_spmd_lowering_flag(True)
jtu.set_spmd_manual_lowering_flag(True)
def tearDown(self):
jtu.restore_spmd_manual_lowering_flag()
jtu.restore_spmd_lowering_flag()
class XMapTest(XMapTestCase):
def testBasic(self):
local_devices = list(jax.local_devices())
if len(local_devices) < 4:
raise SkipTest("Test requires at least 4 local devices")
def f(a, b):
return a * 2, b * 4
devices = np.array(local_devices[:4]).reshape((2, 2))
with maps.Mesh(devices, ('x', 'y')):
fm = xmap(f,
in_axes=({0: 'a', 1: 'b'}, ['c', ...]),
out_axes=({0: 'a', 1: 'b'}, ['c', ...]),
axis_resources={'a': 'x', 'b': 'y', 'c': 'x'})
ashape = (16, 8, 5)
a = jnp.arange(np.prod(ashape)).reshape(ashape)
bshape = (2, 7)
b = jnp.arange(np.prod(bshape)).reshape(bshape)
c, d = fm(a, b)
self.assertAllClose(c, a * 2)
self.assertAllClose(d, b * 4)
@jtu.with_mesh([('x', 2), ('y', 2)])
def testCollectiveReduce(self):
fm = xmap(lambda a, b: (lax.psum(a * 2, 'a'), b * 4),
in_axes=(['a', 'b', ...], {0: 'c'}),
out_axes=(['b', ...], {0: 'c'}),
axis_resources={'a': 'x', 'b': 'y', 'c': 'x'})
ashape = (16, 8, 5)
a = jnp.arange(np.prod(ashape)).reshape(ashape)
bshape = (2, 7)
b = jnp.arange(np.prod(bshape)).reshape(bshape)
c, d = fm(a, b)
self.assertAllClose(c, (a * 2).sum(0))
self.assertAllClose(d, b * 4)
@jtu.with_mesh([('x', 2), ('y', 2)])
def testCollectivePermute2D(self):
perm = np.array([3, 1, 2, 0])
x = jnp.arange(4).reshape((2, 2))
result = xmap(lambda x: lax.pshuffle(x, ('i', 'j'), perm),
in_axes=['i', 'j', ...],
out_axes=['i', 'j', ...],
axis_resources={'i': 'x', 'j': 'y'})(x).reshape((-1,))
self.assertAllClose(result, perm)
def testCollectivePermute1D(self):
perm = np.array([3, 1, 2, 0])
x = jnp.arange(4)
result = xmap(lambda x: lax.pshuffle(x, 'i', perm),
in_axes=['i', ...],
out_axes=['i', ...])(x)
self.assertAllClose(result, perm)
def testCollectiveAllGather(self):
x = jnp.arange(4, dtype='int32')
result = xmap(lambda x: lax.all_gather(x, 'i') + lax.axis_index('i'),
in_axes=['i', ...], out_axes=['i', ...])(x)
self.assertAllClose(result, x[jnp.newaxis] + x[jnp.newaxis].T)
@jtu.with_mesh([('x', 2), ('y', 2)])
def testOneLogicalTwoMeshAxesBasic(self):
def f(v):
return lax.psum(v * 2, 'a'), v * 4
fm = xmap(f, in_axes=['a', ...], out_axes=({}, {1: 'a'}),
axis_resources={'a': ('x', 'y')})
vshape = (4, 5)
v = jnp.arange(np.prod(vshape)).reshape(vshape)
ans, ans2 = fm(v)
self.assertAllClose(ans, (v * 2).sum(0))
self.assertAllClose(ans2, v.T * 4)
@jtu.with_mesh([('x', 2), ('y', 2)])
def testOneLogicalTwoMeshAxesSharding(self):
def f(v):
return v * 4
fxy = xmap(f, in_axes=['a', ...], out_axes={1: 'a'},
axis_resources={'a': ('x', 'y')})
fyx = xmap(f, in_axes=['a', ...], out_axes={1: 'a'},
axis_resources={'a': ('y', 'x')})
vshape = (4, 5)
v = jnp.arange(np.prod(vshape)).reshape(vshape)
zxy = fxy(v)
if config.jax_array:
zxy_sharding_spec = global_device_array._get_sharding_spec(
zxy.shape, zxy.sharding.mesh, zxy.sharding.spec)
else:
zxy_sharding_spec = zxy.sharding_spec
self.assertEqual(
zxy_sharding_spec,
pxla.ShardingSpec((pxla.NoSharding(), pxla.Chunked((2, 2))),
(pxla.ShardedAxis(0), pxla.ShardedAxis(1))))
zyx = fyx(v)
if config.jax_array:
zyx_sharding_spec = global_device_array._get_sharding_spec(
zyx.shape, zyx.sharding.mesh, zyx.sharding.spec)
else:
zyx_sharding_spec = zyx.sharding_spec
self.assertEqual(
zyx_sharding_spec,
pxla.ShardingSpec((pxla.NoSharding(), pxla.Chunked((2, 2))),
(pxla.ShardedAxis(1), pxla.ShardedAxis(0))))
@jtu.with_mesh([('x', 2), ('y', 2)])
def testSkipFirstMeshDim(self):
def run(axis_resources):
return xmap(lambda x: x * 2, in_axes=['i', ...], out_axes=['i', ...],
axis_resources=axis_resources)(jnp.ones((4,)))
self.assertAllClose(run({'i': 'x'}), run({'i': 'y'}))
def testCaching(self):
def f(x):
assert python_should_be_executing
return x * 2
devices = np.array(jax.local_devices()[:2])
if devices.size < 2:
raise SkipTest("Test requires 2 devices")
x = np.arange(8).reshape((2, 2, 2))
with maps.Mesh(devices, ('x',)):
python_should_be_executing = True
xmap(f, in_axes=['a', ...], out_axes=['a', ...],
axis_resources={'a': 'x'})(x)
python_should_be_executing = False
xmap(f, in_axes=['a', ...], out_axes=['a', ...],
axis_resources={'a': 'x'})(x)
with maps.Mesh(devices, ('x',)):
python_should_be_executing = False
xmap(f, in_axes=['a', ...], out_axes=['a', ...],
axis_resources={'a': 'x'})(x)
def testNoTracerLeak(self):
if config.jax_array:
self.skipTest('Does not work with Array because of ShardingContext '
'being used in xmap because of jit. Removing that '
'restriction makes the test pass but that should be done '
'in a separate CL.')
@jax.jit
def xmap_linearize(xs):
eye = jnp.eye(xs.shape[0], dtype=jnp.float32)
primal, grad_f = jax.linearize(jnp.sin, xs)
return maps.xmap(
grad_f,
in_axes=['i', ...],
out_axes=['i', ...],
axis_resources={'i': maps.SerialLoop(1)})(eye)
xs = jnp.arange(1, 4, step=1).astype(jnp.float32)
xmap_linearize(xs) # Doesn't raise a tracer leak error
@parameterized.named_parameters(
{"testcase_name": name, "mesh": mesh, "axis_resources": axis_resources}
for name, mesh, axis_resources in (
('OneToOne', (('x', 2), ('y', 2)), (('a', 'y'), ('b', 'x'))),
('Multiple', (('x', 2), ('y', 2), ('z', 2)), (('a', 'y'), ('b', ('x', 'z')))),
))
@jtu.with_mesh_from_kwargs
def testNestedMesh(self, mesh, axis_resources):
@partial(xmap, in_axes={1: 'a'}, out_axes=({0: 'a'}, {}),
axis_resources=dict([axis_resources[0]]))
def f(x):
y = x * 2
@partial(xmap, in_axes={0: 'b'}, out_axes=({1: 'b'}, {}),
axis_resources=dict([axis_resources[1]]))
def h(y):
# Multiply by a constant array to better exercise the partial_eval rule
return jnp.sin(y) * np.arange(y.size, dtype=float), lax.psum(y, ('a', 'b'))
return h(y)
xshape = (4, 2, 5)
x = jnp.arange(np.prod(xshape), dtype=float).reshape(xshape)
y = f(x)
self.assertAllClose(
y, ((jnp.sin(x * 2) *
np.arange(xshape[-1], dtype=float)[None, None]).transpose(
(1, 2, 0)), (x * 2).sum((0, 1))))
if config.jax_array:
sharding_spec = global_device_array._get_sharding_spec(
y[0].shape, y[0].sharding.mesh, y[0].sharding.spec)
else:
sharding_spec = y[0].sharding_spec
self.assertEqual(sharding_spec.sharding,
(pxla.Chunked([2]), pxla.NoSharding(), pxla.NoSharding()))
self.assertEqual(sharding_spec.mesh_mapping,
(pxla.Replicated(2), pxla.ShardedAxis(0)) +
(pxla.Replicated(2),) * (len(mesh) - 2))
if config.experimental_xmap_spmd_lowering:
hlo = f.lower(x).compiler_ir(dialect="hlo").as_hlo_text()
# Make sure that there are non-partial sharding specs in the HLO
self.assertRegex(hlo, r"sharding={devices=\[[0-9,]+\][0-9,]+}")
@jtu.with_and_without_mesh
def testMultipleCalls(self, mesh, axis_resources):
def f(x, y):
assert x.shape == y.shape == (3, 5)
return jnp.tensordot(x, y, axes=([1], [1]))
f_mapped = xmap(f,
in_axes=(['i', ...], ['j', ...]),
out_axes=['i', 'j', ...],
axis_resources=dict(axis_resources))
x = jnp.arange(30).reshape(2, 3, 5)
expected = jnp.einsum('imk,jnk->ijmn', x, x)
for i in range(10):
self.assertAllClose(f_mapped(x, x), expected)
@jtu.with_and_without_mesh
@jtu.skip_on_devices("cpu") # In/out aliasing not supported on CPU.
def testBufferDonation(self, mesh, axis_resources):
shard = lambda x: x
if axis_resources:
shard = xmap(lambda x: x, in_axes=['i', ...], out_axes=['i', ...],
axis_resources=dict(axis_resources))
f = xmap(lambda x, y: x + y * 4,
in_axes=['i', ...], out_axes=['i', ...],
axis_resources=dict(axis_resources),
donate_argnums=0)
# The multiplications below disable some optimizations that prevent reuse
x = shard(jnp.zeros((2, 5)) * 4)
y = shard(jnp.ones((2, 5)) * 2)
f(x, y)
self.assertNotDeleted(y)
self.assertDeleted(x)
@jtu.skip_on_devices("cpu") # In/out aliasing not supported on CPU.
@jtu.with_mesh([('x', 2)])
@jtu.ignore_warning(category=UserWarning, # SPMD test generates warning.
message="Some donated buffers were not usable*")
def testBufferDonationNamedShape(self):
axis_resources = {'i': 'x'}
# named in_aval, unnamed out_aval
f = xmap(lambda _: jnp.ones((2, 5)),
in_axes=['i', ...], out_axes=[...],
axis_resources=axis_resources,
donate_argnums=0)
shard = xmap(lambda x: x, in_axes=['i', ...], out_axes=['i', ...],
axis_resources=dict(axis_resources))
x = shard(jnp.zeros((4, 5)))
f(x)
self.assertDeleted(x)
@jtu.with_mesh([('x', 2), ('y', 2)])
def testConstantsInLowering(self):
h = xmap(partial(constant_introducing_p.bind, axis_name='i'),
in_axes=['i'], out_axes=['i'], axis_resources={'i': 'x'})
f = xmap(h, in_axes=['j', ...], out_axes=['j', ...], axis_resources={'j': 'y'})
yp = 1 + jnp.arange(10, dtype=np.float32)
self.assertAllClose(
f(jnp.ones((2, 20), dtype=np.float32)),
jnp.broadcast_to(jnp.concatenate([yp, yp]), (2, 20)))
def testControlFlow(self):
x = jnp.arange(5)
xmap(lambda x: lax.fori_loop(0, 10, lambda _, x: lax.psum(x, 'i'), x),
in_axes=['i', ...], out_axes=['i', ...])(x)
@jtu.with_and_without_mesh
def testAxisSizes(self, mesh, axis_resources):
result = xmap(lambda: lax.axis_index('i'),
in_axes=(), out_axes=['i', ...],
axis_sizes={'i': 6},
axis_resources=dict(axis_resources))()
self.assertAllClose(result, jnp.arange(6, dtype=result.dtype))
def testCollectiveOverNoName(self):
result = xmap(lambda: lax.psum(jnp.array(2) ** 2, 'i'),
in_axes={}, out_axes={}, axis_sizes={'i': 4})()
self.assertEqual(result, 16)
def VmapOfXmapCases(s):
xmap_in_axes = ([{}] +
[{i: 'x'} for i in range(3)] +
[{i: 'x', j: 'y'} for i in range(4) for j in range(4) if i != j])
for xmap_dim_x, xmap_dim_y in s(product(xmap_in_axes, repeat=2)):
xmap_axes = sorted(set(xmap_dim_x.values()) | set(xmap_dim_y.values()))
num_axes = len(xmap_axes)
if xmap_axes is None:
continue
xmap_out_axes = [dict(zip(dims, xmap_axes))
for dims in permutations(range(2 + num_axes), num_axes)]
for xmap_dim_z in s(xmap_out_axes):
for vmap_dim_x in s([*range(2 + len(xmap_dim_x)), None]):
for vmap_dim_y in s([*range(2 + len(xmap_dim_y)), None]):
if vmap_dim_x is None and vmap_dim_y is None:
continue
for vmap_dim_result in s(range(3)):
for vmap_dim_z in s(range(2 + len(xmap_axes))):
for vmap_as_xmap in s([False, True]):
yield {"testcase_name":
f"_xin={(sorted(xmap_dim_x.items()), sorted(xmap_dim_y.items()))}_"
f"xout={sorted(xmap_dim_z.items())}_vin={(vmap_dim_x, vmap_dim_y)}_"
f"vout={vmap_dim_z}_vresult={vmap_dim_result}_vmap_as_xmap={vmap_as_xmap}",
"xmap_in_axes": (xmap_dim_x, xmap_dim_y),
"xmap_out_axes": xmap_dim_z,
"vmap_in_axes": (vmap_dim_x, vmap_dim_y),
"vmap_out_axes": vmap_dim_z,
"vmap_result_axis": vmap_dim_result,
"vmap_as_xmap": vmap_as_xmap}
@parameterized.named_parameters(jtu.named_cases_from_sampler(VmapOfXmapCases))
def testNestedMap(self,
xmap_in_axes, xmap_out_axes,
vmap_in_axes, vmap_out_axes, vmap_result_axis,
vmap_as_xmap):
"""Test various vmap(xmap) and xmap(xmap) combinations.
The outer map always introduces a single dimension, the inner map introduces one or two.
"""
(xin_x, xin_y) = xmap_in_axes
(vin_x, vin_y) = vmap_in_axes
vmap_size = 7
xmap_sizes = {'x': 11, 'y': 13}
xshape = [2, 3]
yshape = [3, 5]
zshape = [2, 5]
xind = ['n', 'k']
yind = ['k', 'm']
zind = ['n', 'm']
f = lambda x, y: ensure_bdim(jnp.einsum('nk,km->nm', x, y), 'v', vmap_result_axis)
for pos, name in sorted(xin_x.items()):
xshape.insert(pos, xmap_sizes[name])
xind.insert(pos, name)
for pos, name in sorted(xin_y.items()):
yshape.insert(pos, xmap_sizes[name])
yind.insert(pos, name)
for pos, name in sorted(xmap_out_axes.items()):
zshape.insert(pos, xmap_sizes[name])
zind.insert(pos, name)
if vin_x is not None:
xshape.insert(vin_x, vmap_size)
xind.insert(vin_x, 'v')
if vin_y is not None:
yshape.insert(vin_y, vmap_size)
yind.insert(vin_y, 'v')
zshape.insert(vmap_out_axes, vmap_size)
zind.insert(vmap_out_axes, 'v')
if vmap_as_xmap:
do_vmap = partial(xmap,
in_axes=({vin_x: 'v'} if vin_x is not None else {},
{vin_y: 'v'} if vin_y is not None else {}),
out_axes={vmap_out_axes: 'v'})
else:
do_vmap = partial(vmap, in_axes=vmap_in_axes, out_axes=vmap_out_axes, axis_name='v')
fm = do_vmap(xmap(f, in_axes=xmap_in_axes, out_axes=xmap_out_axes))
fref = partial(jnp.einsum, f"{''.join(xind)},{''.join(yind)}->{''.join(zind)}")
rng = self.rng()
x = rng.randn(*xshape)
y = rng.randn(*yshape)
self.assertAllClose(fm(x, y), fref(x, y), atol={np.float64: 1e-14})
def testBatchingPostProcess(self):
x = jnp.arange(10).reshape(5, 2)
f = jax.vmap(lambda y: xmap(lambda x: x + y, in_axes=['i', ...], out_axes=['i', ...])(x))
ref = jax.vmap(lambda y: jax.vmap(lambda x: x + y)(x))
self.assertAllClose(f(x * 2), ref(x * 2))
def testAutodiffBroadcast(self):
f = xmap(lambda x, y: jnp.cos(lax.dot(x, jnp.sin(y),
precision=lax.Precision.HIGHEST)),
in_axes=(['i', ...], {}), out_axes=['i', ...])
x = jnp.arange(12, dtype=jnp.float32).reshape((3, 4)) / 100
y = jnp.arange(20, dtype=jnp.float32).reshape((4, 5)) / 100
jtu.check_grads(f, (x, y), order=2, modes=['fwd'])
jtu.check_grads(f, (x, y), order=1, modes=['rev'])
with self.assertRaises(AssertionError):
# Second order reverse-mode differentiations seems to be broken,
# likely due to the transpose of psum being defined incorrectly.
jtu.check_grads(f, (x, y), order=2, modes=['rev'])
def testAutodiffNoBroadcast(self):
f = xmap(lambda x, y: jnp.cos(lax.dot(x, jnp.sin(y),
precision=lax.Precision.HIGHEST)),
in_axes=(['i', ...], [None, 'i']), out_axes=['i'])
x = jnp.arange(12, dtype=jnp.float32).reshape((3, 4)) / 100
y = jnp.arange(12, dtype=jnp.float32).reshape((4, 3)) / 100
jtu.check_grads(f, (x, y), order=2)
@jtu.with_and_without_mesh
def testNamedShape(self, mesh, axis_resources):
x = np.arange(4,)
y = 2
f = xmap(lambda x, y: (x + y, y * lax.axis_index('i')),
in_axes=(['i', ...], {}),
out_axes=(['i', ...], ['i', ...]),
axis_resources=dict(axis_resources))
z, w = f(x, y)
self.assertEqual(z.aval.named_shape, {})
self.assertEqual(w.aval.named_shape, {})
@jtu.with_and_without_mesh
def testBroadcast(self, mesh, axis_resources):
x = jnp.asarray(2.0)
f = xmap(lambda x: x, in_axes={}, out_axes=['i'],
axis_sizes={'i': 4}, axis_resources=dict(axis_resources))
self.assertAllClose(f(x), jnp.asarray([2.0, 2.0, 2.0, 2.0]))
def testNestedBroadcast(self):
x = jnp.asarray(2.0)
f = xmap(lambda x: x, in_axes={}, out_axes=['i'], axis_sizes={'i': 4})
g = xmap(f, in_axes={}, out_axes=['j', ...], axis_sizes={'j': 7})
self.assertAllClose(g(x), jnp.tile(x.reshape((1, 1)), (7, 4)))
@serial_loop('l', 4)
def testLoopBasic(self):
x = jnp.arange(16)
y = xmap(lambda x: x + 4, in_axes=['i'], out_axes=['i'],
axis_resources={'i': 'l'})(x)
self.assertAllClose(y, x + 4)
@jtu.with_mesh([('x', 2)])
@serial_loop('l', 4)
def testLoopWithMesh(self):
x = jnp.arange(16)
y = xmap(lambda x: x + 4, in_axes=['i'], out_axes=['i'],
axis_resources={'i': ('x', 'l')})(x)
self.assertAllClose(y, x + 4)
def testLoopAnonBasic(self):
x = jnp.arange(16)
y = xmap(lambda x: x + 4, in_axes=['i'], out_axes=['i'],
axis_resources={'i': SerialLoop(4)})(x)
self.assertAllClose(y, x + 4)
@jtu.with_mesh([('x', 2)])
def testLoopAnonWithMesh(self):
x = jnp.arange(16)
y = xmap(lambda x: x + 4, in_axes=['i'], out_axes=['i'],
axis_resources={'i': ('x', SerialLoop(4))})(x)
self.assertAllClose(y, x + 4)
def testLowerWithAbstractArgs(self):
x = jax.ShapeDtypeStruct((2, 2), jnp.float32)
# Make sure this doesn't crash
xmap(lambda x: x + 4, in_axes=['i', ...], out_axes=['i', ...]).lower(x)
def testLowerCompile(self):
f = xmap(lambda x: x + 4, in_axes=['i', ...], out_axes=['i', ...])
x = jnp.arange(4, dtype=jnp.float32).reshape((2, 2))
f_exe = f.lower(x).compile()
self.assertAllClose(f_exe(x), f(x))
def testLowerCompileInTreeMismatch(self):
f = xmap(lambda x: x + 4, in_axes=['i', ...], out_axes=['i', ...])
x = jnp.arange(4, dtype=jnp.float32).reshape((2, 2))
f_exe = f.lower(x).compile()
self.assertRaisesRegex(
TypeError, "function compiled for .*, called with .*",
lambda: f_exe([x]))
def testLowerCompileArgTypeMismatch(self):
f = xmap(lambda x: x + 4, in_axes=['i', ...], out_axes=['i', ...])
x = jnp.arange(4, dtype=jnp.float32).reshape((2, 2))
x_f32 = x.astype(jnp.float32)
x_i32 = x.astype(jnp.int32)
f_exe = f.lower(x_f32).compile()
self.assertRaisesRegex(
TypeError,
"Computation was compiled for different input types and called with "
"different types. One of the mismatches is:\n"
"Compiled with:\n.*float32.*\n"
"called with:\n.*int32.*",
lambda: f_exe(x_i32))
def testLowerAsText(self):
f = xmap(lambda x: x + 4, in_axes=['i', ...], out_axes=['i', ...])
x = jnp.arange(4, dtype=jnp.float32).reshape((2, 2))
f = f.lower(x)
self.assertIsInstance(f.as_text(), str)
self.assertIsInstance(f.as_text(dialect='hlo'), str)
self.assertIsInstance(f.as_text(dialect='mhlo'), str)
def testLowerCompilerIR(self):
f = xmap(lambda x: x + 4, in_axes=['i', ...], out_axes=['i', ...])
x = jnp.arange(4, dtype=jnp.float32).reshape((2, 2))
f = f.lower(x)
self.assertIsNotNone(f.compiler_ir())
self.assertIsNotNone(f.compiler_ir(dialect='hlo'))
self.assertIsNotNone(f.compiler_ir(dialect='mhlo'))
@jtu.ignore_warning(category=DeprecationWarning)
def testLowerCompileCompilerIR(self):
# TODO(frostig): remove (deprecated)
f = xmap(lambda x: x + 4, in_axes=['i', ...], out_axes=['i', ...])
x = jnp.arange(4, dtype=jnp.float32).reshape((2, 2))
f = f.lower(x).compile()
self.assertIsNotNone(f.compiler_ir())
def testLowerCompileAsText(self):
f = xmap(lambda x: x + 4, in_axes=['i', ...], out_axes=['i', ...])
x = jnp.arange(4, dtype=jnp.float32).reshape((2, 2))
f = f.lower(x).compile()
self.assertIsInstance(f.as_text(), (str, type(None)))
def testLowerCompileCostAnalysis(self):
f = xmap(lambda x: x + 4, in_axes=['i', ...], out_axes=['i', ...])
x = jnp.arange(4, dtype=jnp.float32).reshape((2, 2))
f = f.lower(x).compile()
f.cost_analysis() # doesn't raise
def testLowerCompileMemoryAnalysis(self):
f = xmap(lambda x: x + 4, in_axes=['i', ...], out_axes=['i', ...])
x = jnp.arange(4, dtype=jnp.float32).reshape((2, 2))
f = f.lower(x).compile()
f.memory_analysis() # doesn't raise
def testLowerCompileExecutable(self):
f = xmap(lambda x: x + 4, in_axes=['i', ...], out_axes=['i', ...])
x = jnp.arange(4, dtype=jnp.float32).reshape((2, 2))
f = f.lower(x).compile()
self.assertIsNotNone(f.runtime_executable())
def testNewCheckpoint(self):
f = checkpoint(xmap(lambda x: x, in_axes=['i', ...], out_axes=['i', ...]))
self.assertAllClose(jax.grad(lambda x: f(x).sum())(jnp.arange(3.)), jnp.ones(3))
def testNewCheckpointNonlinearWithPolicy(self):
raise SkipTest("fails!") # TODO(mattjj,apaszke): residual outvars problem
f = checkpoint(xmap(lambda x: jnp.sin(jnp.sin(x)), in_axes=['i', ...],
out_axes=['i', ...]),
policy=lambda prim, *_, **__: str(prim) == 'sin')
jax.grad(lambda x: f(x).sum())(jnp.arange(3.)) # TODO crashes!
class XMapTestSPMD(SPMDTestMixin, XMapTest):
"""Re-executes all basic tests with the SPMD partitioner enabled"""
skipped_tests = {
"CollectivePermute2D" # vmap of multidimensional permute not implemented yet
}
def setUp(self):
for skipped_name in self.skipped_tests:
if skipped_name in self._testMethodName:
raise SkipTest
super().setUp()
@jtu.with_mesh([('x', 2), ('y', 2), ('z', 2)])
def testNestedMeshSPMD(self):
h = xmap(lambda y: (jnp.sin(y) * np.arange(y.size, dtype=float),
lax.psum(y, ('a', 'b', 'c'))),
in_axes={0: 'c'}, out_axes=({1: 'c'}, {}),
axis_resources={'c': 'z'})
f = xmap(lambda x: h(x * 2),
in_axes=[None, 'a', 'b', ...], out_axes=(['a', 'b', ...], {}),
axis_resources={'a': 'x', 'b': 'y'})
xshape = (8, 2, 4, 5)
x = jnp.arange(np.prod(xshape), dtype=float).reshape(xshape)
hlo = f.lower(x).compiler_ir(dialect="hlo").as_hlo_text()
match = re.search(r"sharding={devices=\[([0-9,]+)\][0-9,]+}", hlo)
self.assertIsNot(match, None)
tile_factors = [int(s) for s in match.group(1).split(',')]
self.assertEqual(set(tile_factors), {1, 2})
@jtu.with_mesh([('x', 2)])
def testFixedSharding(self):
# TODO(apaszke): Add support for extracting XLA computations generated by
# xmap and make this less of a smoke test.
try:
config.update("experimental_xmap_ensure_fixed_sharding", True)
f = xmap(lambda x: jnp.sin(2 * jnp.sum(jnp.cos(x) + 4, 'i')),
in_axes=['i'], out_axes={}, axis_resources={'i': 'x'})
x = jnp.arange(20, dtype=jnp.float32)
f(x)
finally:
config.update("experimental_xmap_ensure_fixed_sharding", False)
@jtu.with_mesh([('x', 2)])
def testConstantsInLowering(self):
h = xmap(partial(constant_introducing_p.bind, axis_name='i'),
in_axes=['i'], out_axes=['i'], axis_resources={'i': 'x'})
f = pjit(h, in_axis_resources=None, out_axis_resources=None)
yp = 1 + jnp.arange(10, dtype=np.float32)
self.assertAllClose(
f(jnp.ones(20, dtype=np.float32)),
jnp.concatenate([yp, yp]))
class XMapTestManualSPMD(ManualSPMDTestMixin, XMapTestCase):
@jtu.with_mesh([('x', 2)])
def testBasic(self):
f = lambda x: jnp.sin(jnp.cos(x) + x) * x
fx = xmap(f, in_axes=['i'], out_axes=['i'], axis_resources={'i': 'x'})
x = jnp.arange(20, dtype=jnp.float32)
self.assertAllClose(fx(x), f(x))
@jtu.with_mesh([('x', 2)])
def testReplicated(self):
# TODO(apaszke): This seems to be failing if I try to have a replicated and a mapped argument?
f = lambda x: jnp.sin(jnp.cos(x) + x) * x
fx = xmap(f, in_axes=[...], out_axes=[...], axis_sizes={'i': 4}, axis_resources={'i': 'x'})
x = jnp.arange(20, dtype=jnp.float32)
self.assertAllClose(fx(x), f(x))
@jtu.with_mesh([('x', 2), ('y', 1)])
def testInPJit(self):
f = xmap(lambda x: jnp.sin(x) + x, in_axes=['i'], out_axes=['i'], axis_resources={'i': 'x'})
h = pjit(lambda x: f(x * x) + x, in_axis_resources=P('y'), out_axis_resources=None)
x = jnp.arange(20, dtype=jnp.float32)
self.assertAllClose(h(x), jnp.sin(x * x) + x * x + x)
@jtu.with_mesh([('x', 2), ('y', 1)])
def testInPJitReplicated(self):
f = xmap(lambda x: jnp.sin(x) + x, in_axes={}, out_axes={}, axis_sizes={'i': 4}, axis_resources={'i': 'x'})
h = pjit(lambda x: f(x * x) + x, in_axis_resources=P('y'), out_axis_resources=None)
x = jnp.arange(20, dtype=jnp.float32)
self.assertAllClose(h(x), jnp.sin(x * x) + x * x + x)
@jtu.with_mesh([('x', 2), ('y', 1)])
def testNestedConstraint(self):
# TODO(b/219691408): Using P('y') instead of P() causes an XLA crash!
fimpl = lambda x: with_sharding_constraint(jnp.sin(x), P()) + x
f = xmap(fimpl, in_axes=['i', ...], out_axes=['i', ...], axis_resources={'i': 'x'})
h = pjit(lambda x: f(x * x) + x, in_axis_resources=P('y'), out_axis_resources=None)
x = jnp.arange(20, dtype=jnp.float32).reshape(4, 5)
self.assertAllClose(h(x), jnp.sin(x * x) + x * x + x)
@parameterized.named_parameters(
{'testcase_name': name, 'mesh': mesh}
for name, mesh in (
('1d', (('x', 2),)),
('2d', (('x', 2), ('y', 2))),
))
@jtu.with_mesh_from_kwargs
def testCollective(self, mesh):
all_axes = tuple(axis[0] for axis in mesh)
f = xmap(lambda x: lax.psum(x, 'i'), in_axes=['i', 'j'], out_axes=['j'],
axis_resources=dict(zip('ij', all_axes)))
h = pjit(lambda x: f(x * x), in_axis_resources=P(*all_axes), out_axis_resources=None)
x = jnp.arange(16, dtype=jnp.float32).reshape(4, 4)
self.assertAllClose(h(x), (x * x).sum(0))
@jtu.with_mesh([('x', 2)])
def testBareXmapCollective(self):
x = jnp.arange(20, dtype=jnp.float32).reshape(4, 5)
y = xmap(lambda x: lax.psum(x, 'i'),
in_axes=['i', ...], out_axes=[...], axis_resources={'i': 'x'})(x)
self.assertAllClose(x.sum(0), y)
@jtu.with_mesh([('x', 2)])
def testPPermute(self):
if mlir_api_version < 35:
self.skipTest('MLIR api version should be greater than 35 for manual '
'lowering of ppermute.')
n = 2
x = jnp.arange(n * 5, dtype=jnp.float32).reshape(n, 5)
f = xmap(lambda x: lax.ppermute(x, 'i', perm=[(j, (j + 1) % n) for j in range(n)]),
in_axes=['i', ...], out_axes=['i', ...], axis_resources={'i': 'x'})
g = pjit(f, in_axis_resources=P('x'), out_axis_resources=P('x'))
self.assertAllClose(g(x), x[::-1])
@jtu.with_mesh([('x', 2)])
def testConstantsInLowering(self):
h = xmap(partial(constant_introducing_p.bind, axis_name='i'),
in_axes=['i'], out_axes=['i'], axis_resources={'i': 'x'})
f = pjit(h, in_axis_resources=None, out_axis_resources=None)
yp = 1 + jnp.arange(10, dtype=np.float32)
self.assertAllClose(
f(jnp.ones(20, dtype=np.float32)),
jnp.concatenate([yp, yp]))
class NamedNumPyTest(XMapTestCase):
@jtu.sample_product(
reduction=(jnp.sum, jnp.max, jnp.min, jnp.mean, jnp.var, jnp.std,
jscipy.special.logsumexp),
axes=(0, 'i', (1,), ('i',), (0, 1), (0, 'i'), ('i', 0)),
mapped_axis=range(3),
)
def testReductions(self, reduction, axes, mapped_axis):
axes_t = axes if isinstance(axes, tuple) else (axes,)
ref_red = partial(reduction,
axis=tuple(mapped_axis if a == 'i' else a + (a >= mapped_axis)
for a in axes_t))
mapped_axis_after_red = mapped_axis - sum(axis < mapped_axis if axis != 'i' else 0
for axis in axes_t)
xmap_red = xmap(lambda x: reduction(x, axes),
in_axes={mapped_axis: 'i'},
out_axes=({} if 'i' in axes_t else {mapped_axis_after_red: 'i'}))
rng = self.rng()
x = rng.randn(2, 5, 6)
self.assertAllClose(ref_red(x), xmap_red(x))
class NamedRandomTest(XMapTestCase):
SAMPLERS = [
("Uniform", jax.random.uniform),
("Normal", jax.random.normal),
("Bernoulli", partial(jax.random.bernoulli, p=0.5)),
("TruncatedNormal", partial(jax.random.truncated_normal, lower=-2, upper=2)),
]
@parameterized.parameters(*SAMPLERS)
def testSamplerSharding(self, distr_name, distr_sample):
def sample(shape, map_size):
return xmap(lambda: distr_sample(jax.random.PRNGKey(0), shape=shape),
in_axes=(), out_axes=[None, 'i', ...], axis_sizes={'i': map_size})()
replicated = sample((3,), 4)
self.assertTrue((replicated[:,[0]] == replicated).all())
sharded = sample(NamedShape(3, i=4), 4)
self.assertFalse((sharded[:,[0]] == sharded[:,1:]).all(1).any())
error = "The shape of axis i was specified as 4, but it really is 5"
with self.assertRaisesRegex(ValueError, error):
sample(NamedShape(3, i=4), 5)
@jtu.sample_product(
[dict(distr_name=name, distr_sample=sample)
for name, sample in SAMPLERS],
[dict(axis_resources=tuple(axis_resources.items()), mesh=tuple(mesh))
for axis_resources, mesh in schedules({'i': 4, 'j': 6})],
)
@jtu.with_mesh_from_kwargs
def testSamplerResourceIndependence(self, distr_name, distr_sample,
axis_resources, mesh):
def sample(axis_resources):
return xmap(lambda: distr_sample(jax.random.PRNGKey(0), shape=NamedShape(3, i=4, j=6)),
in_axes=(), out_axes=['i', 'j', ...], axis_sizes={'i': 4, 'j': 6},
axis_resources=axis_resources)()
self.assertAllClose(sample({}), sample(dict(axis_resources)))
class NamedNNTest(XMapTestCase):
def testOneHot(self):
f = xmap(lambda x: jax.nn.one_hot(jnp.array([1, 2, 0], dtype='int32'), 3, axis='i'),
in_axes=['i', ...], out_axes=['i', ...])
expected = jnp.array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.]]).T
self.assertAllClose(f(jnp.ones(3, dtype='int32')), expected)
def testOneHotOutOfBound(self):
f = xmap(lambda x: jax.nn.one_hot(jnp.array([-1, 3], dtype='int32'), 3, axis='i'),
in_axes=['i', ...], out_axes=['i', ...])
self.assertAllClose(f(jnp.ones(3, dtype='int32')), jnp.zeros((3, 2)))
def testOneHotAxisSizeMismatch(self):
f = xmap(lambda x: jax.nn.one_hot(jnp.array([-1, 3], dtype='int32'), 3, axis='i'),
in_axes=['i', ...], out_axes=['i', ...])
with self.assertRaisesRegex(ValueError, "to match the size of axis i, but 3 != 5"):
f(jnp.ones(5, dtype='int32'))
@jtu.sample_product(
[dict(map_in=map_in, map_out=map_out)
for map_in, map_out in [(True, False), (False, True), (True, True)]],
fan=['fan_in', 'fan_out', 'fan_avg'],
distr=['uniform', 'normal', 'truncated_normal'],
)
def testVarianceScaling(self, map_in, map_out, fan, distr):
shape = (80, 50, 7)
fan_in, fan_out = nn_initializers._compute_fans(NamedShape(*shape), 0, 1)
key = jax.random.PRNGKey(1)
base_scaling = partial(jax.nn.initializers.variance_scaling, 100, fan, distr)
ref_sampler = lambda: base_scaling(in_axis=0, out_axis=1)(key, shape)
if map_in and map_out:
out_axes = ['i', 'o', ...]
named_shape = NamedShape(shape[2], i=shape[0], o=shape[1])
xmap_sampler = lambda: base_scaling(in_axis='i', out_axis='o')(key, named_shape)
elif map_in:
out_axes = ['i', ...]
named_shape = NamedShape(shape[1], shape[2], i=shape[0])
xmap_sampler = lambda: base_scaling(in_axis='i', out_axis=0)(key, named_shape)
elif map_out:
out_axes = [None, 'o', ...]
named_shape = NamedShape(shape[0], shape[2], o=shape[1])
xmap_sampler = lambda: base_scaling(in_axis=0, out_axis='o')(key, named_shape)
mapped_sampler = xmap(xmap_sampler,
in_axes=(), out_axes=out_axes,
axis_sizes={'i': shape[0], 'o': shape[1]})
self.assertAllClose(jnp.var(mapped_sampler()), jnp.var(ref_sampler()),
atol=1e-4, rtol=2e-2)
class XMapGDATest(XMapTestCase):
def setUp(self):
super().setUp()
if config.jax_array:
self.skipTest('GDA and Array cannot be enabled together.')
@jtu.with_mesh([('x', 4), ('y', 2)])
def test_basic(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x', 'y')
input_data = np.arange(
prod(global_input_shape)).reshape(global_input_shape)
def cb(index):
return input_data[index]
gda_obj = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes, cb)
with jax_config.parallel_functions_output_gda(True):
f = maps.xmap(
lambda x: x,
in_axes=({0: "a", 1: "b"}),
out_axes=({0: "a", 1: "b"}),
axis_resources={"a": "x", "b": "y"})
out = f(gda_obj)
self.assertIsInstance(out, global_device_array.GlobalDeviceArray)
self.assertEqual(out.shape, (8, 2))
self.assertEqual(out.addressable_shards[0].data.shape, (2, 1))
self.assertDictEqual(out.mesh.shape, {'x': 4, 'y': 2})
for s in out.addressable_shards:
self.assertArraysEqual(s.data, input_data[s.index])
@jtu.with_mesh([('x', 4), ('y', 2)])
def test_xmap_gda_mixed_inputs(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x')
input_data = np.arange(
prod(global_input_shape)).reshape(global_input_shape)
def cb(index):
return input_data[index]
gda_obj = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes, cb)
with jax_config.parallel_functions_output_gda(True):
f = maps.xmap(
lambda x, y: (x @ x.T, y @ y.T),
in_axes=({0: "a"}, ["c", ...]),
out_axes=({0: "a"}, ["c", ...]),
axis_resources={"a": "x", "c": "x"})
expected_matrix_mul = np.diagonal(input_data @ input_data.T)
out1, out2 = f(gda_obj, input_data)
self.assertIsInstance(out1, global_device_array.GlobalDeviceArray)
self.assertEqual(out1.shape, (8,))
self.assertEqual(out1.addressable_shards[0].data.shape, (2,))
self.assertDictEqual(out1.mesh.shape, {'x': 4, 'y': 2})
for s in out1.addressable_shards:
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
self.assertIsInstance(out2, global_device_array.GlobalDeviceArray)
self.assertEqual(out2.shape, (8,))
self.assertEqual(out2.addressable_shards[0].data.shape, (2,))
self.assertDictEqual(out2.mesh.shape, {'x': 4, 'y': 2})
for s in out2.addressable_shards:
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
for i, j in safe_zip(out1.addressable_shards, out2.addressable_shards):
self.assertArraysEqual(i.data, j.data)
@jtu.with_mesh([('x', 4), ('y', 2)])
def test_xmap_gda_double_input(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
input_data = np.arange(
prod(global_input_shape)).reshape(global_input_shape)
def cb(index):
return input_data[index]
gda_obj1 = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, P('x'), cb)
gda_obj2 = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, P('y'), cb)
with jax_config.parallel_functions_output_gda(True):
f = maps.xmap(
lambda x, y: (x @ x.T, y @ y.T),
in_axes=({0: "a"}, ["c", ...]),
out_axes=({0: "a"}, ["c", ...]),
axis_resources={"a": "x", "c": "y"})
expected_matrix_mul = np.diagonal(input_data @ input_data.T)
out1, out2 = f(gda_obj1, gda_obj2)
self.assertIsInstance(out1, global_device_array.GlobalDeviceArray)
self.assertEqual(out1.shape, (8,))
self.assertEqual(out1.addressable_shards[0].data.shape, (2,))
self.assertDictEqual(out1.mesh.shape, {'x': 4, 'y': 2})
for s in out1.addressable_shards:
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
self.assertIsInstance(out2, global_device_array.GlobalDeviceArray)
self.assertEqual(out2.shape, (8,))
self.assertEqual(out2.addressable_shards[0].data.shape, (4,))
self.assertDictEqual(out2.mesh.shape, {'x': 4, 'y': 2})
for s in out2.addressable_shards:
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
@jtu.with_mesh([('x', 4), ('y', 2)])
def test_xmap_gda_sharding_mismatch(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x', 'y')
input_data = np.arange(
prod(global_input_shape)).reshape(global_input_shape)
def cb(index):
return input_data[index]
gda_obj = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes, cb)
with jax_config.parallel_functions_output_gda(True):
f = maps.xmap(
lambda x: x @ x.T,
in_axes=({0: "a"}),
out_axes=({0: "a"}),
axis_resources={"a": "x"})
with self.assertRaisesRegex(
ValueError,
('Got an input GDA to xmap with different partitioning than '
'specified in xmap. The partitioning must match.')):
f(gda_obj)
def test_gda_from_pjit_with_xmap_sharding_mismatch(self):
global_mesh = jtu.create_global_mesh((8, 1), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x', 'y')
input_data = np.arange(
prod(global_input_shape)).reshape(global_input_shape)
gda_obj = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes, lambda idx: input_data[idx])
with jax_config.parallel_functions_output_gda(True):
with global_mesh:
out = pjit(lambda x: x, in_axis_resources=P('x', 'y'),
out_axis_resources=P('x', 'y'))(gda_obj)
xmap_out = maps.xmap(
lambda x: x,
in_axes=({0: "a", 1: "b"}),
out_axes=({0: "a", 1: "b"}),
axis_resources={"a": "x", "b": "y"})(out) # doesn't crash
self.assertArraysEqual(xmap_out, input_data)
class XMapArrayTest(XMapTestCase):
def test_basic(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x', 'y')
input_array, input_data = create_array(global_input_shape, global_mesh,
mesh_axes)
with jax_config.jax_array(True):
with global_mesh:
f = maps.xmap(
lambda x: x,
in_axes=({0: "a", 1: "b"}),
out_axes=({0: "a", 1: "b"}),
axis_resources={"a": "x", "b": "y"})
out = f(input_array)
self.assertIsInstance(out, array.ArrayImpl)
self.assertEqual(out.shape, (8, 2))
self.assertEqual(out.addressable_shards[0].data.shape, (2, 1))
self.assertDictEqual(out.sharding.mesh.shape, {'x': 4, 'y': 2})
for s in out.addressable_shards:
self.assertArraysEqual(s.data._arrays[0], input_data[s.index])
def test_xmap_array_double_input(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
a1, input_data = create_array(global_input_shape, global_mesh, P('x'))
a2, _ = create_array(global_input_shape, global_mesh, P('y'))
with jax_config.jax_array(True):
with global_mesh:
f = maps.xmap(
lambda x, y: (x @ x.T, y @ y.T),
in_axes=({0: "a"}, ["c", ...]),
out_axes=({0: "a"}, ["c", ...]),
axis_resources={"a": "x", "c": "y"})
expected_matrix_mul = np.diagonal(input_data @ input_data.T)
out1, out2 = f(a1, a2)
self.assertIsInstance(out1, array.ArrayImpl)
self.assertEqual(out1.shape, (8,))
self.assertEqual(out1.addressable_shards[0].data.shape, (2,))
self.assertDictEqual(out1.sharding.mesh.shape, {'x': 4, 'y': 2})
for s in out1.addressable_shards:
self.assertArraysEqual(s.data._arrays[0], expected_matrix_mul[s.index])
self.assertIsInstance(out2, array.ArrayImpl)
self.assertEqual(out2.shape, (8,))
self.assertEqual(out2.addressable_shards[0].data.shape, (4,))
self.assertDictEqual(out2.sharding.mesh.shape, {'x': 4, 'y': 2})
for s in out2.addressable_shards:
self.assertArraysEqual(s.data._arrays[0], expected_matrix_mul[s.index])
def test_xmap_array_sharding_mismatch(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x', 'y')
input_array, _ = create_array(global_input_shape, global_mesh,
mesh_axes)
with jax_config.jax_array(True):
with global_mesh:
f = maps.xmap(
lambda x: x @ x.T,
in_axes=({0: "a"}),
out_axes=({0: "a"}),
axis_resources={"a": "x"})
with self.assertRaisesRegex(
ValueError,
('Got an input Array to xmap with different partitioning than '
'specified in xmap. The partitioning must match.')):
f(input_array)
class NewPrimitiveTest(XMapTestCase):
def testGatherPositional(self):
x = jnp.arange(27).reshape((9, 3))
idx = jnp.array([1, 2, 1, 0]).reshape((2, 2))
self.assertAllClose(pgather(x, idx, 0), x[idx.ravel()].reshape((2, 2, 3)))
x_explode = x.reshape((3, 3, 3))
self.assertAllClose(pgather(x, idx, 0), pgather(x_explode, idx, (0, 1)))
@jtu.with_and_without_mesh
def testGather(self, mesh, axis_resources):
if axis_resources and not config.experimental_xmap_spmd_lowering:
raise SkipTest("pgather over mesh axes without SPMD lowering not implemented")
x = jnp.arange(12, dtype=np.float32).reshape((4, 3))
y = jnp.arange(35).reshape((5, 7)) % 3
f = xmap(lambda src, idx: pgather(src, idx, 'j'),
in_axes=(['i', 'j'], ['k', 'm']),
out_axes=['i', 'k', 'm'],
axis_resources=dict(axis_resources))
f_ref = lambda x, y: x[:, y.reshape((-1,))].reshape((4, 5, 7))
self.assertAllClose(f(x, y), f_ref(x, y))
class NewPrimitiveTestSPMD(SPMDTestMixin, NewPrimitiveTest):
pass
AxisIndices = Tuple[int, ...]
MatchedAxisIndices = Tuple[AxisIndices, AxisIndices]
AxisNames = Tuple[str, ...]
class PdotTestSpec:
# The axis indices stored by a PdotTestSpec are all positional indices
# *before* taking mapping into account.
map_cont: MatchedAxisIndices
pos_cont: MatchedAxisIndices
map_batch: MatchedAxisIndices
pos_batch: MatchedAxisIndices
all_names: AxisNames
contract_names: AxisNames
batch_names: AxisNames
def __init__(self, map_cont, pos_cont, map_batch, pos_batch):
self.map_cont = map_cont
self.pos_cont = pos_cont
self.map_batch = map_batch
self.pos_batch = pos_batch
names = gen_axis_names()
self.contract_names = [next(names) for _ in range(len(map_cont[0]))]
self.batch_names = [next(names) for _ in range(len(map_batch[0]))]
self.all_names = self.contract_names + self.batch_names
@property
def dot_general_dim_nums(self):
lhs_contract = (*self.map_cont[0], *self.pos_cont[0])
rhs_contract = (*self.map_cont[1], *self.pos_cont[1])
lhs_batch = (*self.map_batch[0], *self.pos_batch[0])
rhs_batch = (*self.map_batch[1], *self.pos_batch[1])
return (lhs_contract, rhs_contract), (lhs_batch, rhs_batch)
@property
def pos_contract_after_mapping(self):
lhs = [i - sum(j < i for j in self._lhs_mapped) for i in self.pos_cont[0]]
rhs = [i - sum(j < i for j in self._rhs_mapped) for i in self.pos_cont[1]]
return (lhs, rhs)
@property
def pos_batch_after_mapping(self):
lhs = [i - sum(j < i for j in self._lhs_mapped) for i in self.pos_batch[0]]
rhs = [i - sum(j < i for j in self._rhs_mapped) for i in self.pos_batch[1]]
return (lhs, rhs)
@property
def _lhs_mapped(self):
return {*self.map_cont[0], *self.map_batch[0]}
@property
def _rhs_mapped(self):
return {*self.map_cont[1], *self.map_batch[1]}
@property
def lhs_in_axes(self):
axis_indices = [*self.map_cont[0], *self.map_batch[0]]
return dict(zip(axis_indices, self.all_names))
@property
def rhs_in_axes(self):
axis_indices = [*self.map_cont[1], *self.map_batch[1]]
return dict(zip(axis_indices, self.all_names))
def all_pdot_specs(lhs_shape, rhs_shape):
for matching in axis_matchings(lhs_shape, rhs_shape):
for lists in partitions(matching, 4):
yield PdotTestSpec(*map(unzip2, lists))
def axis_matchings(lhs_shape, rhs_shape):
def helper(start, exc1, exc2):
yield ()
for i in range(start, len(lhs_shape)):
d1 = lhs_shape[i]
if i not in exc1:
for j, d2 in enumerate(rhs_shape):
if d1 == d2 and j not in exc2:
for matches in helper(i + 1, exc1 | {i}, exc2 | {j}):
yield ((i, j), *matches)
return helper(0, set(), set())
def gen_axis_names():
names = 'ijkl'
for n in it.count(1):
for chars in product(names, repeat=n):
yield ''.join(chars)
def schedules_from_pdot_spec(
spec: PdotTestSpec, lhs_shape: Tuple[int, ...], rhs_shape: Tuple[int, ...]
) -> Generator[Tuple[AxisResources, jtu.MeshSpec], None, None]:
logical_sizes = {
name: shape[ax]
for shape, in_axes in [(lhs_shape, spec.lhs_in_axes),
(rhs_shape, spec.rhs_in_axes)]
for ax, name in in_axes.items()}
yield from schedules(logical_sizes)
class PDotTests(XMapTestCase):
@jtu.with_mesh([('r1', 2)])
def testPdotBasic(self):
def f(x, y):
return lax.pdot(x, y, 'i')
f_mapped = xmap(f,
in_axes=({1: 'i'}, {0: 'i'}),
out_axes={},
axis_resources={'i': 'r1'})
rng = self.rng()
x = rng.randn(3, 8)
y = rng.randn(8, 5)
z = f_mapped(x, y)
self.assertAllClose(z, jnp.dot(x, y))
@jtu.with_mesh([('r1', 2)])
def testPdotBatching(self):
def f(x, y):
return lax.pdot(x, y, 'i')
rng = self.rng()
x = rng.randn(2, 3, 8)
y = rng.randn(2, 8, 5)
f_mapped = xmap(f,
in_axes=({0: 'j', 2: 'i'}, {0: 'j', 1: 'i'}),
out_axes=['j', ...],
axis_resources={'i': 'r1'})
z = f_mapped(x, y)
self.assertAllClose(z, jnp.einsum('nij,njk->nik', x, y))
@jtu.with_mesh([('r1', 2)])
def testPdotBatchingShardUncontractedDim(self):
def f(x, y):
return lax.pdot(x, y, 'i')
rng = self.rng()
x = rng.randn(2, 3, 8)
y = rng.randn(2, 8, 5)
f_mapped = xmap(f,
in_axes=({0: 'j', 2: 'i'}, {0: 'j', 1: 'i'}),
out_axes=['j', ...],
axis_resources={'j': 'r1'})
z = f_mapped(x, y)
self.assertAllClose(z, jnp.einsum('nij,njk->nik', x, y))
@parameterized.named_parameters(jtu.named_cases_from_sampler(lambda s: ({
"testcase_name": f"_{next(test_counter)}",
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "pdot_spec": pdot_spec,
"axis_resources": axis_resources, "mesh_data": mesh_data
} for test_counter in [it.count()]
for lhs_shape, rhs_shape in s(product([(2,), (2, 4, 2, 1)], repeat=2))
for pdot_spec in s(all_pdot_specs(lhs_shape, rhs_shape))
for axis_resources, mesh_data in s(schedules_from_pdot_spec(
pdot_spec, lhs_shape, rhs_shape))
)))
def testPdotSystematic(self, lhs_shape, rhs_shape, pdot_spec, axis_resources,
mesh_data):
rng = jtu.rand_default(self.rng())
lhs = rng(lhs_shape, np.float32)
rhs = rng(rhs_shape, np.float32)
def pdot_fun(x, y):
# print(f'pdot(x:{x.aval.str_short()}, y:{y.aval.str_short()},\n'
# f' axis_name={contract_names},\n'
# f' pos_contract={spec.pos_contract_after_mapping}\n'
# f' pos_batch={spec.pos_batch_after_mapping})')
return jax.lax.pdot(x, y, axis_name=pdot_spec.contract_names,
pos_batch=pdot_spec.pos_batch_after_mapping,
pos_contract=pdot_spec.pos_contract_after_mapping)
fun = xmap(pdot_fun, in_axes=(pdot_spec.lhs_in_axes, pdot_spec.rhs_in_axes),
out_axes=[*pdot_spec.batch_names, ...],
axis_resources=axis_resources)
with jtu.with_mesh(mesh_data):
result = fun(lhs, rhs)
expected = lax.dot_general(lhs, rhs, pdot_spec.dot_general_dim_nums)
tol = 1e-1 if jtu.device_under_test() == "tpu" else None
self.assertAllClose(result, expected, check_dtypes=False,
atol=tol, rtol=tol)
@parameterized.named_parameters(jtu.named_cases_from_sampler(lambda s: ({
"testcase_name": f"_{next(test_counter)}",
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "pdot_spec": pdot_spec,
"axis_resources": axis_resources, "mesh_data": mesh_data
} for test_counter in [it.count()]
for lhs_shape, rhs_shape in s(product([(2,), (2, 4, 2, 1)], repeat=2))
for pdot_spec in s(all_pdot_specs(lhs_shape, rhs_shape))
for axis_resources, mesh_data in s(schedules_from_pdot_spec(
pdot_spec, lhs_shape, rhs_shape))
)))
def testPdotVJPSystematic(self, lhs_shape, rhs_shape, pdot_spec,
axis_resources, mesh_data):
rng = jtu.rand_default(self.rng())
lhs = rng(lhs_shape, np.float32)
rhs = rng(rhs_shape, np.float32)
expected_out, ref_vjp = jax.vjp(
lambda x, y: lax.dot_general(x, y, pdot_spec.dot_general_dim_nums),
lhs, rhs)
out_bar = rng(expected_out.shape, np.float32)
expected_lhs, expected_rhs = ref_vjp(out_bar)
def pdot_fun(x, y, out_bar):
pdot = partial(jax.lax.pdot,
axis_name=pdot_spec.contract_names,
pos_batch=pdot_spec.pos_batch_after_mapping,
pos_contract=pdot_spec.pos_contract_after_mapping)
_, pdot_vjp = jax.vjp(pdot, x, y)
return pdot_vjp(out_bar)
fun = xmap(pdot_fun,
in_axes=(pdot_spec.lhs_in_axes, pdot_spec.rhs_in_axes,
[*pdot_spec.batch_names, ...]),
out_axes=(pdot_spec.lhs_in_axes, pdot_spec.rhs_in_axes),
axis_resources=axis_resources)
with jtu.with_mesh(mesh_data):
lhs_bar, rhs_bar = fun(lhs, rhs, out_bar)
tol = 1e-1 if jtu.device_under_test() == "tpu" else None
self.assertAllClose(lhs_bar, expected_lhs, check_dtypes=False,
atol=tol, rtol=tol)
self.assertAllClose(rhs_bar, expected_rhs, check_dtypes=False,
atol=tol, rtol=tol)
def test_xeinsum_vector_dot(self):
rng = self.rng()
x = rng.randn(3)
y = rng.randn(3)
out = xmap(partial(jnp.einsum, '{i},{i}->'),
in_axes=(['i'], ['i']), out_axes=[])(x, y)
expected = np.einsum('i,i->', x, y)
self.assertAllClose(out, expected, check_dtypes=False)
def test_xeinsum_outer_product(self):
rng = self.rng()
x = rng.randn(3)
y = rng.randn(3)
out = xmap(partial(jnp.einsum, '{i},{j}->{i,j}'),
in_axes=(['i'], ['j']), out_axes=['i', 'j'])(x, y)
expected = np.einsum('i,j->ij', x, y)
self.assertAllClose(out, expected, check_dtypes=True)
def test_xeinsum_matmul(self):
rng = self.rng()
x = rng.randn(3, 4)
y = rng.randn(4, 5)
def check(spec):
out = xmap(partial(jnp.einsum, spec),
in_axes=(['i', 'j'], ['j', 'k']),
out_axes=['i', 'k'])(x, y)
expected = np.einsum('ij,jk->ik', x, y)
tol = 1e-1 if jtu.device_under_test() == "tpu" else None
self.assertAllClose(out, expected, check_dtypes=True,
atol=tol, rtol=tol)
check('{i,j},{j,k}->{i,k}')
check('{i,j},{k,j}->{k,i}') # order of named axes in the spec doesn't matter!
check('{j},{k,j}->{k}')
check('{i,j},{j}->{i}')
check('{j},{j}->{}')
def test_xeinsum_no_named_axes_vector_dot(self):
rng = self.rng()
x = rng.randn(3)
y = rng.randn(3)
out = jnp.einsum('i,i->', x, y, _use_xeinsum=True)
expected = np.einsum('i,i->', x, y)
self.assertAllClose(out, expected, check_dtypes=False)
def test_xeinsum_no_named_axes_batch_vector_dot(self):
rng = self.rng()
x = rng.randn(3, 2)
y = rng.randn(3, 2)
out = jnp.einsum('ij,ij->i', x, y, _use_xeinsum=True)
expected = np.einsum('ij,ij->i', x, y)
self.assertAllClose(out, expected, check_dtypes=True)
def test_xeinsum_no_named_axes_batch_matmul(self):
rng = np.random.RandomState(0)
x = rng.randn(3, 5, 4)
y = rng.randn(3, 4, 2)
out = jnp.einsum('bij,bjk->bik', x, y, _use_xeinsum=True)
expected = np.einsum('bij,bjk->bik', x, y)
tol = 1e-1 if jtu.device_under_test() == "tpu" else None
self.assertAllClose(out, expected, check_dtypes=True, atol=tol, rtol=tol)
def test_xeinsum_no_named_axes_reduce_sum(self):
rng = self.rng()
x = rng.randn(3)
y = rng.randn()
out = jnp.einsum('i,->', x, y, _use_xeinsum=True)
expected = np.einsum('i,->', x, y)
self.assertAllClose(out, expected, check_dtypes=True)
def test_xeinsum_no_named_axes_reduce_and_contract(self):
rng = np.random.RandomState(0)
x = rng.randn(3, 5, 4)
y = rng.randn(2, 4, 2)
out = jnp.einsum('bij,cjk->ik', x, y, _use_xeinsum=True)
expected = np.einsum('bij,cjk->ik', x, y)
tol = 1e-1 if jtu.device_under_test() == "tpu" else None
self.assertAllClose(out, expected, check_dtypes=True, atol=tol, rtol=tol)
def test_xeinsum_named_axes_reduce(self):
rng = np.random.RandomState(0)
x = rng.randn(3, 4)
y = rng.randn(5,)
def check(spec):
out = xmap(partial(jnp.einsum, spec),
in_axes=(['i', 'j'], ['k']),
out_axes=['i', 'k'])(x, y)
expected = np.einsum('ij,k->ik', x, y)
tol = 1e-1 if jtu.device_under_test() == "tpu" else None
self.assertAllClose(out, expected, check_dtypes=True,
atol=tol, rtol=tol)
check('{i,j},{k}->{i,k}')
@jtu.with_mesh([('x', 2), ('y', 2)])
def test_xeinsum_named_axes_reduce_with_mesh(self):
rng = np.random.RandomState(0)
x = rng.randn(6, 4)
y = rng.randn(8,)
def check(spec):
out = xmap(partial(jnp.einsum, spec),
in_axes=(['i', 'j'], ['k']),
out_axes=['i', 'k'],
axis_resources={'i': 'x', 'k': 'y'})(x, y)
expected = np.einsum('ij,k->ik', x, y)
tol = 1e-1 if jtu.device_under_test() == "tpu" else None
self.assertAllClose(out, expected, check_dtypes=True,
atol=tol, rtol=tol)
check('{i,j},{k}->{i,k}')
check('{i,j},{k}->{k,i}') # order of named axes in the spec doesn't matter!
check('{j,i},{k}->{i,k}')
check('{j,i},{k}->{k,i}')
@jtu.with_mesh([('x', 2), ('y', 2)])
def test_xeinsum_named_axes_batch_matmul_with_mesh(self):
rng = np.random.RandomState(0)
x = rng.randn(8, 3, 4)
y = rng.randn(8, 4, 5)
def check(spec):
out = xmap(partial(jnp.einsum, spec),
in_axes=(['b', 'i', 'j'], ['b', 'j', 'k']),
out_axes=['b', 'i', 'k'],
axis_resources={'b': 'x', 'j': 'y'})(x, y)
expected = np.einsum('bij,bjk->bik', x, y)
tol = 1e-1 if jtu.device_under_test() == "tpu" else None
self.assertAllClose(out, expected, check_dtypes=True,
atol=tol, rtol=tol)
check('{b,i,j},{b,j,k}->{b,i,k}')
check('{j,i,b},{j,b,k}->{i,b,k}') # order of named axes in the spec doesn't matter!
@jtu.with_mesh([('x', 2), ('y', 2)])
def test_xeinsum_named_axes_unary_reduce_with_mesh(self):
rng = np.random.RandomState(0)
x = rng.randn(8, 6, 4)
def check(spec):
out = xmap(partial(jnp.einsum, spec),
in_axes=['b', 'i', 'j'],
out_axes=['b'],
axis_resources={'b': 'x', 'i': 'y'})(x)
expected = np.einsum('bij->b', x)
tol = 1e-1 if jtu.device_under_test() == "tpu" else None
self.assertAllClose(out, expected, check_dtypes=True,
atol=tol, rtol=tol)
check('{b,i,j}->{b}')
check('{b,j,i}->{b}') # order of named axes in the spec doesn't matter!
check('{i,j,b}->{b}')
@jtu.with_mesh([('x', 2), ('y', 2)])
def test_xeinsum_mixed_axes_unary_reduce_with_mesh(self):
rng = np.random.RandomState(0)
x = rng.randn(8, 6, 4, 5)
def check(spec):
out = xmap(partial(jnp.einsum, spec),
in_axes=['b', 'i', ...],
out_axes=['b', ...],
axis_resources={'b': 'x', 'i': 'y'})(x)
expected = np.einsum('bijk->bk', x)
tol = 1e-1 if jtu.device_under_test() == "tpu" else None
self.assertAllClose(out, expected, check_dtypes=True,
atol=tol, rtol=tol)
check('jk{i,b}->k{b}')
class XMapErrorTest(jtu.JaxTestCase):
@jtu.with_mesh([('x', 2)])
def testRepeatedAxisResource(self):
def f(v):
return v * 4
with self.assertRaisesRegex(ValueError, r"distinct resources.*specified \('x', 'x'\) for axis a"):
xmap(f, in_axes=['a', ...], out_axes=['a', ...],
axis_resources={'a': ('x', 'x')})
@jtu.with_mesh([('y', 2)])
def testUndefinedAxisResource(self):
error = re.escape(
r"In-scope resources are insufficient to execute the xmapped function. "
r"The missing resources are: {'x'}")
with self.assertRaisesRegex(ValueError, error):
xmap(lambda x: x, in_axes=['a', ...], out_axes=['a', ...],
axis_resources={'a': 'x'})(jnp.zeros((4,)))
@jtu.with_mesh([('x', 2)])
def testNestedDifferentResources(self):
@partial(xmap, in_axes={0: 'a'}, out_axes={0: 'a'}, axis_resources={'a': 'x'})
def f(x):
with maps.Mesh(np.empty((), dtype=np.object_), ()):
@partial(xmap, in_axes={0: 'b'}, out_axes={0: 'b'})
def h(x):
return x
return h(x)
xshape = (2, 5, 6)
x = jnp.arange(np.prod(xshape)).reshape(xshape)
with self.assertRaisesRegex(RuntimeError,
"Changing the physical mesh is not allowed.*"):
f(x)
def testEmptyArgumentTrees(self):
with self.assertRaisesRegex(ValueError, "Failed to infer size of axes: i."):
xmap(lambda x: x, in_axes=['i', ...], out_axes=['i', ...])({})
@jtu.with_mesh([('x', 2), ('y', 2)])
def testAxesNotDivisibleByResources(self):
with self.assertRaisesRegex(ValueError, r"Size of axis i \(5\) is not divisible.*"
r"\(\('x', 'y'\), 4 in total\)"):
xmap(lambda x: x, in_axes=['i', ...], out_axes=['i', ...],
axis_sizes={'i': 5}, axis_resources={'i': ('x', 'y')})({})
def testInconsistentAxisSizes(self):
x5 = jnp.arange(5)
x6 = jnp.arange(6)
error = (r"The size of axis i was previously inferred to be 5, but found an "
r"argument of shape \(6,\) with in_axes specification \['i', ...\]. "
r"Shape mismatch occurs in dimension 0: 6 != 5")
with self.assertRaisesRegex(ValueError, error):
xmap(lambda x, y: x, in_axes=(['i', ...], ['i', ...]), out_axes=['i', ...])(x5, x6)
with self.assertRaisesRegex(ValueError, error):
xmap(lambda x: x, in_axes=['i', ...], out_axes=['i', ...], axis_sizes={'i': 5})(x6)
def testInAxesRankError(self):
error = (r"One of xmap arguments has an in_axes specification of \['i', 'j', ...\], "
r"which implies that it has at least 2 dimensions, but the argument has rank 1")
with self.assertRaisesRegex(ValueError, error):
xmap(lambda x: x, in_axes=['i', 'j', ...], out_axes=['j', 'i', ...])(jnp.ones((5,)))
def testOutAxesRankError(self):
error = (r"One of xmap outputs has an out_axes specification of {1: 'i'}, "
r"which requires the result of the xmapped function to have at least "
r"1 positional dimensions, but it only has 0")
with self.assertRaisesRegex(ValueError, error):
xmap(lambda x: x, in_axes=['i', ...], out_axes={1: 'i'})(jnp.ones((5,)))
def testNegativeAxes(self):
with self.assertRaisesRegex(ValueError, "xmap doesn't support negative axes in in_axes"):
xmap(lambda x: x, in_axes={-1: 'i'}, out_axes={0: 'i'})(jnp.ones((5,)))
with self.assertRaisesRegex(ValueError, "xmap doesn't support negative axes in out_axes"):
xmap(lambda x: x, in_axes={0: 'i'}, out_axes={-1: 'i'})(jnp.ones((5,)))
def testDictOutAxes(self):
# see issue #6410
out = xmap(lambda x: x, in_axes=[...], out_axes={"a": [...]})({"a": 1})
self.assertEqual(out, {"a": 1})
def testListAxesRankAssertion(self):
error = (r"xmap argument has an in_axes specification of \['i', None\], which "
r"asserts that it should be of rank 2, but the argument has rank 1 "
r"\(and shape \(5,\)\)")
with self.assertRaisesRegex(ValueError, error):
xmap(lambda x: x, in_axes=['i', None], out_axes=['i', None])(jnp.ones((5,)))
error = (r"xmap output has an out_axes specification of \['i', None\], which "
r"asserts that it should be of rank 2, but the output has rank 3 "
r"\(and shape \(5, 2, 2\)\)")
with self.assertRaisesRegex(ValueError, error):
xmap(lambda x: x.reshape((2, 2)),
in_axes=['i', None], out_axes=['i', None])(jnp.ones((5, 4)))
def testReturnExtraMappedAxes(self):
fm = xmap(lambda x, y: x + y,
in_axes=(['a', ...], ['b', ...]), out_axes=['a', ...])
x = np.arange(12).reshape((4, 3))
y = np.arange(6).reshape((2, 3))
error = (r"One of xmap results has an out_axes specification of \['a', ...\], but "
r"is actually mapped along more axes defined by this xmap call: b")
with self.assertRaisesRegex(TypeError, error):
fm(x, y)
def testUndefinedOutAxis(self):
error = (r"All axis names appearing in out_axes must also appear in "
r"in_axes or axis_sizes, but the following are missing: {'c'}")
with self.assertRaisesRegex(ValueError, error):
xmap(lambda x, y: x + y,
in_axes=(['a', ...], ['b', ...]), out_axes=['c', ...])
@jtu.with_mesh([('x', 2)])
def testUndefinedAxisInAxisResources(self):
error = (r"All axes that were assigned resources have to appear in in_axes "
r"or axis_sizes, but the following are missing: {'b'}")
with self.assertRaisesRegex(ValueError, error):
xmap(lambda x, y: x + y,
in_axes=(['a', ...], ['a', ...]), out_axes=['a', ...],
axis_resources={'b': 'x'})
@jtu.with_mesh([('x', 2)])
def testResourceConflictArgs(self):
fm = xmap(lambda x: lax.psum(x, ('a', 'b')),
in_axes=['a', 'b'], out_axes=[],
axis_resources={'a': 'x', 'b': 'x'})
x = np.arange(16).reshape(4, 4)
error = (r"Axes `a` and `b` are both mapped to the resource `x`, but they "
r"coincide in the named_shape of an input to an xmapped function "
r"<lambda>")
with self.assertRaisesRegex(JAXTypeError, error):
fm(x)
@jtu.with_mesh([('x', 2)])
def testResourceConflictInner(self):
fm = xmap(lambda x, y: x + y,
in_axes=(['a', ...], ['b', ...]), out_axes=['a', 'b', ...],
axis_resources={'a': 'x', 'b': 'x'})
x = np.arange(12).reshape(4, 3)
y = np.arange(6).reshape(2, 3)
error = (r"Axes `a` and `b` are both mapped to the resource `x`, but they "
r"coincide in the named_shape.*primitive add created at")
with self.assertRaisesRegex(JAXTypeError, error):
fm(x, y)
@jtu.with_mesh([('x', 2)])
def testResourceConflictOut(self):
fm = xmap(lambda x, y: x,
in_axes=(['a', ...], ['b', ...]), out_axes=['a', 'b', ...],
axis_resources={'a': 'x', 'b': 'x'})
x = np.arange(12).reshape(4, 3)
y = np.arange(6).reshape(2, 3)
error = (r"One of xmapped function \(<lambda>\) outputs is broadcast along axis "
r"`b` which is assigned to resources `x`, but the output is already "
r"partitioned along `x`, because its named shape contains `a`")
with self.assertRaisesRegex(JAXTypeError, error):
fm(x, y)
@jtu.with_mesh([('x', 2)])
def testResourceConflictNestArgs(self):
f = xmap(lambda x: x, in_axes=['i'], out_axes=['i'], axis_resources={'i': 'x'})
h = xmap(f, in_axes=['j', ...], out_axes=['j', ...], axis_resources={'j': 'x'})
x = np.arange(16).reshape((4, 4))
error = (r"Axes `i` and `j` are both mapped to the resource `x`, but they "
r"coincide in the named_shape of an input to an xmapped function "
r"<lambda> \(xmap called at .*\)")
with self.assertRaisesRegex(JAXTypeError, error):
h(x)
@jtu.with_mesh([('x', 2)])
def testResourceConflictNestInner(self):
f = xmap(lambda x: lax.axis_index('i') + x,
in_axes=[], out_axes=['i'], axis_sizes={'i': 4}, axis_resources={'i': 'x'})
h = xmap(f, in_axes=['j', ...], out_axes=['j', ...], axis_resources={'j': 'x'})
x = np.arange(4, dtype='int32')
error = (r"Axes `i` and `j` are both mapped to the resource `x`, but they "
r"coincide in the named_shape of a value returned from a primitive "
r"add created at .*")
with self.assertRaisesRegex(JAXTypeError, error):
h(x)
@jtu.with_mesh([('x', 2)])
def testResourceConflictNestOut(self):
f = xmap(lambda x: x,
in_axes=[], out_axes=['i'], axis_sizes={'i': 4}, axis_resources={'i': 'x'})
h = xmap(f, in_axes=['j', ...], out_axes=['j', ...], axis_resources={'j': 'x'})
x = np.arange(4)
error = (r"One of xmapped function \(<lambda>\) outputs is broadcast along "
r"axis `i` which is assigned to resources `x`, but the output is "
r"already partitioned along `x`, because its named shape contains `j`")
with self.assertRaisesRegex(JAXTypeError, error):
h(x)
@serial_loop('l', 2)
def testResourceConflictArgsLoop(self):
fm = xmap(lambda x: x,
in_axes=['a', 'b'], out_axes=['a', 'b'],
axis_resources={'a': 'l', 'b': 'l'})
x = np.arange(16).reshape(4, 4)
error = (r"Axes `a` and `b` are both mapped to the resource `l`, but they "
r"coincide in the named_shape of an input to an xmapped function "
r"<lambda>")
with self.assertRaisesRegex(JAXTypeError, error):
fm(x)
@serial_loop('l', 2)
def testLoopCollectives(self):
fm = xmap(lambda x: lax.psum(x, 'i'),
in_axes=['i'], out_axes=[],
axis_resources={'i': 'l'})
x = np.arange(16)
error = (r"Named axes with loop resources assigned to them cannot be "
r"referenced inside the xmapped computation \(e.g. in "
r"collectives\), but `i` violates that rule")
with self.assertRaisesRegex(RuntimeError, error):
fm(x)
def testAxesMismatch(self):
x = jnp.ones((4,))
p = [['x'], ['x'], ['x']]
xmap(lambda x: x, (p,), p)([x, x, x]) # OK
xmap(lambda x: x, [p], p)([x, x, x]) # OK
error = re.escape(
r"xmap in_axes specification must be a tree prefix of the "
r"corresponding value, got specification (['x'], ['x'], ['x']) for value "
r"tree PyTreeDef((*, *)). Note that xmap in_axes that are "
r"non-trivial pytrees should always be wrapped in a tuple representing "
r"the argument list.")
with self.assertRaisesRegex(ValueError, error):
xmap(lambda x, y: x, p, p)(x, x) # Error, but make sure we hint at tupling
# TODO(apaszke): Disable implicit list casts and enable this
# error = re.escape(
# r"xmap in_axes specification must be a tree prefix of the "
# r"corresponding value, got specification (['x'], ['x'], ['x']) for value "
# r"tree PyTreeDef(([*, *, *],)). Note that xmap in_axes that "
# r"are non-trivial pytrees should always be wrapped in a tuple representing "
# r"the argument list. In particular, you're passing in a single argument "
# r"which means that xmap in_axes might need to be wrapped in a "
# r"singleton tuple.")
# with self.assertRaisesRegex(ValueError, error):
# xmap(lambda x: x, p, p)([x, x, x]) # Error, but make sure we hint at singleton tuple
error = re.escape(
r"xmap out_axes specification must be a tree prefix of the "
r"corresponding value, got specification ([['x'], ['x'], ['x']], ['x']) for "
r"value tree PyTreeDef([*, *, *]).")
with self.assertRaisesRegex(ValueError, error):
xmap(lambda x: x, (p,), (p, ['x']))([x, x, x]) # Error, we raise a generic tree mismatch message
class NamedAutodiffTests(jtu.JaxTestCase):
def testVjpReduceAxes(self):
def f(w, x):
return jnp.sin(jnp.dot(x, w))
def vjp_f(w, x, gy):
_, pullback = jax.vjp(f, w, x)
return pullback(gy)
def vjp_f_reduced(w, x, gy):
_, pullback = jax.vjp(f, w, x, reduce_axes=('batch',))
return pullback(gy)
w = np.arange(12, dtype=np.float32).reshape(3, 4)
x = np.arange(6, dtype=np.float32).reshape(2, 3)
gy = np.arange(8, dtype=np.float32).reshape(2, 4)
# per-example
error = (r"One of xmap results has an out_axes specification of {}, but is "
r"actually mapped along more axes defined by this xmap call: "
r"batch")
with self.assertRaisesRegex(TypeError, error):
xmap(vjp_f,
in_axes=({}, {0: 'batch'}, {0: 'batch'}),
out_axes=({}, {0: 'batch'}))(w, x, gy)
out = xmap(vjp_f,
in_axes=({}, {0: 'batch'}, {0: 'batch'}),
out_axes=({0: 'batch'}, {0: 'batch'}))(w, x, gy)
expected = vmap(vjp_f, in_axes=(None, 0, 0), out_axes=(0, 0))(w, x, gy)
self.assertAllClose(out, expected, check_dtypes=True)
# reduced
out = xmap(vjp_f_reduced,
in_axes=({}, {0: 'batch'}, {0: 'batch'}),
out_axes=({}, {0: 'batch'}))(w, x, gy)
# the reduced VJP is also the VJP when using a positional batch axis
expected = vjp_f(w, x, gy)
self.assertAllClose(out, expected, check_dtypes=True)
def testVjpReduceAxesCollective(self):
# lax.psum has the wrong transpose, so test with a corrected version for now
@functools.partial(jax.custom_vjp, nondiff_argnums=(1,))
def psum_idrev(x, axis_name: Optional[AxisNames] = None):
if axis_name is None:
return x
return jax.lax.psum(x, axis_name)
def psum_idrev_fwd(x, axis_name):
return psum_idrev(x, axis_name), None
def psum_idrev_bwd(axis_name, res, g):
del axis_name, res
return (g,)
psum_idrev.defvjp(psum_idrev_fwd, psum_idrev_bwd)
def f_named(w, x):
return psum_idrev(jnp.sin(jnp.dot(x, w)).sum(), 'batch')
def f_positional(w, x):
return jnp.sin(jnp.dot(x, w)).sum()
w = np.arange(12, dtype=np.float32).reshape(3, 4)
x = np.arange(6, dtype=np.float32).reshape(2, 3)
# forward
out = xmap(f_named, in_axes=({}, {0: 'batch'}), out_axes={})(w, x)
expected = f_positional(w, x)
self.assertAllClose(out, expected, check_dtypes=True)
# gradient
out = xmap(jax.grad(f_named, (0, 1), reduce_axes=('batch',)),
in_axes=({}, {0: 'batch'}),
out_axes=({}, {0: 'batch'}))(w, x)
expected = jax.grad(f_positional, (0, 1))(w, x)
self.assertAllClose(out, expected, check_dtypes=True)
if __name__ == '__main__':
absltest.main(testLoader=jtu.JaxTestLoader())