rocm_jax/jax/linear_util.py
2019-04-10 22:17:54 -07:00

213 lines
6.3 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities for defining linear functions composed with transformations.
"Linear" here is meant in the sense of linear types; that is, a linear function
may be called at most once.
For example:
from jax import linear_util as lu
# A transformation that scales its argument down and its result up.
@lu.transformation
def scale_transformer(scale, x):
ans = yield (x / scale,)
yield x * scale
def f(x):
return x + 1
g = lu.wrap_init(f) # Wraps `f` as a `WrappedFun`.
g = scale_transformer(g, 2.0) # Scale inputs/outputs by 2.0
g = scale_transformer(g, 0.7) # Scale inputs/outputs further by 0.7.
print(g.call_wrapped(3.)) # Call the transformed function.
A `WrappedFun` object represents a function `f`, together with a
sequence of nested transformations that are to be applied to the positional
arguments at call time and function return values at return time.
`WrappedFun` objects explicitly represent the set of transformations so that
they can be used as dictionary keys for memoization. `WrappedFun` objects
compare as equal only if they compute the same function.
Transformations are implemented as generators to save call stack frames.
A transformation's generator takes arguments `gen args + args`, and yields
a tuple of transformed arguments that should be passed to the wrapped
function. The result of the wrapped function is passed back to the generator
using `gen.send()`, and the generator yields the transformed results to pass
back to the caller.
Transformations can also return auxiliary data using the `transform_with_aux`
decorator. For example:
@lu.transformation_with_aux
def scale_transformer_aux(scale, x):
ans = yield (x / scale,)
yield (x * scale, "Auxiliary data: {}".format(x))
g = lu.wrap_init(f) # Wraps `f` as a `WrappedFun`.
g, aux_thunk = scale_transformer_aux(g, 2.0) # Scale inputs/outputs by 2.0
print(g.call_wrapped(3.)) # Call the transformed function.
print(aux_thunk()) # Retrieves the auxiliary data computed during evaluation.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from .util import curry, partial, OrderedDict
def thunk(f):
store = Store()
def f_memoized():
if not store:
# TODO(dougalm): save/restore relevant environment state too
store.store(f())
return store.val
return f_memoized
class StoreException(Exception): pass
class Store(object):
def store(self, val):
assert not self, "Store occupied"
self._val = val
@property
def val(self):
if not self:
raise StoreException("Store empty")
return self._val
def __nonzero__(self):
return hasattr(self, '_val')
__bool__ = __nonzero__
@curry
def staged(f, *init_args):
store = Store()
def f_partial(*rest):
ans, aux = f(*(init_args + rest))
store.store(aux)
return ans
f_partial.__name__ = f.__name__ + "_staged"
return f_partial, thunk(lambda: store.val)
class WrappedFun(object):
"""Represents a function `f` to which `transforms` are to be applied.
Arguments:
f: the function to be transformed.
transforms: a list of `(gen, gen_args, out_store)` tuples representing
transformations to apply to `f.`
params: extra parameters to pass as keyword arguments to `f`.
"""
def __init__(self, f, transforms, params):
self.f = f
self.transforms = transforms
self.params = params
def wrap(self, *transformation):
return WrappedFun(self.f, [transformation] + self.transforms, self.params)
def populate_stores(self, other):
for (_, _, self_store), (_, _, other_store) in zip(self.transforms,
other.transforms):
if self_store is not None:
self_store.store(other_store.val)
def call_wrapped(self, *args, **kwargs):
stack = []
for gen, gen_args, out_store in self.transforms:
gen = gen(*(gen_args + tuple(args)), **kwargs)
args, kwargs = next(gen)
stack.append((gen, out_store))
del gen
ans = self.f(*args, **dict(self.params, **kwargs))
del args
while stack:
gen, out_store = stack.pop()
ans = gen.send(ans)
if out_store is not None:
ans, side = ans
out_store.store(side)
return ans
def __repr__(self):
def transform_to_str(x):
i, (gen, args, _) = x
return "{} : {} {}".format(i, fun_name(gen), fun_name(args))
transformation_stack = map(transform_to_str, enumerate(self.transforms))
return "Wrapped function:\n" + '\n'.join(transformation_stack) + '\nCore: ' + fun_name(self.f) + '\n'
def hashable_payload(self):
return (self.f,
tuple((gen, tuple(gen_args)) for gen, gen_args, _ in self.transforms),
tuple(sorted(self.params.items())))
def __hash__(self):
return hash(self.hashable_payload())
def __eq__(self, other):
return self.hashable_payload() == other.hashable_payload()
@curry
def transformation(gen, fun, *transformation_args):
return fun.wrap(gen, transformation_args, None)
@curry
def transformation_with_aux(gen, fun, *transformation_args):
out_store = Store()
out_thunk = lambda: out_store.val
return fun.wrap(gen, transformation_args, out_store), out_thunk
def fun_name(f):
try:
return f.__name__
except:
return str(f)
def wrap_init(f, params={}):
"""Wraps function `f` as a `WrappedFun`, suitable for transformation."""
return WrappedFun(f, [], params)
def memoize(call, max_size=4096):
cache = OrderedDict()
def memoized_fun(f, *args):
key = (f, args)
if key in cache:
ans, f_prev = cache[key]
cache.move_to_end(key)
f.populate_stores(f_prev)
else:
if len(cache) > max_size:
cache.popitem(last=False)
ans = call(f, *args)
cache[key] = (ans, f)
return ans
return memoized_fun