mirror of
https://github.com/ROCm/jax.git
synced 2025-04-24 14:36:07 +00:00
213 lines
6.3 KiB
Python
213 lines
6.3 KiB
Python
# Copyright 2018 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Utilities for defining linear functions composed with transformations.
|
|
|
|
"Linear" here is meant in the sense of linear types; that is, a linear function
|
|
may be called at most once.
|
|
|
|
For example:
|
|
|
|
from jax import linear_util as lu
|
|
|
|
# A transformation that scales its argument down and its result up.
|
|
@lu.transformation
|
|
def scale_transformer(scale, x):
|
|
ans = yield (x / scale,)
|
|
yield x * scale
|
|
|
|
def f(x):
|
|
return x + 1
|
|
|
|
g = lu.wrap_init(f) # Wraps `f` as a `WrappedFun`.
|
|
g = scale_transformer(g, 2.0) # Scale inputs/outputs by 2.0
|
|
g = scale_transformer(g, 0.7) # Scale inputs/outputs further by 0.7.
|
|
print(g.call_wrapped(3.)) # Call the transformed function.
|
|
|
|
|
|
A `WrappedFun` object represents a function `f`, together with a
|
|
sequence of nested transformations that are to be applied to the positional
|
|
arguments at call time and function return values at return time.
|
|
`WrappedFun` objects explicitly represent the set of transformations so that
|
|
they can be used as dictionary keys for memoization. `WrappedFun` objects
|
|
compare as equal only if they compute the same function.
|
|
|
|
Transformations are implemented as generators to save call stack frames.
|
|
A transformation's generator takes arguments `gen args + args`, and yields
|
|
a tuple of transformed arguments that should be passed to the wrapped
|
|
function. The result of the wrapped function is passed back to the generator
|
|
using `gen.send()`, and the generator yields the transformed results to pass
|
|
back to the caller.
|
|
|
|
Transformations can also return auxiliary data using the `transform_with_aux`
|
|
decorator. For example:
|
|
|
|
@lu.transformation_with_aux
|
|
def scale_transformer_aux(scale, x):
|
|
ans = yield (x / scale,)
|
|
yield (x * scale, "Auxiliary data: {}".format(x))
|
|
|
|
g = lu.wrap_init(f) # Wraps `f` as a `WrappedFun`.
|
|
g, aux_thunk = scale_transformer_aux(g, 2.0) # Scale inputs/outputs by 2.0
|
|
print(g.call_wrapped(3.)) # Call the transformed function.
|
|
print(aux_thunk()) # Retrieves the auxiliary data computed during evaluation.
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from .util import curry, partial, OrderedDict
|
|
|
|
|
|
def thunk(f):
|
|
store = Store()
|
|
def f_memoized():
|
|
if not store:
|
|
# TODO(dougalm): save/restore relevant environment state too
|
|
store.store(f())
|
|
return store.val
|
|
|
|
return f_memoized
|
|
|
|
class StoreException(Exception): pass
|
|
|
|
class Store(object):
|
|
def store(self, val):
|
|
assert not self, "Store occupied"
|
|
self._val = val
|
|
|
|
@property
|
|
def val(self):
|
|
if not self:
|
|
raise StoreException("Store empty")
|
|
return self._val
|
|
|
|
def __nonzero__(self):
|
|
return hasattr(self, '_val')
|
|
|
|
__bool__ = __nonzero__
|
|
|
|
|
|
@curry
|
|
def staged(f, *init_args):
|
|
store = Store()
|
|
def f_partial(*rest):
|
|
ans, aux = f(*(init_args + rest))
|
|
store.store(aux)
|
|
return ans
|
|
|
|
f_partial.__name__ = f.__name__ + "_staged"
|
|
return f_partial, thunk(lambda: store.val)
|
|
|
|
|
|
class WrappedFun(object):
|
|
"""Represents a function `f` to which `transforms` are to be applied.
|
|
|
|
Arguments:
|
|
f: the function to be transformed.
|
|
transforms: a list of `(gen, gen_args, out_store)` tuples representing
|
|
transformations to apply to `f.`
|
|
params: extra parameters to pass as keyword arguments to `f`.
|
|
"""
|
|
def __init__(self, f, transforms, params):
|
|
self.f = f
|
|
self.transforms = transforms
|
|
self.params = params
|
|
|
|
def wrap(self, *transformation):
|
|
return WrappedFun(self.f, [transformation] + self.transforms, self.params)
|
|
|
|
def populate_stores(self, other):
|
|
for (_, _, self_store), (_, _, other_store) in zip(self.transforms,
|
|
other.transforms):
|
|
if self_store is not None:
|
|
self_store.store(other_store.val)
|
|
|
|
def call_wrapped(self, *args, **kwargs):
|
|
stack = []
|
|
for gen, gen_args, out_store in self.transforms:
|
|
gen = gen(*(gen_args + tuple(args)), **kwargs)
|
|
args, kwargs = next(gen)
|
|
stack.append((gen, out_store))
|
|
|
|
del gen
|
|
ans = self.f(*args, **dict(self.params, **kwargs))
|
|
del args
|
|
while stack:
|
|
gen, out_store = stack.pop()
|
|
ans = gen.send(ans)
|
|
if out_store is not None:
|
|
ans, side = ans
|
|
out_store.store(side)
|
|
|
|
return ans
|
|
|
|
def __repr__(self):
|
|
def transform_to_str(x):
|
|
i, (gen, args, _) = x
|
|
return "{} : {} {}".format(i, fun_name(gen), fun_name(args))
|
|
transformation_stack = map(transform_to_str, enumerate(self.transforms))
|
|
return "Wrapped function:\n" + '\n'.join(transformation_stack) + '\nCore: ' + fun_name(self.f) + '\n'
|
|
|
|
def hashable_payload(self):
|
|
return (self.f,
|
|
tuple((gen, tuple(gen_args)) for gen, gen_args, _ in self.transforms),
|
|
tuple(sorted(self.params.items())))
|
|
|
|
def __hash__(self):
|
|
return hash(self.hashable_payload())
|
|
|
|
def __eq__(self, other):
|
|
return self.hashable_payload() == other.hashable_payload()
|
|
|
|
@curry
|
|
def transformation(gen, fun, *transformation_args):
|
|
return fun.wrap(gen, transformation_args, None)
|
|
|
|
@curry
|
|
def transformation_with_aux(gen, fun, *transformation_args):
|
|
out_store = Store()
|
|
out_thunk = lambda: out_store.val
|
|
return fun.wrap(gen, transformation_args, out_store), out_thunk
|
|
|
|
def fun_name(f):
|
|
try:
|
|
return f.__name__
|
|
except:
|
|
return str(f)
|
|
|
|
def wrap_init(f, params={}):
|
|
"""Wraps function `f` as a `WrappedFun`, suitable for transformation."""
|
|
return WrappedFun(f, [], params)
|
|
|
|
|
|
def memoize(call, max_size=4096):
|
|
cache = OrderedDict()
|
|
def memoized_fun(f, *args):
|
|
key = (f, args)
|
|
if key in cache:
|
|
ans, f_prev = cache[key]
|
|
cache.move_to_end(key)
|
|
f.populate_stores(f_prev)
|
|
else:
|
|
if len(cache) > max_size:
|
|
cache.popitem(last=False)
|
|
ans = call(f, *args)
|
|
cache[key] = (ans, f)
|
|
return ans
|
|
|
|
return memoized_fun
|