rocm_jax/jax/experimental/shard_map.py
2023-03-28 13:09:56 -07:00

967 lines
42 KiB
Python

# Copyright 2023 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import enum
from functools import partial, lru_cache
import inspect
import itertools as it
import math
import operator as op
from typing import (Any, Callable, Dict, Hashable, List, Optional, Sequence,
Set, Tuple, TypeVar, Union, Protocol)
import numpy as np
import jax
from jax.sharding import NamedSharding, PartitionSpec, Mesh
from jax._src import core
from jax._src import ad_util
from jax._src import custom_derivatives
from jax._src import debugging
from jax._src import linear_util as lu
from jax._src import ops
from jax._src import pjit
from jax._src import source_info_util
from jax._src import traceback_util
from jax._src import util
from jax._src.core import Tracer
from jax._src.lax import (lax, parallel as lax_parallel, slicing,
windowed_reductions, fft, linalg)
from jax._src.util import (HashableFunction, HashablePartial, unzip2,
as_hashable_function, memoize, partition_list,
merge_lists)
from jax.api_util import flatten_fun_nokwargs, shaped_abstractify
from jax._src.interpreters import batching
from jax._src.interpreters import mlir
from jax._src.interpreters import partial_eval as pe
from jax._src.interpreters import xla
from jax._src.interpreters import pxla
from jax.interpreters import ad
from jax.tree_util import (tree_map, tree_flatten, tree_unflatten,
tree_structure, tree_leaves, keystr)
from jax._src.tree_util import (broadcast_prefix, prefix_errors, PyTreeDef,
generate_key_paths, KeyPath)
P = PartitionSpec
map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip
traceback_util.register_exclusion(__file__)
# API
Specs = Any # PyTree[PartitionSpec]
@traceback_util.api_boundary
def shard_map(f: Callable, mesh: Mesh, in_specs: Specs, out_specs: Specs,
check_rep: bool = True):
if not callable(f):
raise TypeError("shard_map requires a callable for its first argument, "
f"but got {f} of type {type(f)}.")
if not isinstance(mesh, Mesh):
raise TypeError("shard_map requires a `jax.sharding.Mesh` instance for its "
f"second argument, but got {mesh} of type {type(mesh)}.")
_check_specs(SpecErrorType.input, in_specs)
_check_specs(SpecErrorType.out, out_specs)
@traceback_util.api_boundary
def wrapped(*args):
fun = lu.wrap_init(f)
args_flat, in_tree = tree_flatten(args)
try: in_specs_flat = broadcast_prefix(in_specs, args)
except ValueError:
e, *_ = prefix_errors(in_specs, args)
raise e('shard_map in_specs') from None
_check_specs_vs_args(f, mesh, in_tree, in_specs, in_specs_flat, args_flat)
in_names_flat = tuple(map(_canonicalize_spec, in_specs_flat))
flat_fun, out_tree = flatten_fun_nokwargs(fun, in_tree)
@memoize
def out_names_thunk():
dummy = tree_unflatten(out_tree(), [object()] * out_tree().num_leaves)
try: out_specs_flat = broadcast_prefix(out_specs, dummy)
except ValueError:
e, *_ = prefix_errors(out_specs, dummy)
raise e('shard_map out_specs') from None
return tuple(map(_canonicalize_spec, out_specs_flat))
try:
out_flat = shard_map_p.bind(
flat_fun, *args_flat, mesh=mesh, in_names=in_names_flat,
out_names_thunk=out_names_thunk, check_rep=check_rep)
except _SpecError as e:
fails, = e.args
msg = _spec_rank_error(SpecErrorType.out, f, out_tree(), out_specs, fails)
if any(fail is not no_fail and not fail.shape for fail in fails):
msg += (" In particular, for rank 0 outputs which are not constant "
"over the mesh, add at least one (singleton) axis to them so "
"that they can be concatenated using out_specs.")
raise ValueError(msg) from None
except _RepError as e:
fails, = e.args
msg = _rep_error(f, mesh, out_tree(), out_specs, fails)
raise ValueError(msg) from None
return tree_unflatten(out_tree(), out_flat)
return wrapped
# Internally use AxisNames = Dict[int, Tuple[AxisName, ...]], not PartitionSpecs
AxisName = Hashable
AxisNames = Dict[int, Tuple[AxisName, ...]] # TODO(mattjj): make it hashable
def _canonicalize_spec(spec: PartitionSpec) -> AxisNames:
if isinstance(spec, PartitionSpec):
return {i: names if isinstance(names, tuple) else (names,)
for i, names in enumerate(spec) if names is not None}
else:
return spec
# Error checking and messages
SpecErrorType = enum.Enum('SpecErrorType', ['input', 'out'])
def _check_specs(error_type: SpecErrorType, specs: Any) -> None:
if all(isinstance(p, PartitionSpec) for p in tree_leaves(specs)): return
prefix = 'in' if error_type == SpecErrorType.input else 'out'
msgs = [f" {prefix}_specs{keystr(key)} is {x} of type {type(x).__name__}, "
for key, x in generate_key_paths(specs) if not isinstance(x, P)]
raise TypeError(
f"shard_map {prefix}_specs argument must be a pytree of "
f"`jax.sharding.PartitionSpec` instances, but:\n\n"
+ '\n\n'.join(msgs) + '\n\n'
f"Check the {prefix}_specs values passed to shard_map.")
class NoFail: pass
no_fail = NoFail()
def _check_specs_vs_args(
f: Callable, mesh: Mesh, in_tree: PyTreeDef, in_specs: Specs,
in_specs_flat: List[P], xs: List) -> None:
in_avals = map(shaped_abstractify, xs)
fail = [a if not len(p) <= a.ndim else no_fail
for p, a in zip(in_specs_flat, in_avals)]
if any(f is not no_fail for f in fail):
msg = _spec_rank_error(SpecErrorType.input, f, in_tree, in_specs, fail)
raise ValueError(msg)
in_names_flat = tuple(map(_canonicalize_spec, in_specs_flat))
fail = [a if any(a.shape[d] % math.prod(mesh.shape[n] for n in ns)
for d, ns in names.items()) else no_fail
for a, names in zip(in_avals, in_names_flat)]
if any(f is not no_fail for f in fail):
msg = _spec_divisibility_error(f, mesh, in_tree, in_specs, fail)
raise ValueError(msg)
def _spec_rank_error(
error_type: SpecErrorType, f: Callable, tree: PyTreeDef, specs: Specs,
fails: List[Union[core.ShapedArray, NoFail]]) -> str:
if error_type == SpecErrorType.input:
prefix, base = 'in', 'args'
ba = _try_infer_args(f, tree)
else:
prefix, base = 'out', f'{f.__name__}(*args)'
msgs = []
for (spec_key, spec), (fail_key, aval) in _iter_paths(tree, specs, fails):
if error_type == SpecErrorType.input and ba is not None:
arg_key, *_ = fail_key
extra = (f", where {base}[{arg_key}] is bound to {f.__name__}'s "
f"parameter '{list(ba.arguments.keys())[arg_key.idx]}',")
else:
extra = ""
msgs.append(
f"{prefix}_specs{keystr(spec_key)} is {spec} which has length "
f"{len(spec)}, but "
f"{base}{keystr(fail_key)}{extra} has shape {aval.str_short()}, "
f"which has rank {aval.ndim} (and {aval.ndim} < {len(spec)})")
assert msgs
msg = (f"shard_map applied to the function '{f.__name__}' was given an "
f"{prefix}_specs entry which is too long to be compatible with the "
f"corresponding {prefix}put value from the function:\n\n"
+ '\n\n'.join(msgs) + '\n\n' +
f"Entries in {prefix}_specs must be of length no greater than the "
f"number of axes in the corresponding {prefix}put value.\n\n"
f"Either revise the spec to be shorter, or modify '{f.__name__}' so "
f"that its {prefix}puts have sufficient rank.")
return msg
def _spec_divisibility_error(
f: Callable, mesh: Mesh, tree: PyTreeDef, specs: Specs,
fails: List[Union[core.ShapedArray, NoFail]]) -> str:
ba = _try_infer_args(f, tree)
msgs = []
for (spec_key, spec), (fail_key, aval) in _iter_paths(tree, specs, fails):
if ba is not None:
arg_key, *_ = fail_key
extra = (f", where args[{arg_key}] is bound to {f.__name__}'s "
f"parameter '{list(ba.arguments.keys())[arg_key.idx]}',")
names = _canonicalize_spec(spec)
for d, ns in names.items():
if aval.shape[d] % math.prod(mesh.shape[n] for n in ns):
axis = f"axes {ns}" if len(ns) > 1 else f"axis '{ns[0]}'"
total = 'total ' if len(ns) > 1 else ''
sz = math.prod(mesh.shape[n] for n in ns)
msgs.append(
f"args{keystr(fail_key)} of shape {aval.str_short()}{extra} "
f"corresponds to in_specs{keystr(spec_key)} of value {spec}, "
f"which maps array axis {d} (of size {aval.shape[d]}) to mesh "
f"{axis} (of {total}size {sz}), but {sz} does not evenly divide "
f"{aval.shape[d]}")
assert msgs
msg = (f"shard_map applied to the function '{f.__name__}' was given argument "
f"arrays with axis sizes that are not evenly divisible by the "
f"corresponding mesh axis sizes:\n\n"
f"The mesh given has shape {mesh.device_ids.shape} with corresponding "
f"axis names {mesh.axis_names}.\n\n"
+ '\n\n'.join(msgs) + '\n\n' +
f"Array arguments' axis sizes must be evenly divisible by the mesh "
f"axis or axes indicated by the corresponding elements of the "
f"argument's in_specs entry. Consider checking that in_specs are "
f"correct, and if so consider changing the mesh axis sizes or else "
f"padding the input and adapting '{f.__name__}' appropriately.")
return msg
def _rep_error(f: Callable, mesh: Mesh, tree: PyTreeDef, specs: Specs,
fails: List[Union[Set, NoFail]]) -> str:
msgs = []
for (spec_key, spec), (fail_key, rep) in _iter_paths(tree, specs, fails):
dst = _canonicalize_spec(spec)
unmentioned = _unmentioned(mesh, dst)
if len(unmentioned) > 1:
need_rep = ','.join(map(str, unmentioned))
got_rep = ','.join(map(str, rep))
diff = ','.join(map(str, unmentioned - rep))
msgs.append(
f"out_specs{keystr(spec_key)} is {spec} which implies that the "
f"corresponding output value is replicated across mesh axes "
f"{{{need_rep}}}, but could only infer replication over {{{got_rep}}}, "
f"which is missing the required axes {diff}")
else:
need_rep_, = unmentioned
msgs.append(
f"out_specs{keystr(spec_key)} is {spec} which implies that the "
f"corresponding output value is replicated across mesh axis "
f"'{need_rep_}', but could not infer replication over any axes")
assert msgs
msg = (f"shard_map applied to the function '{f.__name__}' was given "
f"out_specs which require replication which can't be statically "
f"inferred given the mesh:\n\n"
f"The mesh given has shape {mesh.device_ids.shape} with corresponding "
f"axis names {mesh.axis_names}.\n\n"
+ '\n\n'.join(msgs) + '\n\n' +
"Check if these output values are meant to be replicated over those "
"mesh axes. If not, consider revising the corresponding out_specs "
"entries. If so, consider disabling the check by passing the "
"check_rep=False argument to shard_map.")
return msg
def _unmentioned(mesh: Mesh, names: AxisNames) -> Set[AxisName]:
return set(mesh.axis_names) - {n for ns in names.values() for n in ns}
def _try_infer_args(f, tree):
dummy_args = tree_unflatten(tree, [False] * tree.num_leaves)
try:
return inspect.signature(f).bind(*dummy_args)
except (TypeError, ValueError):
return None
T = TypeVar('T')
def _iter_paths(tree: PyTreeDef, specs: Specs, fails: List[Union[T, NoFail]]
) -> List[Tuple[Tuple[KeyPath, P], Tuple[KeyPath, T]]]:
failures = tree_unflatten(tree, fails)
failures_aug = generate_key_paths(failures)
specs_ = tree_unflatten(tree_structure(specs), generate_key_paths(specs))
leaf = lambda x: type(x) is tuple and len(x) == 2 and type(x[1]) is P
specs_aug = broadcast_prefix(specs_, failures, is_leaf=leaf)
return [((spec_key, spec), (fail_key, fail_data))
for (spec_key, spec), (fail_key, fail_data)
in zip(specs_aug, failures_aug) if fail_data is not no_fail]
# Primitive
JaxType = Any
MaybeTracer = Union[JaxType, Tracer]
class ShardMapPrimitive(core.Primitive):
multiple_results = True
def bind(self, fun: lu.WrappedFun, *args: MaybeTracer, mesh: Mesh,
in_names: Tuple[AxisNames, ...],
out_names_thunk: Callable[[], Tuple[AxisNames, ...]],
check_rep: bool) -> Sequence[MaybeTracer]:
top_trace = core.find_top_trace(args)
fun, env_todo = process_env_traces(fun, top_trace.level, mesh,
in_names, out_names_thunk, check_rep)
@as_hashable_function(closure=out_names_thunk)
def new_out_names_thunk():
out_names = out_names_thunk()
_, xforms = env_todo()
for t in xforms:
out_names = t(out_names)
return out_names
tracers = map(top_trace.full_raise, args)
outs = top_trace.process_shard_map( # pytype: disable=attribute-error
shard_map_p, fun, tracers, mesh=mesh, in_names=in_names,
out_names_thunk=new_out_names_thunk, check_rep=check_rep)
todos, _ = env_todo()
return map(core.full_lower, core.apply_todos(todos, outs))
def get_bind_params(self, params):
new_params = dict(params)
jaxpr = new_params.pop('jaxpr')
subfun = lu.hashable_partial(lu.wrap_init(core.eval_jaxpr), jaxpr, ())
axes = new_params.pop('out_names')
new_params['out_names_thunk'] = HashableFunction(lambda: axes, closure=axes)
return [subfun], new_params
shard_map_p = ShardMapPrimitive('shard_map')
@lu.transformation_with_aux
def process_env_traces(level: int, mesh, in_names, out_names_thunk, check_rep,
*args: Any):
outs = yield args, {}
todos, out_names_transforms = [], []
while True:
tracers = [x for x in outs if isinstance(x, core.Tracer)
and (level is None or x._trace.level > level)]
if tracers:
ans = max(tracers, key=op.attrgetter('_trace.level'))
else:
break
trace = ans._trace.main.with_cur_sublevel()
outs = map(trace.full_raise, outs)
outs, (todo, xform) = trace.post_process_shard_map(
outs, mesh, in_names, out_names_thunk, check_rep)
todos.append(todo)
out_names_transforms.append(xform)
yield outs, (tuple(todos), tuple(out_names_transforms))
# Staging
def _shard_map_staging(
trace: pe.DynamicJaxprTrace, prim: core.Primitive, fun: lu.WrappedFun,
in_tracers: Sequence[pe.DynamicJaxprTracer], *, mesh: Mesh,
in_names: Tuple[AxisNames, ...],
out_names_thunk: Callable[[], Tuple[AxisNames, ...]],
check_rep: bool,
) -> Sequence[pe.DynamicJaxprTracer]:
in_avals = [t.aval for t in in_tracers]
in_avals_ = map(partial(_shard_aval, mesh), in_names, in_avals)
with core.new_sublevel(), core.extend_axis_env_nd(mesh.shape.items()):
jaxpr, out_avals_, consts = pe.trace_to_subjaxpr_dynamic(
fun, trace.main, in_avals_)
_check_names(out_names_thunk(), out_avals_)
if check_rep:
in_rep = map(partial(_in_names_to_rep, mesh), in_names)
out_rep = _output_rep(mesh, jaxpr, in_rep)
_check_reps(mesh, out_names_thunk(), out_rep)
out_avals = map(partial(_unshard_aval, mesh), out_names_thunk(), out_avals_)
source_info = source_info_util.current()
out_tracers = [pe.DynamicJaxprTracer(trace, a, source_info) for a in out_avals]
invars = map(trace.getvar, in_tracers)
constvars = map(trace.getvar, map(trace.instantiate_const, consts))
outvars = map(trace.makevar, out_tracers)
in_names_staged = ({},) * len(consts) + tuple(in_names) # type: ignore
with core.extend_axis_env_nd(mesh.shape.items()):
jaxpr = pe.convert_constvars_jaxpr(jaxpr)
params = dict(mesh=mesh, in_names=in_names_staged,
out_names=tuple(out_names_thunk()), jaxpr=jaxpr,
check_rep=check_rep)
eqn = pe.new_jaxpr_eqn([*constvars, *invars], outvars, prim, params,
jaxpr.effects, source_info)
trace.frame.add_eqn(eqn)
return out_tracers
pe.DynamicJaxprTrace.process_shard_map = _shard_map_staging
def _shard_aval(mesh: Mesh, names: AxisNames, aval: core.AbstractValue
) -> core.AbstractValue:
if isinstance(aval, core.ShapedArray):
return aval.update(tuple(sz // math.prod(mesh.shape[n] for n in names.get(i, ()))
for i, sz in enumerate(aval.shape)))
else:
raise NotImplementedError # TODO(mattjj): add table with handlers
def _unshard_aval(mesh: Mesh, names: AxisNames, aval: core.AbstractValue
) -> core.AbstractValue:
if isinstance(aval, core.ShapedArray):
return aval.update(tuple(sz * math.prod(mesh.shape[n] for n in names.get(i, ()))
for i, sz in enumerate(aval.shape)),
named_shape={k: v for k, v in aval.named_shape.items()
if k not in mesh.shape})
else:
raise NotImplementedError # TODO(mattjj): add table with handlers
# Type-checking
def _shard_map_typecheck(_, *in_atoms, jaxpr, mesh, in_names, out_names,
check_rep):
for v, x, in_name in zip(jaxpr.invars, in_atoms, in_names):
if not core.typecompat(v.aval, _shard_aval(mesh, in_name, x.aval)):
raise core.JaxprTypeError("shard_map argument avals not compatible with "
"jaxpr binder avals and in_names")
with core.extend_axis_env_nd(tuple(mesh.shape.items())):
core.check_jaxpr(jaxpr)
if check_rep:
in_rep = map(partial(_in_names_to_rep, mesh), in_names)
out_rep = _output_rep(mesh, jaxpr, in_rep)
for rep, dst in zip(out_rep, out_names):
if not _valid_repeats(mesh, rep, dst):
raise core.JaxprTypeError("shard_map can't prove output is sufficiently "
"replicated")
out_avals_sharded = [x.aval for x in jaxpr.outvars]
out_avals = map(partial(_unshard_aval, mesh), out_names, out_avals_sharded)
return out_avals, jaxpr.effects
core.custom_typechecks[shard_map_p] = _shard_map_typecheck
def _in_names_to_rep(mesh: Mesh, names: AxisNames) -> Set[AxisName]:
return set(mesh.axis_names) - set(n for ns in names.values() for n in ns)
def _output_rep(mesh: Mesh, jaxpr: core.Jaxpr, in_rep: Sequence[Set[AxisName]],
) -> Sequence[Set[AxisName]]:
env: Dict[core.Var, Set[AxisName]] = {}
def read(x: core.Atom) -> Set[AxisName]:
return env[x] if type(x) is core.Var else set(mesh.axis_names)
def write(v: core.Var, val: Set[AxisName]) -> None:
env[v] = val
map(write, jaxpr.constvars, [set(mesh.axis_names)] * len(jaxpr.constvars))
map(write, jaxpr.invars, in_rep)
for e in jaxpr.eqns:
rule = _rep_rules.get(e.primitive, partial(_rep_rule, e.primitive))
out_rep = rule(mesh, *map(read, e.invars), **e.params)
if e.primitive.multiple_results:
out_rep = [out_rep] * len(e.outvars) if type(out_rep) is set else out_rep
map(write, e.outvars, out_rep)
else:
write(e.outvars[0], out_rep)
return map(read, jaxpr.outvars)
def _valid_repeats(mesh: Mesh, rep: Set[AxisName], dst: AxisNames) -> bool:
return _unmentioned(mesh, dst).issubset(rep)
# Lowering
def _shard_map_lowering(ctx, *in_nodes, jaxpr, mesh, in_names, out_names,
check_rep):
del check_rep
sharded_avals = [v.aval for v in jaxpr.invars]
in_nodes_ = map(partial(_xla_shard, mesh), in_names, ctx.avals_in,
sharded_avals, in_nodes)
new_axis_context = mlir.SPMDAxisContext(mesh, frozenset(mesh.axis_names))
sub_ctx = ctx.module_context.replace(axis_context=new_axis_context)
with core.extend_axis_env_nd(tuple(mesh.shape.items())):
out_nodes_, _ = mlir.jaxpr_subcomp(sub_ctx, jaxpr, mlir.TokenSet(),
(), *in_nodes_,
dim_var_values=ctx.dim_var_values)
sharded_avals = [v.aval for v in jaxpr.outvars]
return map(partial(_xla_unshard, mesh), out_names, sharded_avals,
ctx.avals_out, out_nodes_)
mlir.register_lowering(shard_map_p, _shard_map_lowering)
def _xla_shard(mesh, names, aval_in, aval_out, x):
manual_proto = pxla.manual_proto(aval_in, frozenset(mesh.axis_names), mesh)
result_type, = mlir.aval_to_ir_types(aval_out)
axes = {name: i for i, ns in names.items() for name in ns}
sharding_proto = pxla.new_mesh_sharding_specs(mesh.shape, mesh.axis_names)(
aval_in.ndim, axes).sharding_proto()
sx = mlir.wrap_with_sharding_op(x, sharding_proto, unspecified_dims=set())
return [mlir.wrap_with_full_to_shard_op(result_type, sx, manual_proto, set())]
def _xla_unshard(mesh, names, aval_in, aval_out, xs):
x, = xs
manual_proto = pxla.manual_proto(aval_in, frozenset(mesh.axis_names), mesh)
result_type, = mlir.aval_to_ir_types(aval_out)
sx = mlir.wrap_with_sharding_op(x, manual_proto, unspecified_dims=set())
axes = {name: i for i, ns in names.items() for name in ns}
sharding_proto = pxla.new_mesh_sharding_specs(mesh.shape, mesh.axis_names)(
aval_out.ndim, axes).sharding_proto()
return mlir.wrap_with_shard_to_full_op(result_type, sx, sharding_proto, set())
# Eager evaluation
def _shard_map_impl(trace, prim, fun, args, *, mesh, in_names, out_names_thunk,
check_rep):
del prim
args = map(partial(_unmatch_spec, mesh), in_names, args)
in_rep = map(partial(_in_names_to_rep, mesh), in_names)
with core.new_base_main(ShardMapTrace, mesh=mesh, check=check_rep) as main:
with core.new_sublevel(), core.extend_axis_env_nd(mesh.shape.items()):
t = main.with_cur_sublevel()
in_tracers = map(partial(ShardMapTracer, t), in_rep, args)
ans = fun.call_wrapped(*in_tracers)
out_tracers = map(t.full_raise, ans)
outs_, out_rep = unzip2((t.val, t.rep) for t in out_tracers)
del main, t, in_tracers, ans, out_tracers
out_avals = [core.mapped_aval(x.shape[0], 0, core.get_aval(x)) for x in outs_]
_check_names(out_names_thunk(), out_avals) # pytype: disable=wrong-arg-types
if check_rep: _check_reps(mesh, out_names_thunk(), out_rep)
return map(partial(_match_spec, mesh), out_rep, out_names_thunk(), outs_)
core.EvalTrace.process_shard_map = _shard_map_impl
def _names_to_pspec(names: AxisNames) -> PartitionSpec:
ndmin = max(names) + 1 if names else 0
return PartitionSpec(*(names.get(i) for i in range(ndmin)))
def _unmatch_spec(mesh: Mesh, src: AxisNames, x: JaxType) -> JaxType:
with core.eval_context():
return jax.jit(HashablePartial(_unmatch, mesh, tuple(src.items())))(x)
def _unmatch(mesh, src_tup, x):
src = _names_to_pspec(dict(src_tup))
dst = P(mesh.axis_names)
return shard_map(_add_singleton, mesh, (src,), dst)(x)
def _check_names(names: Sequence[AxisNames], avals: Sequence[core.ShapedArray]
) -> None:
fail = [a if n and not max(n) < a.ndim else no_fail
for n, a in zip(names, avals)]
if any(f is not no_fail for f in fail): raise _SpecError(fail)
class _SpecError(Exception): pass
def _check_reps(mesh, names, reps):
fail = [r if not _valid_repeats(mesh, r, n) else no_fail
for n, r in zip(names, reps)]
if any(f is not no_fail for f in fail): raise _RepError(fail)
class _RepError(Exception): pass
def _match_spec(mesh: Mesh, rep: Set[AxisName], dst: AxisNames, x: JaxType
) -> JaxType:
with core.eval_context():
return jax.jit(HashablePartial(_match, mesh, tuple(dst.items())))(x)
def _match(mesh, dst_tup, x):
src = P(mesh.axis_names)
dst = _names_to_pspec(dict(dst_tup))
return shard_map(_rem_singleton, mesh, (src,), dst, check_rep=False)(x)
def _rem_singleton(x): return x.reshape(x.shape[1:])
def _add_singleton(x): return x.reshape(1, *x.shape)
class ShardMapTrace(core.Trace):
mesh: Mesh
check: bool
def __init__(self, *args, mesh, check):
super().__init__(*args)
self.mesh = mesh
self.check = check
def pure(self, val):
val_ = _unmatch_spec(self.mesh, {}, val)
return ShardMapTracer(self, set(self.mesh.axis_names), val_)
def sublift(self, tracer):
return ShardMapTracer(self, tracer.rep, tracer.val)
def process_primitive(self, prim, tracers, params):
in_vals, in_rep = unzip2((t.val, t.rep) for t in tracers)
eager_rule = eager_rules.get(prim)
if eager_rule:
out_vals = eager_rule(self.mesh, *in_vals, **params)
else:
f = HashablePartial(_prim_applier, prim, tuple(params.items()), self.mesh)
with core.eval_context(), jax.disable_jit(False):
out_vals = jax.jit(f)(*in_vals)
rep_rule = _rep_rules.get(prim, partial(_rep_rule, prim))
out_rep = rep_rule(self.mesh, *in_rep, **params) if self.check else set()
if prim.multiple_results:
out_rep = [out_rep] * len(out_vals) if type(out_rep) is set else out_rep
return map(partial(ShardMapTracer, self), out_rep, out_vals)
return ShardMapTracer(self, out_rep, out_vals)
def process_call(self, call_primitive, fun, tracers, params):
raise NotImplementedError
class ShardMapTracer(core.Tracer):
rep: Set[AxisName]
val: JaxType
def __init__(self, trace, rep, val):
self._trace = trace
self.rep = rep
self.val = val
@property
def aval(self):
aval = core.get_aval(self.val)
if (isinstance(aval, core.ConcreteArray) and
self.rep == set(self._trace.mesh.axis_names)):
with core.eval_context():
return core.get_aval(self.val[0])
else:
aval = core.raise_to_shaped(aval)
return core.mapped_aval(self._trace.mesh.size, 0, aval)
def full_lower(self) -> ShardMapTracer:
return self
def __str__(self) -> str:
with core.eval_context():
blocks = list(self.val)
mesh = self._trace.mesh
axis_names = f"({', '.join(map(str, mesh.axis_names))},)"
return '\n'.join(
f"On {device} at mesh coordinates {axis_names} = {idx}:\n{block}\n"
for (idx, device), block in zip(np.ndenumerate(mesh.devices), blocks))
def _prim_applier(prim, params_tup, mesh, *args):
def apply(*args):
outs = prim.bind(*map(_rem_singleton, args), **dict(params_tup))
return tree_map(_add_singleton, outs)
spec = P(mesh.axis_names)
return shard_map(apply, mesh, spec, spec, False)(*args)
eager_rules: Dict[core.Primitive, Callable] = {}
# TODO(mattjj): working around an apparent XLA or PjRt bug, remove eventually
def _debug_callback_eager_rule(mesh, *args, callback: Callable[..., Any],
effect: debugging.DebugEffect):
del effect
with core.eval_context():
all_blocks = zip(*map(list, args))
for (idx, device), blocks in zip(np.ndenumerate(mesh.devices), all_blocks):
callback(*blocks)
return []
eager_rules[debugging.debug_callback_p] = _debug_callback_eager_rule
# Static replication checking
def _rep_rule(prim: core.Primitive, mesh: Mesh, *in_rep: Set[AxisName],
**params: Any) -> Union[Set[AxisName], List[Set[AxisName]]]:
raise NotImplementedError(f"no replication rule for {prim}")
_rep_rules: Dict[core.Primitive, Callable] = {}
register_rule = lambda prim: lambda rule: _rep_rules.setdefault(prim, rule)
register_standard = lambda prim: _rep_rules.setdefault(prim, _standard_rep_rule)
def _standard_rep_rule(_, *in_rep, **__):
return set.intersection(*in_rep) if in_rep else set()
for o in it.chain(lax.__dict__.values(), slicing.__dict__.values(),
windowed_reductions.__dict__.values(), fft.__dict__.values(),
linalg.__dict__.values(), ops.__dict__.values(),
ad_util.__dict__.values(),
custom_derivatives.__dict__.values()):
if isinstance(o, core.Primitive): register_standard(o)
register_standard(lax_parallel.ppermute_p) # doesn't change replication
@register_rule(lax_parallel.psum_p)
def _psum_rule(_, *in_rep, axes, axis_index_groups):
if axis_index_groups is not None: raise NotImplementedError
axes = (axes,) if not isinstance(axes, tuple) else axes
return [r | set(axes) for r in in_rep] # introduces replication
@register_rule(lax_parallel.all_gather_p)
def _all_gather_rule(_, in_rep, *, all_gather_dimension, axis_name, axis_size,
axis_index_groups, tiled):
if axis_index_groups is not None: raise NotImplementedError
if not tiled: raise NotImplementedError
axis_name = (axis_name,) if not isinstance(axis_name, tuple) else axis_name
return in_rep | set(axis_name) # introduces replication
@register_rule(lax_parallel.reduce_scatter_p)
def _reduce_scatter_rule(_, in_rep, *, scatter_dimension, axis_name, axis_size,
axis_index_groups, tiled):
if axis_index_groups is not None: raise NotImplementedError
if not tiled: raise NotImplementedError
return in_rep - {axis_name} # removes replication
@register_rule(lax_parallel.all_to_all_p)
def _all_to_all_rule(_, in_rep, *, split_axis, concat_axis, axis_name,
axis_index_groups):
if axis_index_groups is not None: raise NotImplementedError
return in_rep - {axis_name} # removes replication
@register_rule(lax_parallel.axis_index_p)
def _axis_index_rule(mesh, *, axis_name):
axis_name = (axis_name,) if not isinstance(axis_name, tuple) else axis_name
return set(mesh.shape) - set(axis_name)
@register_rule(pjit.pjit_p)
def _pjit_rule(mesh, *in_rep, jaxpr, **kwargs):
return _output_rep(mesh, jaxpr.jaxpr, in_rep)
@register_rule(debugging.debug_callback_p)
def _debug_callback_rule(mesh, *in_rep, **_):
return []
# Batching
def _shard_map_batch(
trace: batching.BatchTrace, prim: core.Primitive, fun: lu.WrappedFun,
in_tracers: Sequence[batching.BatchTracer], mesh: Mesh,
in_names: Tuple[AxisNames, ...],
out_names_thunk: Callable[[], Tuple[AxisNames, ...]],
check_rep: bool) -> Sequence[batching.BatchTracer]:
in_vals, in_dims = unzip2((t.val, t.batch_dim) for t in in_tracers)
if all(bdim is batching.not_mapped for bdim in in_dims):
return prim.bind(fun, *in_vals, mesh=mesh, in_names=in_names,
out_names_thunk=out_names_thunk, check_rep=check_rep)
if any(isinstance(d, batching.ConcatAxis) for d in in_dims):
raise NotImplementedError
fun, out_dims = batching.batch_subtrace(fun, trace.main, tuple(in_dims))
new_in_names = [{ax + (d is not batching.not_mapped and d <= ax): names[ax] # type: ignore
for ax in names} for names, d in zip(in_names, in_dims)]
spmd_axis_name = trace.spmd_axis_name
if spmd_axis_name is not None:
new_in_names = [{**ns, d:spmd_axis_name} if d is not batching.not_mapped # type: ignore
else ns for ns, d in zip(new_in_names, in_dims)]
@as_hashable_function(closure=out_names_thunk)
def new_out_names_thunk():
out_names = out_names_thunk()
out_names_ = [{ax + (d is not batching.not_mapped and d <= ax): names[ax]
for ax in names} for names, d in zip(out_names, out_dims())]
if spmd_axis_name is not None:
out_names_ = [{**ns, d:spmd_axis_name} if d is not batching.not_mapped
else ns for ns, d in zip(out_names_, out_dims())]
return out_names_
new_params = dict(mesh=mesh, in_names=new_in_names,
out_names_thunk=new_out_names_thunk, check_rep=check_rep)
out_vals = prim.bind(fun, *in_vals, **new_params)
make_tracer = partial(batching.BatchTracer, trace,
source_info=source_info_util.current())
return map(make_tracer, out_vals, out_dims())
batching.BatchTrace.process_shard_map = _shard_map_batch
# Autodiff
def _shard_map_jvp(trace, shard_map_p, f, tracers, mesh, in_names,
out_names_thunk, check_rep):
primals, tangents = unzip2((t.primal, t.tangent) for t in tracers)
which_nz = [ type(t) is not ad.Zero for t in tangents]
tangents = [t if type(t) is not ad.Zero else None for t in tangents]
args, in_tree = tree_flatten((primals, tangents))
f_jvp = ad.jvp_subtrace(f, trace.main)
f_jvp, which_nz_out = ad.nonzero_tangent_outputs(f_jvp)
tangent_in_names = [ax for ax, nz in zip(in_names, which_nz) if nz]
@as_hashable_function(closure=out_names_thunk)
def new_out_names_thunk():
out_ax = out_names_thunk()
return (*out_ax, *(ax for ax, nz in zip(out_ax, which_nz_out()) if nz))
params = dict(mesh=mesh, in_names=(*in_names, *tangent_in_names),
out_names_thunk=new_out_names_thunk, check_rep=check_rep)
f_jvp, out_tree = ad.traceable(f_jvp, in_tree)
result = shard_map_p.bind(f_jvp, *args, **params)
primal_out, tangent_out = tree_unflatten(out_tree(), result)
tangent_out = [ad.Zero(core.get_aval(p).at_least_vspace()) if t is None else t
for p, t in zip(primal_out, tangent_out)]
return [ad.JVPTracer(trace, p, t) for p, t in zip(primal_out, tangent_out)]
ad.JVPTrace.process_shard_map = _shard_map_jvp
def _shard_map_jvp_post_process(trace, out_tracers, mesh, in_names,
out_names_thunk, check_rep):
del mesh, in_names, out_names_thunk, check_rep
primals, tangents = unzip2((t.primal, t.tangent) for t in out_tracers)
out, treedef = tree_flatten((primals, tangents))
tangents_nz = [type(t) is not ad.Zero for t in tangents]
m = trace.main
def todo(x):
primals, tangents = tree_unflatten(treedef, x)
return map(partial(ad.JVPTracer, m.with_cur_sublevel()), primals, tangents)
def out_names_transform(out_names):
return (*out_names, *(n for n, nz in zip(out_names, tangents_nz) if nz))
return out, (todo, out_names_transform)
ad.JVPTrace.post_process_shard_map = _shard_map_jvp_post_process
def _shard_map_partial_eval(trace, shard_map_p, f, tracers, mesh, in_names,
out_names_thunk, check_rep):
in_pvals = [t.pval for t in tracers]
in_knowns, in_avals, in_consts = pe.partition_pvals(in_pvals)
unk_in_names, known_in_names = pe.partition_list(in_knowns, in_names)
in_avals_sharded = map(partial(_shard_aval, mesh), unk_in_names, in_avals)
f = pe.trace_to_subjaxpr_nounits(f, trace.main, False)
f = _promote_scalar_residuals(f)
f_known, aux = pe.partial_eval_wrapper_nounits(
f, (*in_knowns,), (*in_avals_sharded,))
@as_hashable_function(closure=out_names_thunk)
def known_out_names():
out_knowns, _, jaxpr, _ = aux()
_, out_known_names = pe.partition_list(out_knowns, out_names_thunk())
assert not any(not v.aval.shape for v in jaxpr.constvars)
res_names = ({0: (*mesh.axis_names,)},) * len(jaxpr.constvars)
return (*out_known_names, *res_names)
known_params = dict(mesh=mesh, in_names=(*known_in_names,),
out_names_thunk=known_out_names, check_rep=check_rep)
out = shard_map_p.bind(f_known, *in_consts, **known_params)
out_knowns, out_avals_sharded, jaxpr, env = aux()
out_consts, res = pe.split_list(out, [len(out) - len(jaxpr.constvars)])
with core.extend_axis_env_nd(mesh.shape.items()):
jaxpr = pe.convert_constvars_jaxpr(jaxpr)
unk_out_names, _ = pe.partition_list(out_knowns, out_names_thunk())
unk_in_names = (({0: (*mesh.axis_names,)},) * len(res) + ({},) * len(env)
+ (*unk_in_names,))
const_tracers = map(trace.new_instantiated_const, res)
env_tracers = map(trace.full_raise, env)
unk_arg_tracers = [t for t in tracers if not t.is_known()]
unk_params = dict(mesh=mesh, in_names=unk_in_names,
out_names=unk_out_names, jaxpr=jaxpr, check_rep=False)
out_avals = map(partial(_unshard_aval, mesh), unk_out_names, out_avals_sharded)
out_tracers = [pe.JaxprTracer(trace, pe.PartialVal.unknown(a), None)
for a in out_avals]
eqn = pe.new_eqn_recipe((*const_tracers, *env_tracers, *unk_arg_tracers), # type: ignore[arg-type]
out_tracers, shard_map_p, unk_params,
jaxpr.effects, source_info_util.current())
for t in out_tracers: t.recipe = eqn
return pe.merge_lists(out_knowns, out_tracers, out_consts)
pe.JaxprTrace.process_shard_map = _shard_map_partial_eval
def _shard_map_partial_eval_post_process(
trace, tracers, mesh, in_names, out_names_thunk, check_rep):
del check_rep
unk_tracers = [t for t in tracers if not t.is_known()]
jaxpr, res, env = pe.tracers_to_jaxpr([], unk_tracers)
out_knowns, out_avals_, consts = pe.partition_pvals([t.pval for t in tracers])
out = [*consts, *res]
main = trace.main
with core.extend_axis_env_nd(mesh.shape.items()):
jaxpr_ = pe.convert_constvars_jaxpr(jaxpr)
def todo(out):
trace = main.with_cur_sublevel()
out_consts, res = pe.split_list(out, [len(out) - len(jaxpr.constvars)])
const_tracers = map(trace.new_instantiated_const, res)
env_tracers = map(trace.full_raise, env)
staged_in_names = ({0: (*mesh.axis_names,)},) * len(res) + ({},) * len(env)
staged_params = dict(jaxpr=jaxpr_, mesh=mesh, in_names=staged_in_names,
out_names=(*out_names_unknown,), check_rep=False)
out_avals = map(partial(_unshard_aval, mesh), out_names_unknown, out_avals_)
out_tracers = [pe.JaxprTracer(trace, pe.PartialVal.unknown(a), None)
for a in out_avals]
name_stack = trace._current_truncated_name_stack()
source = source_info_util.current().replace(name_stack=name_stack)
eqn = pe.new_eqn_recipe((*const_tracers, *env_tracers), out_tracers,
shard_map_p, staged_params, jaxpr.effects, source)
for t in out_tracers: t.recipe = eqn
return merge_lists(out_knowns, out_tracers, out_consts)
def out_names_transform(out_names):
nonlocal out_names_unknown
out_names_unknown, out_names_known = partition_list(out_knowns, out_names)
return (*out_names_known,) + ({0: (*mesh.axis_names,)},) * len(jaxpr.constvars)
out_names_unknown: Optional[list] = None
return out, (todo, out_names_transform)
pe.JaxprTrace.post_process_shard_map = _shard_map_partial_eval_post_process
@lu.transformation
def _promote_scalar_residuals(*args, **kwargs):
jaxpr, (out_pvals, out_consts, env) = yield args, kwargs
which_scalar = [isinstance(v.aval, core.ShapedArray) and not v.aval.shape
for v in jaxpr.constvars]
out_consts_ = [jax.lax.broadcast(x, (1,)) if scalar else x
for x, scalar in zip(out_consts, which_scalar)]
@lu.wrap_init
def fun(*args):
out_consts = [x.reshape(*x.shape[1:]) if scalar else x
for x, scalar in zip(out_consts_, which_scalar)]
return core.eval_jaxpr(jaxpr, out_consts, *args)
in_avals = [v.aval for v in jaxpr.invars]
jaxpr, _, out_consts = pe.trace_to_jaxpr_dynamic(fun, in_avals)
yield jaxpr, (out_pvals, out_consts, env)
def _shard_map_transpose(out_cts, *args, jaxpr, mesh, in_names, out_names,
check_rep):
mb_div = lambda x, y: x / y if y != 1 else x
out_cts = [ad.Zero(_shard_aval(mesh, ns, x.aval)) if type(x) is ad.Zero
else mb_div(x, math.prod(map(mesh.shape.get, _unmentioned(mesh, ns))))
for ns, x in zip(out_names, out_cts)]
args = [x if type(x) is not ad.UndefinedPrimal else
ad.UndefinedPrimal(_shard_aval(mesh, ns, x.aval))
for ns, x in zip(in_names, args)]
all_args, in_tree = tree_flatten((out_cts, args))
@lu.wrap_init
def fun_trans(out_cts, args):
res, undefs = partition_list(map(ad.is_undefined_primal, args), args)
jaxpr_known, jaxpr_unknown, _, _ = pe.partial_eval_jaxpr_nounits(
pe.close_jaxpr(jaxpr), map(ad.is_undefined_primal, args), False)
res_reshaped = core.jaxpr_as_fun(jaxpr_known)(*res)
out = ad.backward_pass(
jaxpr_unknown.jaxpr, (), False, (), (*res_reshaped, *undefs), out_cts
)
return [ad.Zero(_unshard_aval(mesh, ns, x.aval)) if type(x) is ad.Zero
else jax.lax.psum(x, tuple(_unmentioned(mesh, ns)))
for ns, x in zip(in_names, out)]
fun_trans, nz_arg_cts = ad.nonzero_outputs(fun_trans)
fun_trans_flat, out_tree = flatten_fun_nokwargs(fun_trans, in_tree)
new_in_names = \
[n for n, x in zip(out_names, out_cts) if type(x) is not ad.Zero] + \
[n for n, x in zip(in_names, args) if type(x) is not ad.UndefinedPrimal]
def new_out_names_thunk():
return tuple(names for names, nz in zip(in_names, nz_arg_cts()) if nz)
out_flat = shard_map_p.bind(
fun_trans_flat, *all_args, mesh=mesh, in_names=tuple(new_in_names),
out_names_thunk=new_out_names_thunk, check_rep=check_rep)
return tree_unflatten(out_tree(), out_flat)
ad.primitive_transposes[shard_map_p] = _shard_map_transpose
def _shard_map_axis_subst(params, subst, traverse):
if 'jaxpr' not in params:
return params
if not traverse:
return params
def shadowed_subst(name):
return (name,) if name in params['mesh'].shape else subst(name)
with core.extend_axis_env_nd(params['mesh'].shape.items()):
new_jaxpr = core.subst_axis_names_jaxpr(params['jaxpr'], shadowed_subst)
return dict(params, jaxpr=new_jaxpr)
core.axis_substitution_rules[shard_map_p] = _shard_map_axis_subst
# Remat
def _pe_custom_params(
unks_in: List[bool], inst_in: List[bool], kept_outs_known: List[bool],
kept_outs_staged: List[bool], num_res: int, params_known: Dict[str, Any],
params_staged: Dict[str, Any]
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
# prune inputs to jaxpr_known according to unks_in
mesh = params_known['mesh']
in_names_known, _ = partition_list(unks_in, params_known['in_names'])
_, out_names_known = partition_list(kept_outs_known, params_known['out_names'])
out_names_known = out_names_known + [{0: (*mesh.axis_names,)}] * num_res
new_params_known = dict(params_known, in_names=tuple(in_names_known),
out_names=tuple(out_names_known))
# added num_res new inputs to jaxpr_staged, pruning according to inst_in
_, in_names_staged = partition_list(inst_in, params_staged['in_names'])
in_names_staged = [{0: (*mesh.axis_names,)}] * num_res + in_names_staged
_, out_names_staged = partition_list(kept_outs_staged, params_staged['out_names'])
new_params_staged = dict(params_staged, in_names=tuple(in_names_staged),
out_names=tuple(out_names_staged), check_rep=False)
return new_params_known, new_params_staged
def _pe_custom_res(params_known, aval):
mesh = params_known['mesh']
return _unshard_aval(mesh, {0: (*mesh.axis_names,)}, aval)
def _pe_custom_ctx(params):
return core.extend_axis_env_nd(params['mesh'].shape.items())
pe.partial_eval_jaxpr_custom_rules[shard_map_p] = \
partial(pe.call_partial_eval_custom_rule, 'jaxpr', _pe_custom_params,
res_aval=_pe_custom_res, ctx=_pe_custom_ctx)