Sergei Lebedev 194884d311 Migrated to mypy 1.14.1 with --allow_redefinition
I initially wanted to upgrade to 1.15, but it seems to have a bug in how
ternary expressions are type checked. For example,

   def f(x: int) -> str: ...
   def g(x: int) -> str: ...

   callback = f if ... else g  # has type object!
2025-02-13 15:38:28 +00:00

3328 lines
133 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of pmap and related functionality."""
from __future__ import annotations
import enum
import collections
from collections import namedtuple
from collections.abc import Callable, Sequence, Iterable
import dataclasses
from functools import partial, lru_cache, cached_property
import functools
import itertools as it
import logging
import math
from typing import Any, NamedTuple, Union, cast
import warnings
import numpy as np
import jax
from jax._src import api
from jax._src import compiler
from jax._src import config
from jax._src import core
from jax._src import dispatch
from jax._src import dtypes
from jax._src import effects
from jax._src import linear_util as lu
from jax._src import op_shardings
from jax._src import sharding_specs
from jax._src import profiler
from jax._src import sharding_impls
from jax._src import source_info_util
from jax._src import stages
from jax._src import tree_util
from jax._src import util
from jax._src import xla_bridge as xb
from jax._src.abstract_arrays import array_types
from jax._src.core import DShapedArray
from jax._src.core import ShapedArray
from jax._src.interpreters import ad
from jax._src.interpreters import batching
from jax._src.interpreters import partial_eval as pe
from jax._src.interpreters import mlir
from jax._src.interpreters import xla
from jax._src.layout import DeviceLocalLayout, AutoLayout, Layout
from jax._src.lib import xla_client as xc
from jax._src.lib.mlir import ir
from jax._src.lib.mlir.dialects import hlo
from jax._src.partition_spec import PartitionSpec
from jax._src.sharding import Sharding as JSharding
from jax._src.mesh import AbstractMesh, Mesh
from jax._src.sharding_impls import (
ArrayMapping, ArrayMappingOrAutoOrUnspecified, AUTO, UnspecifiedValue,
get_array_mapping as _get_array_mapping, array_mapping_to_axis_resources,
SingleDeviceSharding, GSPMDSharding, NamedSharding, PositionalSharding)
from jax._src.util import (safe_map, safe_zip, partition_list, wrap_name,
tuple_update, tuple_delete, distributed_debug_log,
unzip2, HashableFunction, weakref_lru_cache)
from jax._src.state.types import AbstractRef, RefEffect
# Built in Python lists don't support weak refs but subclasses of lists do.
class WeakRefList(list):
pass
xe = xc._xla
unsafe_map, map = map, safe_map # type: ignore
logger = logging.getLogger(__name__)
Index = Union[int, slice, tuple[Union[int, slice], ...]]
PyTreeDef = tree_util.PyTreeDef
NoSharding = sharding_specs.NoSharding
Chunked = sharding_specs.Chunked
Unstacked = sharding_specs.Unstacked
ShardedAxis = sharding_specs.ShardedAxis
Replicated = sharding_specs.Replicated
AvalDimSharding = Union[Unstacked, Chunked, NoSharding]
MeshAxisName = sharding_impls.MeshAxisName
MeshDimAssignment = Union[ShardedAxis, Replicated]
ShardingSpec = sharding_specs.ShardingSpec
### util
def to_xc_copy_semantics(copy_semantics):
out = []
for cs in copy_semantics:
if cs is None or cs == dispatch.CopySemantics.ALIAS:
out.append(xc.ArrayCopySemantics.REUSE_INPUT)
elif cs == dispatch.CopySemantics.COPY:
out.append(xc.ArrayCopySemantics.ALWAYS_COPY)
elif cs == dispatch.CopySemantics.DONATE:
out.append(xc.ArrayCopySemantics.DONATE_INPUT)
else:
assert isinstance(cs, xc.ArrayCopySemantics)
out.append(cs)
return out
def identity(x): return x
@profiler.annotate_function
def shard_args(shardings: Sequence[JSharding], layouts, copy_semantics,
args, canonicalize=True) -> Sequence[xc.ArrayImpl]:
xc_copy_semantics = to_xc_copy_semantics(copy_semantics)
del copy_semantics
# Fast path for one argument.
if len(args) == 1:
arg = args[0]
if canonicalize:
arg = xla.canonicalize_dtype(arg)
return shard_arg_handlers[type(arg)]([arg], shardings, layouts,
xc_copy_semantics)
# type(arg) -> (list[indices], list[args], list[shardings], list[layouts],
# list[copy_semantics])
batches = collections.defaultdict(lambda: ([], [], [], [], [])) # type: ignore
for i, (arg, sharding, layout, cs) in enumerate(
safe_zip(args, shardings, layouts, xc_copy_semantics)):
if canonicalize:
arg = xla.canonicalize_dtype(arg)
batch = batches[type(arg)]
batch[0].append(i)
batch[1].append(arg)
batch[2].append(sharding)
batch[3].append(layout)
batch[4].append(cs)
# Call `shard_arg_handlers` per batch and build a flat list of arrays returned
# from each call in the same order as `args`. Since `batches` is grouped by
# types, we cannot simply flatten the results and we have to use the original
# indices to put each array back to its original position.
results: list[jax.Array | None] = [None] * len(args)
for t, (indices, a, s, l, cs) in batches.items():
outs = shard_arg_handlers[t](a, s, l, cs)
for i, out in safe_zip(indices, outs):
results[i] = out
assert all(result is not None for result in results)
return results
shard_arg_handlers: dict[
Any, Callable[[Sequence[Any], Sequence[Any], Sequence[Any], Sequence[Any]],
Sequence[Any]]
] = {}
@lru_cache(maxsize=2048)
def is_default_layout(curr_layout, sharding, aval):
if curr_layout is None or sharding is None or isinstance(sharding, UnspecifiedValue):
return True
if (aval is core.abstract_token or aval.dtype == dtypes.float0 or
dtypes.issubdtype(aval.dtype, dtypes.extended)):
return True
if isinstance(curr_layout, AutoLayout):
return False
d = sharding._device_assignment[0]
shard_shape = sharding.shard_shape(aval.shape)
try:
# TODO(yashkatariya): Replace this with normal `==` check once CPU supports
# int4.
return is_user_xla_layout_equal(
curr_layout,
DeviceLocalLayout.from_pjrt_layout(
d.client.get_default_layout(aval.dtype, shard_shape, d)))
except xe.XlaRuntimeError as e:
msg, *_ = e.args
if isinstance(msg, str) and msg.startswith("UNIMPLEMENTED"):
return True
else:
raise
def _masked_array_error(xs, shardings, layouts, copy_semantics):
raise ValueError("numpy masked arrays are not supported as direct inputs to JAX functions. "
"Use arr.filled() to convert the value to a standard numpy array.")
shard_arg_handlers[np.ma.MaskedArray] = _masked_array_error
def _shard_np_array(xs, shardings, layouts, copy_semantics):
results = []
for x, sharding, layout in safe_zip(xs, shardings, layouts):
devices = sharding._addressable_device_assignment
if x.dtype == dtypes.float0:
x = np.zeros(x.shape, dtype=np.dtype(bool))
aval = core.shaped_abstractify(x)
if layout is not None:
results.append(api.device_put(x, Layout(layout, sharding)))
else:
if sharding.is_fully_replicated:
shards = [x] * len(devices)
else:
indices = tuple(sharding.addressable_devices_indices_map(x.shape).values())
shards = [x[i] for i in indices]
results.append(batched_device_put(aval, sharding, shards, devices))
return results
for _t in array_types:
shard_arg_handlers[_t] = _shard_np_array
def _shard_darray(xs, shardings, layouts, copy_semantics):
return shard_args(shardings, layouts, copy_semantics, [x._data for x in xs])
shard_arg_handlers[core.DArray] = _shard_darray
def _shard_mutable_array(xs, shardings, layouts, copy_semantics):
return shard_args(shardings, layouts, copy_semantics, [x._buf for x in xs])
shard_arg_handlers[core.MutableArray] = _shard_mutable_array
def batched_device_put(aval: core.ShapedArray,
sharding: JSharding, xs: Sequence[Any],
devices: Sequence[jax.Device], committed: bool = True):
util.test_event("batched_device_put_start")
try:
from jax._src import array
bufs = [x for x, d in safe_zip(xs, devices)
if (isinstance(x, array.ArrayImpl) and
dispatch.is_single_device_sharding(x.sharding) and
x.devices() == {d})]
if len(bufs) == len(xs):
return array.ArrayImpl(
aval, sharding, bufs, committed=committed, _skip_checks=True)
return xc.batched_device_put(aval, sharding, xs, list(devices), committed)
finally:
util.test_event("batched_device_put_end")
def _shard_aval(size, axis: int, aval):
try:
return _shard_aval_handlers[type(aval)](size, axis, aval)
except KeyError as err:
raise TypeError(f"No _shard_aval handler for type: {type(aval)}") from err
_shard_aval_handlers: dict[type[core.AbstractValue], Callable[[int, int, Any], Any]] = {}
def _shard_abstract_array(size, axis: int, x):
try:
if x.shape[axis] != size:
raise ValueError(f"Axis size {size} does not match dimension {axis} of "
f"shape {x.shape}")
except IndexError:
raise ValueError("Cannot split a {x.dim}D value along axis {axis}") from None
if config.pmap_no_rank_reduction.value:
return x.update(shape=tuple_update(x.shape, axis, 1))
else:
return x.update(shape=tuple_delete(x.shape, axis))
_shard_aval_handlers[ShapedArray] = _shard_abstract_array
def local_aval_to_result_handler(
aval: core.AbstractValue,
sharding: JSharding,
indices: tuple[Index, ...] | None,
) -> Callable[[list[xc.ArrayImpl]], Any]:
"""Returns a function for handling the raw buffers of a single output aval.
Args:
aval: The local output AbstractValue.
sharding_spec: Indicates how the output is sharded across devices, or None
for non-array avals.
indices: The pre-computed result of spec_to_indices, or None for non-array
avals.
Returns:
A function for handling the Buffers that will eventually be produced
for this output. The function will return an object suitable for returning
to the user, e.g. an Array.
"""
try:
return local_result_handlers[(type(aval))](aval, sharding, indices)
except KeyError as err:
raise TypeError(
f"No pxla_result_handler for type: {type(aval)}") from err
PxlaResultHandler = Callable[..., Callable[[Any], Any]]
local_result_handlers: dict[type[core.AbstractValue], PxlaResultHandler] = {}
def global_aval_to_result_handler(
aval: core.AbstractValue, out_sharding, committed: bool
) -> Callable[[Sequence[xc.ArrayImpl]], Any]:
"""Returns a function for handling the raw buffers of a single output aval.
Args:
aval: The global output AbstractValue.
out_axis_resources: A PartitionSpec specifying the sharding of outputs.
Used for creating GSDAs.
global_mesh: The global device mesh that generated this output. Used
for creating GSDAs.
Returns:
A function for handling the Buffers that will eventually be produced
for this output. The function will return an object suitable for returning
to the user, e.g. an Array.
"""
try:
return global_result_handlers[type(aval)](aval, out_sharding, committed)
except KeyError as err:
raise TypeError(
f"No pxla_result_handler for type: {type(aval)}") from err
global_result_handlers: dict[type[core.AbstractValue], PxlaResultHandler] = {}
### lazy device-memory persistence and result handling
### the xla_pmap primitive and its rules are comparable to xla_call in xla.py
def xla_pmap_impl_lazy(
fun: lu.WrappedFun,
*args,
backend: str | None,
axis_name: core.AxisName,
axis_size: int,
global_axis_size: int,
devices: Sequence[Any] | None,
name: str,
in_axes: Sequence[int | None],
out_axes_thunk: Callable[[], Sequence[int | None]],
donated_invars: Sequence[bool],
is_explicit_global_axis_size: bool,
) -> Callable:
if (config.disable_jit.value and config.eager_pmap.value and
not is_explicit_global_axis_size and not any(d for d in donated_invars)):
def _emap_apply_fn(*args):
return _emap_impl(fun, *args, backend=backend, axis_name=axis_name,
axis_size=axis_size, global_axis_size=global_axis_size,
devices=devices, name=name, in_axes=in_axes,
out_axes_thunk=out_axes_thunk,
donated_invars=donated_invars,
is_explicit_global_axis_size=is_explicit_global_axis_size)
return _emap_apply_fn
abstract_args = unsafe_map(core.abstractify, args)
compiled_fun, fingerprint = parallel_callable(
fun, backend, axis_name, axis_size, global_axis_size, devices, name,
in_axes, out_axes_thunk, donated_invars,
is_explicit_global_axis_size, *abstract_args)
# Don't re-abstractify args unless logging is enabled for performance.
if config.distributed_debug.value:
distributed_debug_log(("Running pmapped function", name),
("python function", fun.f),
("devices", devices),
("abstract args", map(core.abstractify, args)),
("fingerprint", fingerprint))
return compiled_fun
def xla_pmap_impl(fun: lu.WrappedFun, *args, **params):
compiled_fun = xla_pmap_impl_lazy(fun, *args, **params)
return compiled_fun(*args)
class EmapInfo(NamedTuple):
backend: str | None
devices: Sequence[Any] | None
def _emap_impl(fun: lu.WrappedFun, *args,
backend: str | None,
axis_name: core.AxisName,
axis_size: int,
global_axis_size: int,
devices: Sequence[Any] | None,
name: str,
in_axes: Sequence[int | None],
out_axes_thunk: Callable[[], Sequence[int | None]],
donated_invars: Sequence[bool],
is_explicit_global_axis_size: bool,
):
from jax._src import array
# TODO(sharadmv,mattjj): implement these cases
if any(d for d in donated_invars):
raise NotImplementedError("Buffer donation not supported in eager pmap.")
if is_explicit_global_axis_size:
raise NotImplementedError("Non-default global_axis_size not supported in "
"eager pmap.")
emap_info = EmapInfo(backend, devices)
shard_axes = [{} if in_axis is None else {axis_name: in_axis} for in_axis in in_axes]
trace = MapTrace(axis_name, emap_info)
with core.extend_axis_env_nd([(axis_name, axis_size)]):
tracers = [MapTracer(trace, arg, s) for arg, s in zip(args, shard_axes)]
with core.set_current_trace(trace):
ans = fun.call_wrapped(*tracers)
out_tracers = map(trace.to_map_tracer, ans)
outvals, out_axes_src = unzip2((t.val, t.shard_axes) for t in out_tracers)
out_axes = out_axes_thunk()
platform = xb.get_backend(backend).platform
donate_argnums = (1,) if platform in {"cuda", "rocm", "tpu"} else ()
new_outvals = []
for out_axis_src, out_axis, outval in zip(out_axes_src, out_axes, outvals):
with jax.disable_jit(False):
donate_argnums_ = donate_argnums
if isinstance(outval, array.ArrayImpl):
# We don't want to donate if it's already sharded.
donate_argnums_ = ()
out = jax.pmap(
lambda _, x: x,
in_axes=(0, out_axis_src.get(axis_name)),
out_axes=out_axis,
devices=(None if devices is None else list(devices)),
backend=backend,
donate_argnums=donate_argnums_)(np.arange(axis_size), outval)
new_outvals.append(out)
return new_outvals
def _map_schedule(idx: tuple[int | None, ...]) -> tuple[int | None, ...]:
# In order to do a multi-map (a simultaneous map over several axes), we will
# nest several maps. Each time we do a map, we "remove" an input axis so we
# need to update the remaining map axes. For example, if we are to map over
# the axes 0, 3, and 4, we make three calls to pmap with in_axes as 0, 2, 2.
return tuple(None if i is None else
i - sum(j is not None and j < i for j in idx[:l])
for l, i in enumerate(idx))
# We're often creating `f`s on the fly and we try to carefully make them have
# the right __hash__ and __eq__. However, despite our attempts pmap's caching
# still ends up not working, because it has a separate cache per
# _function object_. Adding this annotation here lets us reuse the same pmap
# callable for all equivalent primitive pmaps.
@lru_cache
def _multi_pmap(f: Callable, info: EmapInfo, names: list[core.AxisName],
all_axes: list[tuple[int | None, ...]]
) -> tuple[Callable, dict[core.AxisName, int]]:
used_names = []
for i, name in reversed(list(enumerate(names))):
in_axes = tuple(arg_axis[i] for arg_axis in all_axes)
if any(in_axis is not None for in_axis in in_axes):
f = jax.pmap(
f,
in_axes=in_axes,
axis_name=name,
out_axes=0,
backend=info.backend,
devices=(None if info.devices is None else list(info.devices)))
used_names.append(name)
out_shard_axes = {name: i for i, name in enumerate(reversed(used_names))}
return f, out_shard_axes
FakePrimitive = namedtuple("FakePrimitive", ["multiple_results", "bind"])
class MapTrace(core.Trace):
__slots__ = ("axis_name", "emap_info")
def __init__(self, axis_name, emap_info):
self.emap_info = emap_info
self.axis_name = axis_name
def to_map_tracer(self, val):
if isinstance(val, MapTracer):
return val
else:
return MapTracer(self, val, {})
def process_primitive(self, primitive, tracers, params):
if primitive is jax._src.lax.parallel.axis_index_p:
return self.process_axis_index(**params)
if primitive is jax._src.lax.parallel.psum_p:
f = HashableFunction(
lambda *xs: jax._src.lax.parallel.psum(
xs, axis_name=params['axes'], axis_index_groups=params['axis_index_groups']),
(primitive, tuple(params.items())))
else:
f = HashableFunction(lambda *args: primitive.bind(*args, **params),
(primitive, tuple(params.items())))
tracers = map(self.to_map_tracer, tracers)
vals, shard_axes = unzip2([(t.val, t.shard_axes) for t in tracers])
info = self.emap_info
names = core.get_axis_env().axis_names()
all_axes = tuple(_map_schedule(map(s.get, names)) for s in shard_axes) # pytype: disable=wrong-arg-types # always-use-return-annotations
f_mapped, out_shard_axes = _multi_pmap(f, self.emap_info, names, all_axes)
with core.eval_context(), jax.disable_jit(False):
outvals = f_mapped(*vals)
if primitive.multiple_results:
return [MapTracer(self, val, out_shard_axes) for val in outvals]
return MapTracer(self, outvals, out_shard_axes)
def process_call(self, call_primitive, fun, tracers, params):
raise NotImplementedError
def process_map(self, map_primitive, fun, tracers, params):
if params['devices'] is not None:
raise ValueError("Nested pmap with explicit devices argument.")
if not config.disable_jit.value:
bind = HashableFunction(
lambda *args, **kwargs: map_primitive.bind(fun, *args, **kwargs),
(map_primitive, fun))
fake_primitive = FakePrimitive(multiple_results=True, bind=bind)
return self.process_primitive(fake_primitive, tracers, params)
axis_name, in_axes, out_axes_thunk, axis_size = (params["axis_name"],
params["in_axes"], params["out_axes_thunk"], params["axis_size"])
vals, shard_axes = unzip2((t.val, t.shard_axes) for t in tracers)
shard_axes = [{axis_name: _annot_to_flat(np.ndim(v), s.values(), ax), **s}
if ax is not None else s
for v, ax, s in zip(vals, in_axes, shard_axes)]
in_tracers = map(partial(MapTracer, self), vals, shard_axes)
with core.extend_axis_env_nd([(axis_name, axis_size)]):
with core.set_current_trace(self):
ans = fun.call_wrapped(*in_tracers)
out_tracers = map(self.to_map_tracer, ans)
out, outaxes = unzip2((t.val, t.shard_axes) for t in out_tracers)
out, outaxes = unzip2(_match_annot(axis_name, axis_size, v, s, dst)
for v, s, dst in zip(out, outaxes, out_axes_thunk()))
return map(partial(MapTracer, self), out, outaxes)
def process_custom_jvp_call(self, prim, fun, jvp, tracers, *, symbolic_zeros):
if symbolic_zeros:
msg = ("custom_jvp with symbolic_zeros=True not supported with eager pmap. "
"Please open an issue at https://github.com/jax-ml/jax/issues !")
raise NotImplementedError(msg)
del prim, jvp, symbolic_zeros # always base main, can drop jvp
with core.set_current_trace(self):
return fun.call_wrapped(*tracers)
def process_custom_vjp_call(self, primitive, fun, fwd, bwd, tracers,
out_trees, symbolic_zeros):
if symbolic_zeros:
msg = ("custom_vjp with symbolic_zeros=True not supported with eager pmap. "
"Please open an issue at https://github.com/jax-ml/jax/issues !")
raise NotImplementedError(msg)
del primitive, fwd, bwd, out_trees, symbolic_zeros # always base main, drop vjp
with core.set_current_trace(self):
return fun.call_wrapped(*tracers)
def process_axis_index(self, axis_name):
bind = HashableFunction(
lambda _: jax.lax.axis_index(axis_name),
(jax.lax.axis_index, axis_name))
fake_primitive = FakePrimitive(multiple_results=False, bind=bind)
range = jax.lax.iota(np.int32, core.get_axis_env().axis_size(axis_name))
dummy_tracer = MapTracer(self, range, {axis_name: 0})
return self.process_primitive(fake_primitive, (dummy_tracer,), {})
def _annot_to_flat(ndim: int, mapped_axes: Iterable[int],
annotation: int | None) -> int | None:
if annotation is None: return None
mapped_axes_ = set(mapped_axes)
return [i for i in range(ndim) if i not in mapped_axes_][annotation]
def _match_annot(axis_name: core.AxisName, axis_size: int, val: Any,
shard_axis_src: dict[core.AxisName, int],
dst_annotation: int | None
) -> tuple[Any, dict[core.AxisName, int]]:
shard_axis_out = dict(shard_axis_src)
src = shard_axis_out.pop(axis_name, None)
dst = _annot_to_flat(np.ndim(val) + (src is None), shard_axis_out.values(),
dst_annotation)
with core.eval_context():
if src == dst:
outval = val
elif type(src) == type(dst) == int:
outval = batching.moveaxis(val, src, dst)
shard_axis_out = _moveaxis(np.ndim(val), shard_axis_src, src, dst)
elif src is None and dst is not None:
outval = batching.broadcast(val, axis_size, dst)
shard_axis_out = {n: d + (dst <= d) for n, d in shard_axis_out.items()}
else:
raise NotImplementedError
return outval, shard_axis_out
def _moveaxis(ndim: int, shard_axes: dict[core.AxisName, int],
src: int, dst: int) -> dict[core.AxisName, int]:
lst: list[core.AxisName | None] = [None] * ndim
for k, v in shard_axes.items():
lst[v] = k
name = lst.pop(src)
lst.insert(dst - (src < dst), name)
return {name: i for i, name in enumerate(lst) if name is not None}
class MapTracer(core.Tracer):
__slots__ = ["val", "shard_axes"]
def __init__(self, trace: MapTrace, val, shard_axes: dict[core.AxisName, int]):
self._trace = trace
self.val = val
self.shard_axes = shard_axes
assert all(val < self.val.ndim for val in self.shard_axes.values())
@property
def aval(self):
aval = core.abstractify(self.val)
shard_axes = dict(self.shard_axes)
for axis_idx in sorted(shard_axes.values())[::-1]:
aval = core.mapped_aval(aval.shape[axis_idx], axis_idx, aval)
return aval
def full_lower(self):
return self
def __str__(self):
named_axes = [f"{k}={v}" for k, v in self.shard_axes.items()]
return f"{self.val}{{{','.join(named_axes)}}}"
@lu.cache
def parallel_callable(fun: lu.WrappedFun,
backend_name: str | None,
axis_name: core.AxisName,
axis_size: int,
global_axis_size: int,
devices: Sequence[Any] | None,
name: str,
in_axes: Sequence[int | None],
out_axes_thunk: Callable[[], Sequence[int | None]],
donated_invars: Sequence[bool],
is_explicit_global_axis_size: bool,
*avals):
closed_jaxpr, xc_backend, replicas, shards, pci = get_pmap_jaxpr(
fun, backend_name, axis_name,
axis_size=axis_size, global_axis_size=global_axis_size,
devices=devices, name=fun.__name__, in_axes=in_axes,
out_axes_thunk=out_axes_thunk, avals=avals)
pmap_computation = lower_parallel_callable(
fun, axis_name, axis_size, global_axis_size, devices, name,
in_axes, donated_invars,
is_explicit_global_axis_size, avals,
lowering_platforms=None, lowering_parameters=mlir.LoweringParameters(),
closed_jaxpr=closed_jaxpr, backend=xc_backend, replicas=replicas,
shards=shards, pci=pci)
pmap_executable = pmap_computation.compile()
return WeakRefList([pmap_executable.unsafe_call, pmap_executable.fingerprint])
@dataclasses.dataclass(frozen=True)
class ParallelCallableInfo:
name: str
backend: xc.Client
axis_name: core.AxisName
axis_size: int
global_axis_size: int
devices: Sequence[xc.Device] | None
in_axes: Iterable[int | None]
out_axes_thunk: Callable[[], Sequence[int | None]]
avals: Sequence[core.AbstractValue]
@cached_property
def local_devices(self):
if self.devices:
out = [d for d in self.devices
if d.process_index == xb.process_index(self.backend)]
assert len(out) > 0
else:
out = None
return out
@cached_property
def out_axes(self):
return self.out_axes_thunk()
class ShardInfo(NamedTuple):
sharded_avals: Sequence[core.AbstractValue]
out_sharded_avals: Sequence[core.ShapedArray]
global_sharded_avals: Sequence[core.AbstractValue]
num_local_shards: int
num_global_shards: int
class ReplicaInfo(NamedTuple):
jaxpr_replicas: int
num_local_replicas: int
num_global_replicas: int
def find_replicas(
jaxpr: core.Jaxpr, axis_size: int, global_axis_size: int
) -> ReplicaInfo:
# TODO(skyewm): replace this with a chain of pmaps and/or sharded_jits
jaxpr_replicas = dispatch.jaxpr_replicas(jaxpr)
num_local_replicas = axis_size * jaxpr_replicas
num_global_replicas = global_axis_size * jaxpr_replicas
return ReplicaInfo(jaxpr_replicas, num_local_replicas, num_global_replicas)
@lu.transformation2
def _change_argument_ranks(f, in_axes, out_axes_thunk, *args):
args = tuple(
arg if in_axis is None else jax.lax.squeeze(arg, dimensions=(in_axis,))
for in_axis, arg in zip(in_axes, args)
)
results = f(*args)
out_axes = out_axes_thunk()
return tuple(
x if axis is None else jax.lax.expand_dims(x, dimensions=(axis,))
for x, axis in zip(results, out_axes)
)
def stage_parallel_callable(
pci: ParallelCallableInfo, fun: lu.WrappedFun
) -> tuple[core.Jaxpr, list[Any], ReplicaInfo, ShardInfo]:
sharded_avals = tuple(
_shard_aval(pci.axis_size, axis, aval) if axis is not None else aval
for axis, aval in safe_zip(pci.in_axes, pci.avals))
orig_fun = fun
if config.pmap_no_rank_reduction.value:
fun = _change_argument_ranks(fun, pci.in_axes, pci.out_axes_thunk)
else:
fun = orig_fun
with core.extend_axis_env_nd([(pci.axis_name, pci.global_axis_size)]):
with dispatch.log_elapsed_time(
"Finished tracing + transforming {fun_name} for pmap in {elapsed_time} sec",
fun_name=fun.__name__, event=dispatch.JAXPR_TRACE_EVENT):
jaxpr, out_sharded_avals, consts, _ = pe.trace_to_jaxpr_dynamic(
fun, sharded_avals)
assert len(out_sharded_avals) == len(pci.out_axes), (
len(out_sharded_avals), len(pci.out_axes))
replicas = find_replicas(jaxpr, pci.axis_size, pci.global_axis_size)
num_local_shards = replicas.num_local_replicas
num_global_shards = replicas.num_global_replicas
shards = ShardInfo(
sharded_avals, out_sharded_avals, sharded_avals,
num_local_shards, num_global_shards)
return jaxpr, consts, replicas, shards
def get_pmap_jaxpr(
fun: lu.WrappedFun,
backend_name: str | None,
axis_name: core.AxisName,
axis_size: int,
global_axis_size: int,
devices: Sequence[xc.Device] | None,
name: str,
in_axes: Iterable[int | None],
out_axes_thunk: Callable[[], Sequence[int | None]],
avals: Sequence[core.AbstractValue]):
if devices is not None and backend_name is None:
backend = xb.get_device_backend(devices[0])
else:
backend = xb.get_backend(backend_name)
pci = ParallelCallableInfo(
name, backend, axis_name, axis_size, global_axis_size, devices,
in_axes, out_axes_thunk, avals)
with core.extend_axis_env_nd([(axis_name, axis_size)]):
jaxpr, consts, replicas, shards = stage_parallel_callable(pci, fun)
jaxpr = core.remove_named_axis_effects(jaxpr, {axis_name})
closed_jaxpr = core.ClosedJaxpr(jaxpr, consts)
return closed_jaxpr, backend, replicas, shards, pci
@profiler.annotate_function
def lower_parallel_callable(
fun: lu.WrappedFun,
axis_name: core.AxisName,
axis_size: int,
global_axis_size: int,
devices: Sequence[xc.Device] | None,
name: str,
in_axes: Iterable[int | None],
donated_invars: Sequence[bool],
is_explicit_global_axis_size: bool,
avals: Sequence[core.AbstractValue],
*,
lowering_platforms: tuple[str, ...] | None,
lowering_parameters: mlir.LoweringParameters,
closed_jaxpr: core.ClosedJaxpr,
backend: xc.Client,
replicas: ReplicaInfo,
shards: ShardInfo,
pci: ParallelCallableInfo) -> PmapComputation:
# Determine global_axis_size for use in AxisEnv.
# TODO(mattjj,skyewm): revive this check (inner_pmap always False now)
# if xb.process_count() > 1 and global_axis_size is None and inner_pmap:
# raise ValueError("'axis_size' must be specified for nested multi-host pmaps")
if (xb.process_count() == 1 and is_explicit_global_axis_size
and global_axis_size != axis_size):
raise ValueError(
f"Specified axis_size {global_axis_size} doesn't match received "
f"axis_size {axis_size}.")
jaxpr = closed_jaxpr.jaxpr
no_nested_sharding = False
must_run_on_all_devices = False
if not is_explicit_global_axis_size:
if xb.process_count(backend) > 1:
if devices:
# This allows each host in a multi-host pmap to run on a different number
# of devices, but precludes nested sharding (i.e. inner pmaps).
no_nested_sharding = True
else:
# This assumes all hosts run on the same number of devices. We make sure
# this assumption is true by requiring that the pmap is run on all devices
# (and making the further assumption that each host has the same number of
# devices). Nested sharding is ok in this case.
must_run_on_all_devices = True
if logger.isEnabledFor(logging.DEBUG):
logger.debug("sharded_avals: %s", shards.sharded_avals)
logger.debug("global_sharded_avals: %s", shards.global_sharded_avals)
logger.debug("num_replicas: %d num_local_replicas: %d",
replicas.num_global_replicas, replicas.num_local_replicas)
logger.debug("devices: %s", devices)
logger.debug("local_devices: %s", pci.local_devices)
if (xb.process_count(backend) > 1 and must_run_on_all_devices and
shards.num_local_shards != xb.local_device_count(backend)):
if shards.num_local_shards == axis_size:
raise ValueError(
f"On multi-host platforms, the input to pmapped functions must have "
f"leading axis size equal to the number of local devices if no "
f"`devices` argument is specified. Got {axis_size=}, "
f"num_local_devices={xb.local_device_count(backend)}")
else:
raise ValueError(
f"On multi-host platforms, pmapped functions must run across all "
f"devices, i.e. num_replicas * num_partitions should equal the "
f"number of local devices. Got "
f"num_replicas={replicas.num_local_replicas}, and "
f"num_local_devices={xb.local_device_count(backend)}")
if no_nested_sharding and replicas.jaxpr_replicas > 1:
raise ValueError(
f"On multi-host platforms, pmapped functions that both have `devices` "
f"specified and contain an inner_pmap must specify an "
f"`axis_size` (or remove the `devices` argument). Got nested_replicas="
f"{replicas.jaxpr_replicas}")
log_priority = logging.WARNING if config.log_compiles.value else logging.DEBUG
if logger.isEnabledFor(log_priority):
logger.log(log_priority,
"Compiling %s (%d) for %d devices with args %s. (num_replicas=%d)",
fun.__name__, id(fun),
shards.num_global_shards, avals, replicas.num_global_replicas)
axis_env = sharding_impls.AxisEnv(
replicas.num_global_replicas, (axis_name,), (global_axis_size,))
name_stack = source_info_util.new_name_stack(wrap_name(name, 'pmap'))
replicated_args = [axis is None for axis in in_axes]
tuple_args = dispatch.should_tuple_args(len(shards.global_sharded_avals),
backend.platform)
module_name = f"pmap_{fun.__name__}"
platforms = lowering_platforms or (backend.platform,)
with core.extend_axis_env_nd([(axis_name, global_axis_size)]):
ordered_effects = list(
effects.ordered_effects.filter_in(closed_jaxpr.effects))
if ordered_effects:
raise ValueError("Ordered effects not supported in `pmap`.")
unordered_effects = list(
effects.ordered_effects.filter_not_in(closed_jaxpr.effects))
with dispatch.log_elapsed_time(
"Finished jaxpr to MLIR module conversion {fun_name} in {elapsed_time:.9f} sec",
fun_name=str(name_stack), event=dispatch.JAXPR_TO_MLIR_MODULE_EVENT):
lowering_result = mlir.lower_jaxpr_to_module(
module_name,
closed_jaxpr,
ordered_effects=ordered_effects,
backend=backend,
platforms=platforms,
axis_context=sharding_impls.ReplicaAxisContext(axis_env),
name_stack=name_stack,
donated_args=donated_invars,
replicated_args=replicated_args,
arg_shardings=None,
result_shardings=None,
arg_names=jaxpr._debug_info and jaxpr._debug_info.safe_arg_names(len(jaxpr.invars)),
result_names=jaxpr._debug_info and jaxpr._debug_info.safe_result_paths(len(jaxpr.outvars)),
num_replicas=replicas.num_global_replicas,
lowering_parameters=lowering_parameters)
return PmapComputation(lowering_result.module,
platforms=platforms,
pci=pci, replicas=replicas,
shards=shards, tuple_args=tuple_args,
unordered_effects=unordered_effects,
ordered_effects=ordered_effects,
keepalive=lowering_result.keepalive,
host_callbacks=lowering_result.host_callbacks,
jaxpr_debug_info=closed_jaxpr.jaxpr._debug_info,
shape_poly_state=lowering_result.shape_poly_state)
def _pmap_unmap_shaped_array(size: int, axis: int | None, aval: ShapedArray
) -> ShapedArray:
if axis is None: return aval
elif type(axis) is int:
return ShapedArray(tuple_update(aval.shape, axis, size), aval.dtype,
weak_type=aval.weak_type)
else: raise TypeError(axis)
AvalMapHandlerPair = tuple[Any, Callable]
_pmap_aval_mapping_handlers: dict[type, AvalMapHandlerPair] = {
ShapedArray: (Any, _pmap_unmap_shaped_array),
}
def _pmap_unmapped_aval(size: core.AxisSize, axis: int | None,
aval: core.AbstractValue) -> core.AbstractValue:
if not config.pmap_no_rank_reduction.value:
return core.unmapped_aval(size, axis, aval)
_, handler = _pmap_aval_mapping_handlers.get(type(aval), (None, None))
if handler is not None:
return handler(size, axis, aval)
else:
raise TypeError(f"no unmapping handler for {aval} of type {type(aval)}")
class PmapComputation(stages.XlaLowering):
_hlo: ir.Module
_executable: PmapExecutable | None
def __init__(self, hlo: ir.Module, **compile_args):
self._executable = None
self._hlo = hlo
self.compile_args = compile_args
# -- stages.XlaLowering overrides
def stablehlo(self) -> ir.Module:
return self._hlo
@profiler.annotate_function
def compile(self, compiler_options=None) -> PmapExecutable:
if self._executable is None or compiler_options is not None:
executable = UnloadedPmapExecutable.from_hlo(
self._hlo, **self.compile_args,
compiler_options=compiler_options)
if compiler_options is None:
self._executable = executable
return executable
return self._executable
def _cast_to_shaped_array(aval: core.AbstractValue) -> ShapedArray:
assert isinstance(aval, ShapedArray), aval
return aval
@dataclasses.dataclass
class UnloadedPmapExecutable:
compiled: Any
backend: xb.XlaBackend
local_input_avals: Sequence[core.AbstractValue]
input_shardings: Sequence[JSharding]
local_output_avals: Sequence[ShapedArray]
output_shardings: Sequence[JSharding]
unordered_effects: list[core.Effect]
ordered_effects: list[core.Effect]
keepalive: Sequence[Any]
host_callbacks: Sequence[Any]
jaxpr_debug_info: core.DebugInfo
def build_execute_fun(self):
input_indices = []
for aval, spec in safe_zip(self.local_input_avals, self.input_shardings):
assert isinstance(spec, sharding_impls.PmapSharding), spec
assert isinstance(aval, core.ShapedArray), aval
input_indices.append(
sharding_specs.spec_to_indices(aval.shape, spec.sharding_spec)
if spec.sharding_spec is not None else None)
handle_outs = local_avals_to_results_handler(self.local_output_avals,
self.output_shardings)
handle_args = InputsHandler(self.input_shardings,
[None] * len(self.input_shardings),
self.compiled.local_devices(), input_indices)
execute_fun = ExecuteReplicated(self.compiled, "parallel computation",
self.backend, handle_args, handle_outs,
self.unordered_effects,
self.ordered_effects, self.keepalive,
bool(self.host_callbacks),
set(range(len(input_indices))), None)
return execute_fun
def load(self) -> PmapExecutable:
fingerprint = getattr(self.compiled, "fingerprint", None)
return PmapExecutable(
self.compiled, self.build_execute_fun, fingerprint,
self.local_input_avals, self)
@staticmethod
def from_hlo(hlo: ir.Module,
pci: ParallelCallableInfo,
replicas: ReplicaInfo,
shards: ShardInfo,
tuple_args: bool,
unordered_effects: list[core.Effect],
ordered_effects: list[core.Effect],
host_callbacks: list[Any],
keepalive: Any,
jaxpr_debug_info: core.DebugInfo,
platforms: Sequence[str],
shape_poly_state: mlir.ShapePolyLoweringState | None = None,
compiler_options=None):
del platforms
if shape_poly_state is not None and shape_poly_state.uses_dim_vars:
hlo = mlir.refine_polymorphic_shapes(hlo)
devices = pci.devices
if devices is None:
if shards.num_global_shards > xb.device_count(pci.backend):
msg = ("compiling computation that requires {} logical devices, but only {} XLA "
"devices are available (num_replicas={})")
raise ValueError(msg.format(shards.num_global_shards,
xb.device_count(pci.backend),
replicas.num_global_replicas))
# On a single host, we simply grab the first N devices from jax.devices().
# In the single host case, we want the default device order of pmap to
# match jax.devices().
# On multiple hosts, we create a default device assignment that ensures
# each host is responsible for a contiguous set of replicas.
if shards.num_global_shards > shards.num_local_shards:
# TODO(skye): use a locality-aware assignment that satisfies the above
# constraint.
devices = [d for process_index in range(xb.process_count(pci.backend))
for d in xb.local_devices(process_index, pci.backend)]
else:
devices = xb.local_devices(backend=pci.backend)[:shards.num_local_shards]
else:
if shards.num_local_shards != len(pci.local_devices):
local_devices_str = ", ".join(map(str, pci.local_devices))
if shards.num_local_shards == pci.axis_size:
raise ValueError(
f"Leading axis size of input to pmapped function must equal the "
f"number of local devices passed to pmap. Got axis_size="
f"{pci.axis_size}, num_local_devices={len(pci.local_devices)}.\n"
f"(Local devices available to pmap: {local_devices_str})")
else:
raise ValueError(
f"pmapped function requires {shards.num_local_shards} local "
f"devices to run due to nested pmapped or other parallel "
f"functions, but only {len(pci.local_devices)} are available.\n"
f"(outer axis size: {pci.axis_size}, local devices available to "
f"pmap: {local_devices_str})")
if shards.num_global_shards != len(devices):
raise ValueError("compiling computation that creates %s shards, "
"but %s devices were specified" %
(shards.num_global_shards, len(devices)))
# 'devices' may be 1D or 2D at this point (e.g.
# get_default_device_assignment() returns 2D assignment, caller may have
# provided 1D list of devices).
# Convert to 2D in case it's 1D and we have > 1 partitions.
num_partitions = 1
device_assignment: np.ndarray = np.array(devices).reshape(
(replicas.num_global_replicas, num_partitions))
compile_options = compiler.get_compile_options(
num_replicas=replicas.num_global_replicas,
num_partitions=num_partitions,
device_assignment=device_assignment,
use_spmd_partitioning=False,
env_options_overrides=compiler_options,
detailed_logging=compiler.use_detailed_logging(hlo),
backend=pci.backend,
)
compile_options.parameter_is_tupled_arguments = tuple_args
process_index = xb.process_index(pci.backend)
local_device_assignment = np.array([
d for d in device_assignment.flat if d.process_index == process_index
])
input_sharding_specs = [
sharding_specs.pmap_sharding_spec(
replicas.num_local_replicas, pci.axis_size,
cast(ShapedArray, aval).shape, in_axis)
for aval, in_axis in safe_zip(shards.sharded_avals, pci.in_axes)]
in_shardings = _get_pmap_sharding(local_device_assignment,
input_sharding_specs)
local_unmapped_avals = [
_cast_to_shaped_array(
_pmap_unmapped_aval(pci.axis_size, out_axis, aval))
if out_axis is not None else aval
for aval, out_axis in safe_zip(shards.out_sharded_avals, pci.out_axes)]
out_specs = [
sharding_specs.pmap_sharding_spec(
replicas.num_local_replicas, pci.axis_size, aval.shape, out_axis)
for aval, out_axis in safe_zip(
shards.out_sharded_avals, pci.out_axes)]
out_shardings = _get_pmap_sharding(local_device_assignment, out_specs)
with dispatch.log_elapsed_time(
"Finished XLA compilation of {fun_name} in {elapsed_time:.9f} sec",
fun_name=pci.name, event=dispatch.BACKEND_COMPILE_EVENT):
compiled = compiler.compile_or_get_cached(
pci.backend, hlo, device_assignment, compile_options,
host_callbacks)
return UnloadedPmapExecutable(
compiled=compiled,
backend=pci.backend,
local_input_avals=pci.avals,
input_shardings=in_shardings,
local_output_avals=local_unmapped_avals,
output_shardings=out_shardings,
unordered_effects=unordered_effects,
ordered_effects=ordered_effects,
keepalive=keepalive,
host_callbacks=host_callbacks,
jaxpr_debug_info=jaxpr_debug_info).load()
class PmapExecutable(stages.XlaExecutable):
__slots__ = ["xla_executable", "_unsafe_call", "build_unsafe_call",
"fingerprint", "in_avals", "_unloaded_executable"]
def __init__(self, xla_executable, build_unsafe_call, fingerprint,
in_avals,
unloaded_executable: UnloadedPmapExecutable):
self.xla_executable = xla_executable
self._unsafe_call = None
self.build_unsafe_call = build_unsafe_call
self.fingerprint = fingerprint
self.in_avals = in_avals
self._unloaded_executable = unloaded_executable
@property
def unsafe_call(self) -> Callable[..., Any]:
if self._unsafe_call is None:
self._unsafe_call = self.build_unsafe_call()
return self._unsafe_call # type: ignore
# -- stages.XlaExecutable overrides
def xla_extension_executable(self):
return self.xla_executable
@profiler.annotate_function
def call(self, *args):
# TODO(frostig): do we need to check sharding and sharded avals?
arg_avals = map(core.abstractify, args)
check_arg_avals_for_call(self.in_avals, arg_avals,
self._unloaded_executable.jaxpr_debug_info)
return self.unsafe_call(*args) # pylint: disable=not-callable
def _get_pmap_sharding(devices, specs):
return [sharding_impls.PmapSharding(devices, spec) for spec in specs]
class InputsHandler:
__slots__ = ("handler", "in_shardings", "in_layouts", "local_devices",
"input_indices")
def __init__(self, in_shardings, in_layouts, local_devices=None,
input_indices=None):
self.handler = partial(shard_args, in_shardings, in_layouts,
[None] * len(in_shardings))
self.in_shardings = in_shardings
self.in_layouts = in_layouts
self.local_devices = local_devices
self.input_indices = input_indices
def __call__(self, input_buffers):
return self.handler(input_buffers)
def __str__(self):
return ("InputsHandler(\n"
f"in_shardings={self.in_shardings},\n"
f"in_layouts={self.in_layouts},\n"
f"local_devices={self.local_devices},\n"
f"input_indices={self.input_indices})")
class ResultsHandler:
# `out_avals` is the `Array` global avals when using pjit. It is the
# local one when using `pmap`.
__slots__ = ("handlers", "out_shardings", "out_avals")
def __init__(self, handlers, out_shardings, out_avals):
self.handlers = handlers
self.out_shardings = out_shardings
self.out_avals = out_avals
def __call__(self, out_bufs):
return [h(bufs) for h, bufs in safe_zip(self.handlers, out_bufs)]
def local_avals_to_results_handler(
unmapped_local_out_avals: Sequence[ShapedArray],
local_shardings: Sequence[JSharding]) -> ResultsHandler:
out_indices = [tuple(s.devices_indices_map(aval.shape).values())
for s, aval in safe_zip(local_shardings, unmapped_local_out_avals)]
handlers = [
local_aval_to_result_handler(aval, s, idcs)
for aval, s, idcs in safe_zip(unmapped_local_out_avals, local_shardings, out_indices)
]
return ResultsHandler(handlers, local_shardings, unmapped_local_out_avals)
def global_avals_to_results_handler(
global_out_avals: Sequence[ShapedArray],
shardings: Sequence[JSharding],
committed: bool) -> ResultsHandler:
handlers = [
global_aval_to_result_handler(global_aval, s, committed)
for global_aval, s in safe_zip(global_out_avals, shardings)
]
return ResultsHandler(handlers, shardings, global_out_avals)
class ExecuteReplicated:
"""The logic to shard inputs, execute a replicated model, returning outputs."""
__slots__ = ['xla_executable', 'name', 'backend', 'in_handler', 'out_handler',
'has_unordered_effects', 'ordered_effects', 'keepalive',
'has_host_callbacks', '_local_devices', 'kept_var_idx',
'mut', 'pgle_profiler', '__weakref__']
def __init__(self, xla_executable, name, backend, in_handler: InputsHandler,
out_handler: ResultsHandler,
unordered_effects: list[core.Effect],
ordered_effects: list[core.Effect], keepalive: Any,
has_host_callbacks: bool, kept_var_idx: set[int],
mut: MutationData | None,
pgle_profiler: profiler.PGLEProfiler | None = None):
self.xla_executable = xla_executable
self.name = name
self.backend = backend
self.in_handler = in_handler
self.out_handler = out_handler
self.has_unordered_effects = bool(unordered_effects)
self.ordered_effects = ordered_effects
self._local_devices = self.xla_executable.local_devices()
self.keepalive = keepalive
self.has_host_callbacks = has_host_callbacks
self.kept_var_idx = kept_var_idx
self.mut = mut
self.pgle_profiler = pgle_profiler
def _add_tokens_to_inputs(self, input_bufs):
if self.ordered_effects:
tokens = [
dispatch.runtime_tokens.get_token_input(eff, self._local_devices)._buf
for eff in self.ordered_effects
]
input_bufs = [*tokens, *input_bufs]
return input_bufs
def _handle_token_bufs(self, token_bufs, sharded_token):
# token_bufs: Sequence[Sequence[tokenArray]], for each effect the returned
# token buffers.
# sharded_token: ShardedToken, containing the RuntimeTokens for each device
for i, device in enumerate(self._local_devices):
dispatch.runtime_tokens.set_output_runtime_token(
device, sharded_token.get_token(i))
for eff, token_buf in zip(self.ordered_effects, token_bufs):
assert len(token_buf) > 0
if len(token_buf) == 1:
dispatch.runtime_tokens.set_token_result(eff, core.Token(token_buf[0]))
else:
token_devices = []
for token in token_buf:
assert isinstance(token.sharding, sharding_impls.SingleDeviceSharding)
token_devices.append(token.sharding._device_assignment[0])
s = PositionalSharding(token_devices)
global_token_array = jax.make_array_from_single_device_arrays(
(0,), s, token_buf
)
dispatch.runtime_tokens.set_token_result(
eff, core.Token(global_token_array)
)
@profiler.annotate_function
def __call__(self, *args):
args = [x for i, x in enumerate(args) if i in self.kept_var_idx]
if self.mut:
args = [*args, *self.mut.in_mut]
input_bufs = self.in_handler(args)
with profiler.PGLEProfiler.trace(self.pgle_profiler):
if (self.ordered_effects or self.has_unordered_effects
or self.has_host_callbacks):
input_bufs = self._add_tokens_to_inputs(input_bufs)
results = self.xla_executable.execute_sharded(
input_bufs, with_tokens=True
)
result_token_bufs = results.disassemble_prefix_into_single_device_arrays(
len(self.ordered_effects))
sharded_runtime_token = results.consume_token()
self._handle_token_bufs(result_token_bufs, sharded_runtime_token)
else:
results = self.xla_executable.execute_sharded(input_bufs)
if dispatch.needs_check_special():
out_arrays = results.disassemble_into_single_device_arrays()
for arrays in out_arrays:
dispatch.check_special(self.name, arrays)
out = self.out_handler(out_arrays)
else:
out = results.consume_with_handlers(self.out_handler.handlers)
if (self.pgle_profiler is not None and self.pgle_profiler.is_running()
and len(out) > 0):
out[0].block_until_ready()
if self.mut is None:
return out
else:
out_ = []
for i, o in zip(self.mut.out_mut, out):
if i is not None:
args[i]._buf = o
else:
out_.append(o)
return out_
xla_pmap_p = core.MapPrimitive('xla_pmap')
xla_pmap = xla_pmap_p.bind
xla_pmap_p.def_impl(xla_pmap_impl)
def _pmap_partial_eval_custom_params_updater(
unks_in, inst_in, kept_outs_known, kept_outs_staged, num_res, params_known,
params_staged):
# prune inputs to jaxpr_known according to unks_in
donated_invars_known, _ = partition_list(unks_in, params_known['donated_invars'])
in_axes_known, _ = partition_list(unks_in, params_known['in_axes'])
_, out_axes_known = partition_list(kept_outs_known, params_known['out_axes'])
out_axes_known = out_axes_known + [0] * num_res
new_params_known = dict(params_known, in_axes=tuple(in_axes_known),
out_axes=tuple(out_axes_known),
donated_invars=tuple(donated_invars_known))
# added num_res new inputs to jaxpr_staged, pruning according to inst_in
_, donated_invars_staged = partition_list(inst_in, params_staged['donated_invars'])
donated_invars_staged = [False] * num_res + donated_invars_staged
_, in_axes_staged = partition_list(inst_in, params_staged['in_axes'])
in_axes_staged = [0] * num_res + in_axes_staged
_, out_axes_staged = partition_list(kept_outs_staged, params_staged['out_axes'])
new_params_staged = dict(params_staged, in_axes=tuple(in_axes_staged),
out_axes=tuple(out_axes_staged),
donated_invars=tuple(donated_invars_staged))
return new_params_known, new_params_staged
def _pmap_partial_eval_custom_res_maker(params_known, aval):
return core.unmapped_aval(params_known['axis_size'], 0, aval)
def _pmap_dce_rule(used_outputs, eqn):
# just like pe.dce_jaxpr_call_rule, except handles in_axes / out_axes
if not any(used_outputs) and not pe.has_effects(eqn):
return [False] * len(eqn.invars), None
axis_name = eqn.params["axis_name"]
with core.extend_axis_env_nd([(axis_name, eqn.params["global_axis_size"])]):
new_jaxpr, used_inputs = pe.dce_jaxpr(eqn.params['call_jaxpr'], used_outputs)
_, donated_invars = partition_list(used_inputs, eqn.params['donated_invars'])
_, in_axes = partition_list(used_inputs, eqn.params['in_axes'])
_, out_axes = partition_list(used_outputs, eqn.params['out_axes'])
new_params = dict(eqn.params, call_jaxpr=new_jaxpr,
donated_invars=tuple(donated_invars),
in_axes=tuple(in_axes), out_axes=tuple(out_axes))
if not any(used_inputs) and not any(used_outputs) and not new_jaxpr.effects:
return used_inputs, None
else:
effs = core.filter_named_axis_effects(new_jaxpr.effects, {axis_name})
new_eqn = pe.new_jaxpr_eqn(
[v for v, used in zip(eqn.invars, used_inputs) if used],
[v for v, used in zip(eqn.outvars, used_outputs) if used],
eqn.primitive, new_params, effs, eqn.source_info)
return used_inputs, new_eqn
def _xla_call_partial_eval_update_params(
params: core.ParamDict, kept_inputs: Sequence[bool], num_new_inputs: int
) -> core.ParamDict:
donated_invars = params['donated_invars']
if not kept_inputs and donated_invars:
# JaxprTrace.post_process_call creates a call with no input tracers
donated_invars = (False,) * num_new_inputs
else:
assert len(kept_inputs) == len(donated_invars)
# JaxprTrace.process_call drops known input tracers
donated_invars = [d for d, kept in zip(donated_invars, kept_inputs) if kept]
# Any new inputs are prepended to the left, so mark those as not donated.
donated_invars = [False] * num_new_inputs + donated_invars
return dict(params, donated_invars=tuple(donated_invars))
def xla_call_jvp_update_params(params, nz_tangents):
donated_invars = params['donated_invars']
donated_tangents = [d for d, nz in zip(donated_invars, nz_tangents) if nz]
new_donated_invars = (*donated_invars, *donated_tangents)
return dict(params, donated_invars=new_donated_invars)
def _xla_call_linearize_update_params(params, residual_avals, nz_tangents):
donated_invars_prev = params['donated_invars']
donated_invars = (*(False for _ in residual_avals),
*(d for d, nz in zip(donated_invars_prev, nz_tangents) if nz))
return dict(params, donated_invars=donated_invars)
def _xla_call_transpose_update_params(params, undef_primals, nonzero_cts):
donated_invars = params['donated_invars']
donated_primals = [d for d, u in zip(donated_invars, undef_primals) if not u]
donated_cotangents = [False for nz in nonzero_cts if nz]
return dict(params, donated_invars=(*donated_primals, *donated_cotangents))
# Set param update handlers to update `donated_invars` just like xla_call_p
pe.call_param_updaters[xla_pmap_p] = _xla_call_partial_eval_update_params
pe.partial_eval_jaxpr_custom_rules[xla_pmap_p] = \
partial(pe.call_partial_eval_custom_rule,
'call_jaxpr', _pmap_partial_eval_custom_params_updater,
res_aval=_pmap_partial_eval_custom_res_maker)
pe.dce_rules[xla_pmap_p] = _pmap_dce_rule
ad.call_param_updaters[xla_pmap_p] = xla_call_jvp_update_params
ad.call_linearize_param_updaters[xla_pmap_p] = _xla_call_linearize_update_params
ad.call_transpose_param_updaters[xla_pmap_p] = _xla_call_transpose_update_params
ad.primitive_transposes[xla_pmap_p] = partial(ad.map_transpose, xla_pmap_p)
def _unravel_index_hlo(axis_env):
div = mlir.ir_constant(
np.array(axis_env.nreps // math.prod(axis_env.sizes), np.uint32))
mod = mlir.ir_constant(np.array(axis_env.sizes[-1], np.uint32))
return hlo.remainder(hlo.divide(hlo.replica_id(), div), mod)
def _hlo_shard(aval, axis_env, x, in_axis):
if aval is core.abstract_token:
return x
elif isinstance(aval, core.ShapedArray):
if dtypes.issubdtype(aval.dtype, dtypes.extended):
aval = core.physical_element_aval(aval.dtype)
dims = list(aval.shape)
zero = mlir.ir_constant(np.zeros((), dtype=np.uint32))
idxs = [zero] * len(dims)
idxs.insert(in_axis, _unravel_index_hlo(axis_env))
dims_unsqueezed = dims.copy()
dims_unsqueezed.insert(in_axis, 1)
dynamic_slice_result = hlo.dynamic_slice(
x, idxs, mlir.dense_int_array(dims_unsqueezed))
return hlo.reshape(mlir.aval_to_ir_type(aval), dynamic_slice_result)
else:
raise TypeError(aval)
def _axis_read(axis_env, axis_name):
try:
return max(i for i, name in enumerate(axis_env.names) if name == axis_name)
except ValueError:
raise NameError(f"unbound axis name: {axis_name}") from None
def axis_groups(axis_env: sharding_impls.AxisEnv, name) -> tuple[tuple[int, ...]]:
if not isinstance(name, (list, tuple)):
name = (name,)
mesh_axes = tuple(unsafe_map(partial(_axis_read, axis_env), name))
trailing_size, ragged = divmod(axis_env.nreps, math.prod(axis_env.sizes))
assert not ragged
mesh_spec = axis_env.sizes + (trailing_size,)
return _axis_groups(mesh_spec, mesh_axes)
def _axis_groups(mesh_spec, mesh_axes):
"""Computes replica group ids for a collective performed over a subset of the mesh.
Args:
mesh_spec: A sequence of integers representing the mesh shape.
mesh_axes: A sequence of integers between 0 and `len(mesh_spec)` (exclusive)
indicating over which axes the collective is performed.
Returns:
A tuple of replica groups (i.e. tuples containing replica ids).
"""
iota = np.arange(math.prod(mesh_spec)).reshape(mesh_spec)
groups = np.reshape(
np.moveaxis(iota, mesh_axes, np.arange(len(mesh_axes))),
(math.prod(np.take(mesh_spec, mesh_axes)), -1))
return tuple(unsafe_map(tuple, groups.T))
# TODO(b/110096942): more efficient gather
def _hlo_unshard(ctx: mlir.LoweringRuleContext, aval, axis_env, out_axis, x):
if aval is core.abstract_token:
return x
elif isinstance(aval, core.ShapedArray):
dims = list(aval.shape)
padded_aval = aval.update(shape=[axis_env.sizes[-1]] + dims)
padded = mlir.full_like_aval(ctx, 0, padded_aval)
zero = mlir.ir_constant(np.zeros((), dtype=np.uint32))
idxs = [_unravel_index_hlo(axis_env)] + [zero] * len(dims)
broadcast_result = hlo.broadcast(x, mlir.dense_int_array([1]))
padded = hlo.dynamic_update_slice(padded, broadcast_result, idxs)
replica_groups = mlir.dense_int_elements(
axis_groups(axis_env, axis_env.names[-1]))
out = hlo.cross_replica_sum(padded, replica_groups)
if out_axis != 0:
# TODO(apaszke,mattjj): Change the indices to DynamicUpdateSlice instead
perm = list(range(1, len(dims)))
perm.insert(out_axis, 0)
transposed_dims = list(dims)
transposed_dims.insert(out_axis, axis_env.sizes[-1])
out = hlo.transpose(out, mlir.dense_int_array(perm))
return out
else:
raise TypeError(aval)
def _extend_axis_env(env: sharding_impls.AxisEnv, name, size: int):
return sharding_impls.AxisEnv(env.nreps, env.names + (name,),
env.sizes + (size,))
def _pmap_lowering(ctx, *in_nodes, axis_name,
axis_size, global_axis_size, devices, name,
call_jaxpr, backend=None, in_axes, out_axes,
donated_invars, is_explicit_global_axis_size):
del donated_invars # Unused.
mlir.check_backend_matches(backend, ctx.module_context.platforms)
# We in-line here rather than generating a Call HLO as in the xla_call
# translation rule just because the extra tuple stuff is a pain.
if ctx.module_context.axis_env.names and devices is not None:
raise ValueError("Nested pmap with explicit devices argument.")
new_env = _extend_axis_env(ctx.module_context.axis_env, axis_name,
global_axis_size)
# Shard the in_nodes that are mapped
in_avals = [v.aval for v in call_jaxpr.invars]
in_nodes_sharded = (
_hlo_shard(aval, new_env, in_node, in_axis)
if in_axis is not None else in_node
for aval, in_node, in_axis in zip(in_avals, in_nodes, in_axes))
with core.extend_axis_env_nd([(axis_name, global_axis_size)]):
sub_ctx = ctx.module_context.replace(
axis_context=sharding_impls.ReplicaAxisContext(new_env))
sharded_outs, _ = mlir.jaxpr_subcomp(
sub_ctx, call_jaxpr,
ctx.name_stack.extend(util.wrap_name(name, 'pmap')),
mlir.TokenSet(), (), *in_nodes_sharded,
dim_var_values=ctx.dim_var_values)
out_avals = [v.aval for v in call_jaxpr.outvars]
outs = [_hlo_unshard(ctx, aval, new_env, out_axis, shard)
for aval, out_axis, shard in zip(out_avals, out_axes, sharded_outs)]
return outs
mlir.register_lowering(xla_pmap_p, _pmap_lowering)
def tile_aval_nd(axis_sizes, in_axes: ArrayMapping, aval):
assert isinstance(aval, ShapedArray)
shape = list(aval.shape)
for name, axis in in_axes.items():
assert shape[axis] % axis_sizes[name] == 0
shape[axis] //= axis_sizes[name]
return aval.update(shape=tuple(shape))
def untile_aval_nd(axis_sizes, out_axes: ArrayMapping, aval):
assert isinstance(aval, ShapedArray)
shape = list(aval.shape)
for name, axis in out_axes.items():
shape[axis] *= axis_sizes[name]
return aval.update(shape=tuple(shape))
def mesh_local_to_global(mesh, axes: ArrayMapping, aval):
return untile_aval_nd(mesh.shape, axes,
tile_aval_nd(mesh.local_mesh.shape, axes, aval))
def mesh_global_to_local(mesh, axes: ArrayMapping, aval):
return untile_aval_nd(mesh.local_mesh.shape, axes,
tile_aval_nd(mesh.shape, axes, aval))
full_to_shard_p = core.Primitive('full_to_shard')
@full_to_shard_p.def_abstract_eval
def _full_to_shard_abstract_eval(x, axes, mesh, **_):
# TODO: Assert x is a global aval! Or ideally check that it's global in dims from axes!
return tile_aval_nd(mesh.shape, axes, x)
def manual_proto(
aval: core.ShapedArray,
manual_axes_set: frozenset[sharding_impls.MeshAxisName], mesh: Mesh):
"""Create an OpSharding proto that declares all mesh axes from `axes` as manual
and all others as replicated.
"""
named_mesh_shape = mesh.shape
mesh_shape = list(named_mesh_shape.values())
axis_order = {axis: i for i, axis in enumerate(mesh.axis_names)}
manual_axes = sorted(manual_axes_set, key=str)
replicated_axes = [axis for axis in mesh.axis_names
if axis not in manual_axes_set]
tad_perm = ([axis_order[a] for a in replicated_axes] +
[axis_order[a] for a in manual_axes])
tad_shape = [1] * aval.ndim
tad_shape.append(math.prod([named_mesh_shape[a] for a in replicated_axes]))
tad_shape.append(math.prod([named_mesh_shape[a] for a in manual_axes]))
proto = xc.OpSharding()
proto.type = xc.OpSharding.Type.OTHER
proto.tile_assignment_dimensions = tad_shape
proto.iota_reshape_dims = mesh_shape
proto.iota_transpose_perm = tad_perm
proto.last_tile_dims = [xc.OpSharding.Type.REPLICATED, xc.OpSharding.Type.MANUAL]
return proto
@partial(mlir.register_lowering, full_to_shard_p)
def _full_to_shard_lowering(ctx, x, *, axes: ArrayMapping, mesh: Mesh,
manual_axes: frozenset[sharding_impls.MeshAxisName]):
# TODO: Can we short-circuit for replicated values? Probably not.
aval_in, = ctx.avals_in
aval_out, = ctx.avals_out
sharding_proto = (
NamedSharding(mesh, array_mapping_to_axis_resources(axes))
._to_xla_hlo_sharding(aval_in.ndim).to_proto())
unspecified_dims = set(range(aval_in.ndim)) - set(axes.values())
sx = mlir.wrap_with_sharding_op(ctx, x, aval_in, sharding_proto,
unspecified_dims=unspecified_dims)
proto = manual_proto(aval_in, manual_axes, mesh)
return (mlir.wrap_with_full_to_shard_op(ctx, sx, aval_out, proto,
unspecified_dims=unspecified_dims),)
shard_to_full_p = core.Primitive('shard_to_full')
@shard_to_full_p.def_abstract_eval
def _shard_to_full_abstract_eval(x, axes, mesh, **_):
# TODO: Assert x is a global aval! Or ideally check that it's global in dims from axes!
return untile_aval_nd(mesh.shape, axes, x)
@partial(mlir.register_lowering, shard_to_full_p)
def _shard_to_full_lowering(ctx: mlir.LoweringRuleContext, x, *, axes: ArrayMapping, mesh: Mesh,
manual_axes: frozenset[sharding_impls.MeshAxisName]):
aval_in, = ctx.avals_in
aval_out, = ctx.avals_out
proto = manual_proto(aval_in, manual_axes, mesh) # type: ignore
unspecified_dims = set(range(aval_in.ndim)) - set(axes.values()) # type: ignore
sx = mlir.wrap_with_sharding_op(ctx, x, aval_in, proto,
unspecified_dims=unspecified_dims)
sharding_proto = (
NamedSharding(mesh, array_mapping_to_axis_resources(axes))
._to_xla_hlo_sharding(aval_out.ndim).to_proto())
return (mlir.wrap_with_shard_to_full_op(ctx, sx, aval_out, sharding_proto,
unspecified_dims),)
def check_if_any_auto(
shardings: Iterable[(JSharding | AUTO | UnspecifiedValue)]) -> bool:
for s in shardings:
if isinstance(s, AUTO):
return True
return False
class MismatchType(enum.Enum):
ARG_SHARDING = 0
OUT_SHARDING = 1
SHARDING_INSIDE_COMPUTATION = 2
CONTEXT_DEVICES = 3
IN_SHARDING = 4
def __str__(self):
if self.name == 'IN_SHARDING':
return 'explicit input sharding'
elif self.name == 'OUT_SHARDING':
return 'explicit output sharding'
elif self.name == 'CONTEXT_DEVICES':
return 'devices'
return f'{self.name}'
@dataclasses.dataclass
class DeviceAssignmentMismatch:
da: Sequence[xc.Device]
m_type: MismatchType
source_info: dispatch.SourceInfo | None
@property
def device_ids(self) -> Sequence[int]:
return [d.id for d in self.da]
@property
def platform(self) -> str:
return self.da[0].platform.upper()
def _maybe_api_name(self, api_name) -> str:
return f" {api_name}'s" if self.m_type == MismatchType.CONTEXT_DEVICES else ""
@property
def source_info_str(self):
return (
"" if self.source_info is None
else f" at {source_info_util.summarize(self.source_info.source_info)}"
)
@property
def _dev_ids_plat_str(self):
return f"device ids {self.device_ids} on platform {self.platform}"
def m_type_str(self, api_name):
return (f'{self.source_info and self.source_info.eqn_name} inside {api_name}'
if self.m_type == MismatchType.SHARDING_INSIDE_COMPUTATION else self.m_type)
def _str(self, api_name):
return (f"{self._maybe_api_name(api_name)} {self.m_type_str(api_name)} with "
f"{self._dev_ids_plat_str}{self.source_info_str}")
class DeviceAssignmentMismatchError(Exception):
pass
ShardingInfo = tuple[
Union[JSharding, UnspecifiedValue, AUTO],
MismatchType,
Union[Any, None], # Any is dispatch.SourceInfo to avoid circular imports
]
def get_default_device() -> xc.Device:
if isinstance(config.default_device.value, str):
return xb.get_backend(config.default_device.value).local_devices()[0]
else:
return config.default_device.value or xb.local_devices()[0]
def _get_and_check_device_assignment(
shardings: Iterable[ShardingInfo],
devices: Sequence[xc.Device] | None,
) -> tuple[xc.Client, tuple[xc.Device, ...]]:
first_sharding_info = None
devices = () if devices is None else tuple(devices)
for sh, s_type, source_info in shardings:
if isinstance(sh, UnspecifiedValue):
continue
if isinstance(sh, NamedSharding) and isinstance(sh.mesh, AbstractMesh):
continue
if first_sharding_info is None:
first_sharding_info = (
(sh.mesh._flat_devices_tuple, s_type, source_info) if isinstance(sh, AUTO)
else (sh._device_assignment, s_type, source_info))
arr_device_assignment = (sh.mesh._flat_devices_tuple if isinstance(sh, AUTO)
else sh._device_assignment)
if not devices:
if first_sharding_info[0] != arr_device_assignment:
raise DeviceAssignmentMismatchError([
DeviceAssignmentMismatch(*first_sharding_info),
DeviceAssignmentMismatch(arr_device_assignment, s_type, source_info)])
else:
if devices != arr_device_assignment:
raise DeviceAssignmentMismatchError([
DeviceAssignmentMismatch(devices, MismatchType.CONTEXT_DEVICES, None),
DeviceAssignmentMismatch(arr_device_assignment, s_type, source_info)])
if first_sharding_info is None and devices:
final_device_assignment = devices
elif first_sharding_info is None:
final_device_assignment = (get_default_device(),)
else:
final_device_assignment = first_sharding_info[0] # type: ignore
return xb.get_device_backend(final_device_assignment[0]), final_device_assignment
MaybeSharding = Union[JSharding, UnspecifiedValue]
def prune_unused_inputs(
jaxpr: core.Jaxpr,
) -> tuple[core.Jaxpr, set[int], set[int]]:
used_outputs = [True] * len(jaxpr.outvars)
new_jaxpr, used_consts, used_inputs = pe.dce_jaxpr_consts(jaxpr, used_outputs)
kept_const_idx = {i for i, b in enumerate(used_consts) if b}
kept_var_idx = {i for i, b in enumerate(used_inputs) if b}
return new_jaxpr, kept_const_idx, kept_var_idx
@weakref_lru_cache
def _dce_jaxpr(closed_jaxpr, api_name, fun_name,
keep_unused, donated_invars, auto_spmd_lowering):
name_stack = source_info_util.new_name_stack(wrap_name(fun_name, api_name))
assert isinstance(closed_jaxpr, core.ClosedJaxpr)
jaxpr = closed_jaxpr.jaxpr
consts = closed_jaxpr.consts
in_avals = closed_jaxpr.in_avals
if (keep_unused or auto_spmd_lowering or
any(hasattr(a, "shape") and not core.is_constant_shape(a.shape)
for a in in_avals)):
kept_var_idx = set(range(len(in_avals)))
else:
jaxpr, kept_const_idx, kept_var_idx = prune_unused_inputs(jaxpr)
consts = [c for i, c in enumerate(consts) if i in kept_const_idx]
donated_invars = tuple(x for i, x in enumerate(donated_invars) if i in kept_var_idx)
del kept_const_idx
closed_jaxpr = core.ClosedJaxpr(jaxpr, consts)
return closed_jaxpr, donated_invars, kept_var_idx, name_stack
class MutationData(NamedTuple):
in_mut: list[core.MutableArray]
out_mut: list[int | None]
@weakref_lru_cache
def _discharge_refs(
jaxpr: core.ClosedJaxpr
) -> tuple[core.ClosedJaxpr, Sequence[int | None], MutationData]:
from jax._src.state.discharge import discharge_state
jaxpr, in_mut = _move_mutable_consts(jaxpr)
new_jaxpr = core.ClosedJaxpr(*discharge_state(jaxpr.jaxpr, jaxpr.consts))
count = it.count(len(jaxpr.out_avals)) # new outputs are appended to the end
inout_map = {i: next(count) for i, a in enumerate(jaxpr.in_avals)
if isinstance(a, AbstractRef)}
outin_map = {j: i for i, j in inout_map.items()}
inout_aliases = tuple(map(inout_map.get, range(len(new_jaxpr.in_avals))))
out_mut = list(map(outin_map.get, range(len(new_jaxpr.out_avals))))
return new_jaxpr, inout_aliases, MutationData(in_mut, out_mut)
@weakref_lru_cache
def _move_mutable_consts(
closed_jaxpr: core.ClosedJaxpr,
) -> tuple[core.ClosedJaxpr, list[core.MutableArray]]:
jaxpr = closed_jaxpr.jaxpr
hoist = [isinstance(c, core.MutableArray) for c in closed_jaxpr.consts]
consts, in_mut = partition_list(hoist, closed_jaxpr.consts)
constvars, mutvars = partition_list(hoist, jaxpr.constvars)
invars = (*jaxpr.invars, *mutvars)
effects = pe.make_jaxpr_effects(constvars, invars, jaxpr.outvars, jaxpr.eqns)
jaxpr = core.Jaxpr(constvars, invars, jaxpr.outvars, jaxpr.eqns,
effects, closed_jaxpr.jaxpr.debug_info)
return core.ClosedJaxpr(jaxpr, consts), in_mut
@weakref_lru_cache
def _discharge_internal_refs(jaxpr: core.ClosedJaxpr) -> core.ClosedJaxpr:
from jax._src.state.discharge import discharge_state
jaxpr_, consts = discharge_state(jaxpr.jaxpr, jaxpr.consts)
jaxpr_._debug_info = jaxpr.jaxpr._debug_info
return core.ClosedJaxpr(jaxpr_, consts)
class SemanticallyEqualShardings:
def __init__(self, shardings: tuple[GSPMDSharding | UnspecifiedValue, ...],
avals: tuple[core.AbstractValue]):
gspmd_shardings = [
s if (isinstance(s, (UnspecifiedValue, AUTO)) or
(isinstance(s, NamedSharding) and isinstance(s.mesh, AbstractMesh)))
else to_gspmd_sharding(s, a.ndim) # pytype: disable=attribute-error
for s, a in zip(shardings, avals)]
self._gspmd_shardings = gspmd_shardings
self.shardings = shardings
self.avals = avals
def __hash__(self):
return hash(tuple(
(s._hlo_sharding_hash, s.memory_kind)
if isinstance(s, GSPMDSharding) else s for s in self._gspmd_shardings))
def __eq__(self, other):
if not isinstance(other, SemanticallyEqualShardings):
return False
return all(
(op_shardings.are_op_shardings_equal(s._hlo_sharding, o._hlo_sharding)
and s.memory_kind == o.memory_kind)
if (isinstance(s, GSPMDSharding) and isinstance(o, GSPMDSharding))
else s == o
for s, o in zip(self._gspmd_shardings, other._gspmd_shardings)
)
def _raise_warnings_or_errors_for_jit_of_pmap(
nreps: int, backend: xc.Client, name: str, jaxpr: core.Jaxpr) -> None:
if nreps > 1:
warnings.warn(
f"The jitted function {name} includes a pmap. Using "
"jit-of-pmap can lead to inefficient data movement, as the outer jit "
"does not preserve sharded data representations and instead collects "
"input and output arrays onto a single device. "
"Consider removing the outer jit unless you know what you're doing. "
"See https://github.com/jax-ml/jax/issues/2926. Or "
"use jax.experimental.shard_map instead of pmap under jit compilation.")
if nreps > xb.device_count(backend):
raise ValueError(
f"compiling computation `{name}` that requires {nreps} replicas, but "
f"only {xb.device_count(backend)} XLA devices are available.")
if xb.process_count() > 1 and (
nreps > 1 or dispatch.jaxpr_has_primitive(jaxpr, "xla_pmap")
):
raise NotImplementedError(
"jit of multi-host pmap not implemented (and jit-of-pmap can cause "
"extra data movement anyway, so maybe you don't want it after all).")
@weakref_lru_cache
def _cached_lowering_to_hlo(closed_jaxpr, api_name, fun_name, backend,
semantic_in_shardings, semantic_out_shardings,
in_layouts, out_layouts, num_devices, device_assignment,
donated_invars, name_stack, all_default_mem_kind,
inout_aliases: None | tuple[None | int, ...],
propagated_out_mem_kinds: tuple[None | str, ...],
platforms: tuple[str, ...],
lowering_parameters: mlir.LoweringParameters,
abstract_mesh: AbstractMesh | None):
jaxpr = closed_jaxpr.jaxpr
in_shardings = semantic_in_shardings.shardings
out_shardings = semantic_out_shardings.shardings
global_in_avals = closed_jaxpr.in_avals
global_out_avals = closed_jaxpr.out_avals
log_priority = logging.WARNING if config.log_compiles.value else logging.DEBUG
if logger.isEnabledFor(log_priority):
logger.log(log_priority,
"Compiling %s with global shapes and types %s. "
"Argument mapping: %s.",
fun_name, global_in_avals, in_shardings)
# Look at the number of replcas present in the jaxpr. In
# lower_sharding_computation, nreps > 1 during `jit(pmap)` cases. This is
# handled here so as to deprecate the lower_xla_callable codepath when
# `jax.Array` is turned on by default.
# TODO(yashkatariya): Remove this when `jit(pmap)` is removed.
nreps = dispatch.jaxpr_replicas(jaxpr)
_raise_warnings_or_errors_for_jit_of_pmap(nreps, backend, fun_name, jaxpr)
in_mlir_shardings: list[JSharding | AUTO | None] | None
out_mlir_shardings: list[JSharding | AUTO | None] | None
axis_ctx: mlir.AxisContext
if nreps == 1:
in_mlir_shardings = map(_to_logical_sharding, global_in_avals, in_shardings)
out_mlir_shardings = map(_to_logical_sharding, global_out_avals, out_shardings)
replicated_args = [False] * len(global_in_avals)
axis_ctx = sharding_impls.ShardingContext(num_devices, device_assignment,
abstract_mesh)
num_partitions = num_devices
else:
# This path is triggered for `jit(pmap)` cases.
replicated_args = None
in_mlir_shardings = None
out_mlir_shardings = None
axis_env = sharding_impls.AxisEnv(nreps, (), ())
axis_ctx = sharding_impls.ReplicaAxisContext(axis_env)
num_partitions = 1
module_name = f"{api_name}_{fun_name}"
if num_devices > 1:
unsupported_effects = effects.ordered_effects.filter_in(closed_jaxpr.effects)
unsupported_effects = effects.shardable_ordered_effects.filter_not_in(
unsupported_effects)
if len(unsupported_effects) > 0:
raise ValueError(
"The following ordered effects are not supported for "
f"more than 1 device: {unsupported_effects}")
ordered_effects = list(effects.ordered_effects.filter_in(closed_jaxpr.effects))
with dispatch.log_elapsed_time(
"Finished jaxpr to MLIR module conversion {fun_name} in {elapsed_time:.9f} sec",
fun_name=str(name_stack), event=dispatch.JAXPR_TO_MLIR_MODULE_EVENT):
lowering_result = mlir.lower_jaxpr_to_module(
module_name,
closed_jaxpr,
ordered_effects=ordered_effects,
backend=backend,
platforms=platforms,
axis_context=axis_ctx,
name_stack=name_stack,
donated_args=donated_invars,
replicated_args=replicated_args,
arg_shardings=in_mlir_shardings,
result_shardings=out_mlir_shardings,
in_layouts=in_layouts,
out_layouts=out_layouts,
arg_names=jaxpr._debug_info and jaxpr._debug_info.safe_arg_names(len(jaxpr.invars)),
result_names=jaxpr._debug_info and jaxpr._debug_info.safe_result_paths(len(jaxpr.outvars)),
num_replicas=nreps,
num_partitions=num_partitions,
all_default_mem_kind=all_default_mem_kind,
input_output_aliases=inout_aliases,
propagated_out_mem_kinds=propagated_out_mem_kinds,
lowering_parameters=lowering_parameters)
tuple_args = dispatch.should_tuple_args(len(global_in_avals), backend.platform)
unordered_effects = list(
effects.ordered_effects.filter_not_in(closed_jaxpr.effects))
return (lowering_result.module, lowering_result.keepalive,
lowering_result.host_callbacks, unordered_effects, ordered_effects,
nreps, tuple_args, lowering_result.shape_poly_state)
@lru_cache(maxsize=2048)
def _create_da_object( # pytype: disable=invalid-annotation
device_assignment: tuple[xc.Device, ...]) -> xc.DeviceList:
return xc.DeviceList(device_assignment)
@weakref_lru_cache
def jaxpr_transfer_mem_kinds(
jaxpr: core.Jaxpr) -> Sequence[sharding_impls.TransferToMemoryKind]:
out = [] # type: ignore
for eqn in jaxpr.eqns:
if eqn.primitive is dispatch.device_put_p:
out.extend(d for d in eqn.params['devices']
if isinstance(d, sharding_impls.TransferToMemoryKind))
for subjaxpr in core.subjaxprs(jaxpr):
out.extend(jaxpr_transfer_mem_kinds(subjaxpr))
return out
def are_all_shardings_default_mem_kind(
da_object: xc.DeviceList | None, shardings
):
if da_object is None:
return True
try:
default_mem_kind = da_object.default_memory_kind
except:
return True
for i in shardings:
if isinstance(i, (UnspecifiedValue, AUTO)):
continue
if i.memory_kind is None: # pytype: disable=attribute-error
continue
if i.memory_kind != default_mem_kind:
return False
return True
memory_kind_propagate_rule: dict[Any, Any] = {}
@weakref_lru_cache
def get_out_memory_kinds_via_propagation(closed_jaxpr: core.ClosedJaxpr,
in_shardings=None) -> tuple[None | str]:
env = {} # type: ignore
jaxpr = closed_jaxpr.jaxpr
def read(var):
if type(var) is core.Literal:
return None
return env[var]
def write(var, val):
env[var] = val
def _default_rule(prim, num_outvars, *_, **__):
return [None] * num_outvars if prim.multiple_results else None
if in_shardings is None:
invar_mem_kind = [None] * len(jaxpr.invars)
else:
invar_mem_kind = [None if isinstance(s, (UnspecifiedValue, AUTO)) else s.memory_kind
for s in in_shardings]
safe_map(write, jaxpr.invars, invar_mem_kind)
safe_map(write, jaxpr.constvars, [None] * len(jaxpr.constvars))
for eqn in jaxpr.eqns:
in_mem_kinds = safe_map(read, eqn.invars)
rule = memory_kind_propagate_rule.get(
eqn.primitive, partial(_default_rule, eqn.primitive, len(eqn.outvars)))
out_mem_kinds = rule(*in_mem_kinds, **eqn.params)
if not eqn.primitive.multiple_results:
out_mem_kinds = [out_mem_kinds]
safe_map(write, eqn.outvars, out_mem_kinds)
return tuple(safe_map(read, jaxpr.outvars))
@weakref_lru_cache
def get_out_layouts_via_propagation(closed_jaxpr: core.ClosedJaxpr
) -> tuple[None | DeviceLocalLayout]:
from jax._src import pjit
env = {} # type: ignore
jaxpr = closed_jaxpr.jaxpr
def read(var):
if type(var) is core.Literal:
return None
return env[var]
def write(var, val):
env[var] = val
safe_map(write, jaxpr.invars, [None] * len(jaxpr.invars))
safe_map(write, jaxpr.constvars, [None] * len(jaxpr.constvars))
for eqn in jaxpr.eqns:
# TODO(yashkatariya): Replace this with a registration system when there are
# more primitives for layout propagation.
if eqn.primitive is pjit.sharding_constraint_p:
out_eqn_layouts = [eqn.params['layout']]
else:
out_eqn_layouts = [None] * len(eqn.outvars)
safe_map(write, eqn.outvars, out_eqn_layouts)
return tuple(safe_map(read, jaxpr.outvars))
def _get_num_devices(
shardings, device_assignment
) -> tuple[int, tuple[xc.Device, ...] | None]:
"""Number of lowering devices, and the device_assignment to use.
If all the specified shardings have an abstract mesh, then we are compiling
with abstract devices, and the returned device_assignment is None.
"""
abstract_mesh, any_concrete_sharding = None, False
for s in shardings:
if isinstance(s, UnspecifiedValue):
continue
elif (isinstance(s, NamedSharding) and isinstance(s.mesh, AbstractMesh) and
not s.mesh.empty):
if abstract_mesh is not None and abstract_mesh != s.mesh:
raise ValueError("AbstractMesh should be the same across all "
f"shardings. Got {abstract_mesh} and {s.mesh}")
abstract_mesh = s.mesh
else:
any_concrete_sharding = True
if (any_concrete_sharding and abstract_mesh is not None and
len(device_assignment) != abstract_mesh.size):
raise ValueError(
f"AbstractMesh size: {abstract_mesh.size} does not match the"
f" device assignment size: {len(device_assignment)}")
if any_concrete_sharding or abstract_mesh is None:
return len(device_assignment), device_assignment
return abstract_mesh.size, None
MaybeLayout = Sequence[Union[DeviceLocalLayout, AutoLayout, None]]
class AllArgsInfo(NamedTuple):
"""Avals and debug_info for all arguments prior to DCE."""
in_avals: Sequence[core.ShapedArray]
debug_info: core.DebugInfo | None
@lru_cache(maxsize=2048)
def to_gspmd_sharding(s: JSharding, ndim: int) -> GSPMDSharding:
if isinstance(s, GSPMDSharding):
return s
return GSPMDSharding(s._device_assignment, s._to_xla_hlo_sharding(ndim),
memory_kind=s.memory_kind,
_device_list=getattr(s, '_internal_device_list', None))
def _discharge_refs_jaxpr(closed_jaxpr, in_shardings, in_layouts,
donated_invars, out_shardings, out_layouts):
if any(isinstance(e, RefEffect) for e in closed_jaxpr.effects):
closed_jaxpr, inout_aliases, mut = _discharge_refs(closed_jaxpr)
in_shardings = (*in_shardings, *(c.sharding for c in mut.in_mut))
in_layouts = (*in_layouts,) + (None,) * len(mut.in_mut) # TODO(mattjj)
donated_invars = (*donated_invars,) + (False,) * len(mut.in_mut)
out_layouts_ = iter(zip(out_shardings, out_layouts))
out_shardings, out_layouts = unzip2(
next(out_layouts_) if i is None else (in_shardings[i], in_layouts[i])
for i in mut.out_mut)
assert next(out_layouts_, None) is None
else:
inout_aliases = mut = None
if any(isinstance(e, core.InternalMutableArrayEffect) for e in closed_jaxpr.effects):
closed_jaxpr = _discharge_internal_refs(closed_jaxpr)
return (closed_jaxpr, inout_aliases, mut, in_shardings, in_layouts,
donated_invars, out_shardings, out_layouts)
def _concretize_abstract_out_shardings(shardings, avals, device_assignment,
out_mem_kinds):
if device_assignment is None:
return shardings
if len(device_assignment) == 1:
return shardings
np_dev = np.vectorize(lambda i: device_assignment[i],
otypes=[object])(np.arange(len(device_assignment)))
@lru_cache(maxsize=128)
def _abstract_to_concrete_mesh(abstract_mesh):
return Mesh(
np_dev.reshape(abstract_mesh.axis_sizes), abstract_mesh.axis_names,
axis_types=abstract_mesh.axis_types)
out = []
for s, a, mem_kind in zip(shardings, avals, out_mem_kinds):
if isinstance(s, UnspecifiedValue) and a.sharding is not None:
if a.sharding.mesh.empty:
out.append(s)
else:
spec = (PartitionSpec(*[PartitionSpec.UNCONSTRAINED if sp is None else sp
for sp in a.sharding.spec])
if a.sharding.mesh._any_axis_auto else a.sharding.spec)
out.append(NamedSharding(
_abstract_to_concrete_mesh(a.sharding.mesh), spec,
memory_kind=mem_kind))
else:
out.append(s)
return tuple(out)
@profiler.annotate_function
def lower_sharding_computation(
closed_jaxpr: core.ClosedJaxpr,
api_name: str,
fun_name: str,
in_shardings: Sequence[MaybeSharding],
out_shardings: Sequence[MaybeSharding],
in_layouts: MaybeLayout,
out_layouts: MaybeLayout,
donated_invars: Sequence[bool],
*,
keep_unused: bool,
context_mesh: Mesh | None,
compiler_options_kvs: tuple[tuple[str, Any], ...],
lowering_platforms: tuple[str, ...] | None,
lowering_parameters: mlir.LoweringParameters,
pgle_profiler: profiler.PGLEProfiler | None,
) -> MeshComputation:
"""Lowers a computation to XLA. It can take arbitrary shardings as input.
The caller of this code can pass in a singleton UNSPECIFIED because the
number of out_avals might not be known at that time and
lower_sharding_computation calculates the number of out_avals so it can apply
the singleton UNSPECIFIED to all out_avals.
"""
auto_spmd_lowering = check_if_any_auto(
it.chain.from_iterable([in_shardings, out_shardings]))
all_args_info = AllArgsInfo(closed_jaxpr.in_avals, closed_jaxpr.jaxpr._debug_info)
closed_jaxpr, donated_invars, kept_var_idx, name_stack = _dce_jaxpr(
closed_jaxpr, api_name, fun_name, keep_unused, donated_invars,
auto_spmd_lowering)
in_shardings = tuple(s for i, s in enumerate(in_shardings) if i in kept_var_idx)
in_layouts = tuple(l for i, l in enumerate(in_layouts) if i in kept_var_idx)
(closed_jaxpr, inout_aliases, mut, in_shardings, in_layouts,
donated_invars, out_shardings, out_layouts) = _discharge_refs_jaxpr(
closed_jaxpr, in_shardings, in_layouts, donated_invars, out_shardings,
out_layouts)
jaxpr = closed_jaxpr.jaxpr
global_in_avals = closed_jaxpr.in_avals
global_out_avals = closed_jaxpr.out_avals
# If layout is propagated, then set the out_layout in the top module to AUTO
# so that XLA can override the entry_computation_layout. The propagated
# layout will be set via a custom call.
out_layouts_via_prop = get_out_layouts_via_propagation(closed_jaxpr)
out_layouts = tuple(DeviceLocalLayout.AUTO if p is not None else o
for o, p in safe_zip(out_layouts, out_layouts_via_prop))
assert len(out_shardings) == len(out_layouts) == len(global_out_avals), (
len(out_shardings), len(out_layouts), len(global_out_avals))
devices_from_context = (None if context_mesh is None or context_mesh.empty
else context_mesh._flat_devices_tuple)
# Device assignment across all inputs, outputs and shardings inside jaxpr
# should be the same.
unique_intermediate_shardings = util.stable_unique(
dispatch.get_intermediate_shardings(jaxpr))
unique_in_shardings = util.stable_unique(in_shardings)
unique_out_shardings = util.stable_unique(out_shardings)
backend, device_assignment = _get_and_check_device_assignment(
it.chain(
((i, MismatchType.ARG_SHARDING, None) for i in unique_in_shardings),
((o, MismatchType.OUT_SHARDING, None) for o in unique_out_shardings),
((js, MismatchType.SHARDING_INSIDE_COMPUTATION, source_info)
for js, source_info in unique_intermediate_shardings)),
devices_from_context)
unique_intermediate_shardings = [js for js, _ in unique_intermediate_shardings]
# TODO(parkers): One _raw_platform has been unified with platform,
# change this back to just read platform.
platforms = lowering_platforms or (
getattr(backend, "_raw_platform", backend.platform),)
prim_requires_devices = dispatch.jaxpr_has_prim_requiring_devices(jaxpr)
# TODO(yashkatariya): All device specific logic should go in compilation
# but this requires a big refactor. The current `_get_num_devices` logic
# is good enough to lower with AbstractMesh but cannot be compiled. Once
# I refactor, this will also work well with mesh being provided at
# compile time.
# Sets device_assignment to None if only abstractMesh and unspecified exists.
num_devices, device_assignment = _get_num_devices( # type: ignore
it.chain(unique_in_shardings, unique_out_shardings,
unique_intermediate_shardings),
device_assignment)
if device_assignment is None:
if lowering_platforms is None:
raise ValueError(
"Passing lowering_platforms via jax.export or "
" jit(f).trace(*args).lower(lowering_platforms=...) is required when"
" only AbstractMesh exists in a jitted computation.")
if prim_requires_devices:
raise ValueError(
"AbstractMesh cannot be used when jaxpr contains primitives that"
" require devices to be present during lowering.")
committed = bool(
devices_from_context
or num_devices > 1
or any(not isinstance(s, UnspecifiedValue) for s in it.chain(
unique_in_shardings, unique_out_shardings, unique_intermediate_shardings)))
da_object = (_create_da_object(tuple(device_assignment))
if device_assignment is not None else None)
transfer_mem_kind_in_jaxpr = jaxpr_transfer_mem_kinds(jaxpr)
all_default_mem_kind = are_all_shardings_default_mem_kind(
da_object,
it.chain(unique_in_shardings, unique_out_shardings,
unique_intermediate_shardings, transfer_mem_kind_in_jaxpr)) # pytype: disable=wrong-arg-types
if all_default_mem_kind:
propagated_out_mem_kinds = (None,) * len(global_out_avals)
else:
propagated_out_mem_kinds = get_out_memory_kinds_via_propagation(
closed_jaxpr, in_shardings)
if config.sharding_in_types.value:
out_shardings = _concretize_abstract_out_shardings(
out_shardings, global_out_avals, device_assignment,
propagated_out_mem_kinds)
# 2. Build up the HLO
abstract_mesh = None
if prim_requires_devices:
assert da_object is not None
for sharding in it.chain(unique_in_shardings, unique_out_shardings,
unique_intermediate_shardings):
if isinstance(sharding, NamedSharding):
if (abstract_mesh is not None and
abstract_mesh != sharding.mesh.abstract_mesh):
raise ValueError(
"mesh should be the same across the entire program. Got mesh"
f" shape for one sharding {abstract_mesh} and"
f" {sharding.mesh.abstract_mesh} for another")
abstract_mesh = sharding.mesh.abstract_mesh # type: ignore
semantic_in_shardings = SemanticallyEqualShardings(
in_shardings, global_in_avals) # type: ignore
semantic_out_shardings = SemanticallyEqualShardings(
out_shardings, global_out_avals) # type: ignore
(module, keepalive, host_callbacks, unordered_effects, ordered_effects,
nreps, tuple_args, shape_poly_state) = _cached_lowering_to_hlo(
closed_jaxpr, api_name, fun_name, backend, semantic_in_shardings,
semantic_out_shardings, in_layouts, out_layouts, num_devices,
tuple(da_object) if prim_requires_devices else None, # type: ignore[arg-type]
donated_invars, name_stack, all_default_mem_kind, inout_aliases,
propagated_out_mem_kinds, platforms,
lowering_parameters=lowering_parameters,
abstract_mesh=abstract_mesh)
# backend and device_assignment is passed through to MeshExecutable because
# if keep_unused=False and all in_shardings are pruned, then there is no way
# to get the device_assignment and backend. So pass it to MeshExecutable
# because we calculate the device_assignment and backend before in_shardings,
# etc are pruned.
return MeshComputation(
str(name_stack),
module,
donated_invars,
platforms,
compiler_options_kvs,
global_in_avals=global_in_avals,
global_out_avals=global_out_avals,
in_shardings=in_shardings,
out_shardings=out_shardings,
spmd_lowering=True,
tuple_args=tuple_args,
auto_spmd_lowering=auto_spmd_lowering,
unordered_effects=unordered_effects,
ordered_effects=ordered_effects,
host_callbacks=host_callbacks,
keepalive=keepalive,
kept_var_idx=kept_var_idx,
mut=mut,
backend=backend,
device_assignment=da_object,
num_devices=num_devices,
committed=committed,
in_layouts=in_layouts,
out_layouts=out_layouts,
pmap_nreps=nreps,
shape_poly_state=shape_poly_state,
all_args_info=all_args_info,
pgle_profiler=pgle_profiler,
intermediate_shardings=unique_intermediate_shardings,
context_mesh=context_mesh)
def _to_logical_sharding(
aval: core.AbstractValue, sharding: MaybeSharding | AUTO
) -> JSharding | AUTO | None:
if isinstance(sharding, UnspecifiedValue):
return None
if isinstance(sharding, AUTO):
return sharding
elif isinstance(aval, (ShapedArray, DShapedArray, AbstractRef)):
assert isinstance(sharding, JSharding)
return sharding
elif isinstance(aval, core.AbstractToken):
return None
else:
raise TypeError(aval)
class MeshComputation(stages.XlaLowering):
_hlo: ir.Module
_executable: MeshExecutable | None
def __init__(self, name: str, hlo: ir.Module,
donated_invars: Sequence[bool], platforms: Sequence[str],
compiler_options_kvs: tuple[tuple[str, Any], ...],
**compile_args):
self._name = name
self._hlo = hlo
self._donated_invars = donated_invars
self._platforms = platforms
self._compiler_options_kvs = compiler_options_kvs
self.compile_args = compile_args
self._executable = None
# -- stages.XlaLowering overrides
def stablehlo(self) -> ir.Module:
return self._hlo
def compile(self, compiler_options=None) -> MeshExecutable:
t_compiler_options = (() if compiler_options is None else
tuple(compiler_options.items()))
compiler_options_kvs = self._compiler_options_kvs + t_compiler_options
if self._executable is None or compiler_options_kvs:
executable = UnloadedMeshExecutable.from_hlo(
self._name, self._hlo, **self.compile_args,
compiler_options_kvs=compiler_options_kvs)
if not compiler_options_kvs:
self._executable = executable
return executable
return self._executable
def cost_analysis(self) -> dict[str, float]:
backend = self.compile_args["backend"]
if xb.using_pjrt_c_api(backend):
raise NotImplementedError(
"Lowered.cost_analysis not implemented on platform "
f"'{backend.platform}'. Use compile().cost_analysis() for "
"post-compilation cost estimates.")
return xe.hlo_module_cost_analysis(backend, self.hlo().as_hlo_module())
def get_out_shardings_from_executable(
xla_executable,
device_assignment: Sequence[xc.Device],
num_out_avals: int,
num_ordered_effects: int,
) -> Sequence[sharding_impls.GSPMDSharding] | None:
from jax._src import pjit
try:
omk = xla_executable.get_output_memory_kinds()[0]
if num_ordered_effects > 0:
omk = omk[num_ordered_effects:]
except:
omk = [None] * num_out_avals
assert len(omk) == num_out_avals, (len(omk), num_out_avals)
# When the device assignment only has 1 device, SPMD partitioner will not run.
# Hence the op shardings will not be set on the `hlo_module`.
if len(device_assignment) == 1:
return [sharding_impls.GSPMDSharding.get_replicated(device_assignment, memory_kind=mk)
for mk in omk]
_, out_op_shardings = pjit.get_op_sharding_from_executable(xla_executable)
if not out_op_shardings:
return None
if num_ordered_effects > 0:
out_op_shardings = out_op_shardings[num_ordered_effects:]
# This means that there are no outputs for JAX but for XLA there is an empty
# tuple output which gets a replicated sharding.
if num_out_avals == 0 and len(out_op_shardings) == 1:
return None
# This condition happens when all the elements in the output tuple have the
# same sharding, so XLA decides to run the `FusionTupleDeduplicator` to
# put the sharding on ROOT instead of the tuple.
# TODO(b/245667823): Remove this when XLA fixes this.
if len(out_op_shardings) == 1 and len(out_op_shardings) < num_out_avals:
out_op_shardings = out_op_shardings * num_out_avals # type: ignore
assert len(out_op_shardings) == num_out_avals == len(omk), (
len(out_op_shardings), num_out_avals, len(omk))
return [sharding_impls.GSPMDSharding(device_assignment, os, memory_kind=mk)
for os, mk in safe_zip(out_op_shardings, omk)]
def _get_in_shardings_from_xla(
xla_executable, device_assignment: Sequence[xc.Device], num_in_avals: int,
num_ordered_effects: int
) -> Sequence[GSPMDSharding] | None:
"""Returns input shardings from XLA."""
from jax._src import pjit
# When the device assignment only has 1 device, SPMD partitioner will not run.
# Hence the op shardings will not be set on the `hlo_module`.
if len(device_assignment) == 1:
return [GSPMDSharding.get_replicated(device_assignment)] * num_in_avals
in_op_shardings, _ = pjit.get_op_sharding_from_executable(xla_executable)
if not in_op_shardings:
return None
if num_ordered_effects > 0:
in_op_shardings = in_op_shardings[num_ordered_effects:]
assert len(in_op_shardings) == num_in_avals, (
len(in_op_shardings), num_in_avals)
return [GSPMDSharding(device_assignment, os)
for os in in_op_shardings]
# TODO(yashkatariya): Remove this function after `AUTO` can return shardings
# without mesh.
def _get_mesh_pspec_shardings_from_executable(
xla_executable, mesh: Mesh
) -> tuple[Sequence[NamedSharding], Sequence[NamedSharding]]:
from jax._src import pjit
in_pspec, out_pspec = pjit.get_pspec_from_executable(xla_executable, mesh)
return ([NamedSharding(mesh, i) for i in in_pspec],
[NamedSharding(mesh, o) for o in out_pspec])
_orig_out_sharding_handlers = {}
def _gspmd_to_named_sharding(
out_s: GSPMDSharding, orig_in_s: NamedSharding) -> NamedSharding:
assert isinstance(out_s, GSPMDSharding)
assert isinstance(orig_in_s, NamedSharding)
assert isinstance(orig_in_s.mesh, Mesh)
return sharding_impls._gspmd_to_named_sharding_via_mesh(out_s, orig_in_s.mesh)
_orig_out_sharding_handlers[NamedSharding] = _gspmd_to_named_sharding # type: ignore
def _gspmd_to_positional_sharding(
out_s: GSPMDSharding, orig_in_s: PositionalSharding) -> PositionalSharding:
assert isinstance(out_s, GSPMDSharding)
assert isinstance(orig_in_s, PositionalSharding)
return sharding_impls._op_sharding_to_pos_sharding(
out_s._hlo_sharding, orig_in_s._device_assignment, out_s.memory_kind)
_orig_out_sharding_handlers[PositionalSharding] = _gspmd_to_positional_sharding # type: ignore
def _gspmd_to_single_device_sharding(
out_s: GSPMDSharding, orig_in_s: SingleDeviceSharding) -> SingleDeviceSharding:
assert isinstance(out_s, GSPMDSharding)
assert isinstance(orig_in_s, SingleDeviceSharding)
return SingleDeviceSharding(
out_s._device_assignment[0], memory_kind=out_s.memory_kind)
_orig_out_sharding_handlers[SingleDeviceSharding] = _gspmd_to_single_device_sharding # type: ignore
def _get_out_sharding_from_orig_sharding(
out_shardings, out_avals, orig_in_s, orig_aval):
out = []
orig_handler = _orig_out_sharding_handlers[type(orig_in_s)]
for o, out_aval in safe_zip(out_shardings, out_avals):
if (isinstance(o, sharding_impls.GSPMDSharding) and
out_aval is not core.abstract_token):
if (orig_aval is not None and out_aval is not None and
out_aval.ndim == orig_aval.ndim
and sharding_impls.are_op_shardings_equal(
o._hlo_sharding, orig_in_s._to_xla_hlo_sharding(orig_aval.ndim))
and o.memory_kind == orig_in_s.memory_kind):
out.append(orig_in_s)
else:
try:
out.append(orig_handler(o, orig_in_s))
except:
out.append(o)
else:
out.append(o)
return out
def try_matching_out_with_in_spec_for_all_auto(
orig_out_shardings, new_out_shardings, out_avals, in_shardings, in_avals):
recover_in_s, recover_in_aval = None, None
for in_s, in_aval in safe_zip(in_shardings, in_avals):
if isinstance(in_s, NamedSharding):
recover_in_s, recover_in_aval = in_s, in_aval
break
if recover_in_s is None:
return new_out_shardings
res = []
for orig_out_s, out_s, out_aval in safe_zip(
orig_out_shardings, new_out_shardings, out_avals):
if (out_aval is not core.abstract_token and
mlir.all_unconstrained(orig_out_s, out_aval) and
isinstance(orig_out_s, NamedSharding) and
isinstance(out_s, NamedSharding) and
orig_out_s.mesh._are_all_axes_auto and out_s.mesh._are_all_axes_auto and
out_aval.ndim == recover_in_aval.ndim and
out_s.is_equivalent_to(recover_in_s, out_aval.ndim)):
res.append(out_s.with_spec(recover_in_s.spec))
else:
res.append(out_s)
return res
def maybe_recover_user_shardings(
old_shardings, new_shardings, old_avals, new_avals,
intermediate_shardings=None, context_mesh: Mesh | None = None,
orig_out_shardings=None):
if orig_out_shardings is not None:
new_shardings = try_matching_out_with_in_spec_for_all_auto(
orig_out_shardings, new_shardings, new_avals, old_shardings, old_avals)
if all(not isinstance(o, sharding_impls.GSPMDSharding) for o in new_shardings):
return new_shardings
for oi, o_aval in safe_zip(old_shardings, old_avals):
if oi is not None and type(oi) in _orig_out_sharding_handlers:
return _get_out_sharding_from_orig_sharding(
new_shardings, new_avals, oi, o_aval)
if intermediate_shardings is not None:
for i in intermediate_shardings:
if i is not None and type(i) in _orig_out_sharding_handlers:
return _get_out_sharding_from_orig_sharding(
new_shardings, [None] * len(new_shardings), i, None)
# For nullary cases like: `jit(lambda: ..., out_shardings=(None, sharding))`
for oi in new_shardings:
if oi is not None and type(oi) in _orig_out_sharding_handlers:
return _get_out_sharding_from_orig_sharding(
new_shardings, [None] * len(new_shardings), oi, None)
if context_mesh is not None and not context_mesh.empty:
return [sharding_impls._gspmd_to_named_sharding_via_mesh(n, context_mesh)
if isinstance(n, GSPMDSharding) else n
for n in new_shardings]
return new_shardings
def is_user_xla_layout_equal(ul: DeviceLocalLayout | AutoLayout,
xl: DeviceLocalLayout) -> bool:
if isinstance(ul, DeviceLocalLayout) and not ul._tiling:
return ul.major_to_minor == xl.major_to_minor
else:
return ul == xl
def _get_layouts_from_executable(
xla_executable, in_layouts, out_layouts, num_ordered_effects
) -> tuple[Sequence[DeviceLocalLayout | None], Sequence[DeviceLocalLayout | None]]:
try:
in_layouts_xla = xla_executable.get_parameter_layouts()
out_layouts_xla = xla_executable.get_output_layouts()
except:
return (None,) * len(in_layouts), (None,) * len(out_layouts)
if num_ordered_effects > 0:
in_layouts_xla = in_layouts_xla[num_ordered_effects:]
out_layouts_xla = out_layouts_xla[num_ordered_effects:]
new_in_layouts = []
for x, l in safe_zip(in_layouts_xla, in_layouts):
x = DeviceLocalLayout.from_pjrt_layout(x)
if isinstance(l, DeviceLocalLayout) and not is_user_xla_layout_equal(l, x):
raise AssertionError(
f"Unexpected XLA layout override: (XLA) {x} != {l} "
f"(User input layout)")
# Always append the XLA layout because it has the full information
# (tiling, etc) even if the user layout does not specify tiling.
new_in_layouts.append(x)
new_out_layouts = []
for x, l in safe_zip(out_layouts_xla, out_layouts):
x = DeviceLocalLayout.from_pjrt_layout(x)
if isinstance(l, DeviceLocalLayout) and not is_user_xla_layout_equal(l, x):
raise AssertionError(
f"Unexpected XLA layout override: (XLA) {x} != {l} "
f"(User output layout)")
# Always append the XLA layout because it has the full information
# (tiling, etc) even if the user layout does not specify tiling.
new_out_layouts.append(x)
assert all(isinstance(i, DeviceLocalLayout) for i in new_in_layouts)
assert all(isinstance(o, DeviceLocalLayout) for o in new_out_layouts)
return new_in_layouts, new_out_layouts
def get_logical_mesh_ids(mesh_shape):
return np.arange(math.prod(mesh_shape)).reshape(mesh_shape)
def create_compile_options(
computation, mesh, spmd_lowering, tuple_args, auto_spmd_lowering,
allow_prop_to_inputs, allow_prop_to_outputs, backend,
np_dev, pmap_nreps, compiler_options):
if pmap_nreps > 1:
num_replicas, num_partitions = pmap_nreps, 1
elif spmd_lowering:
num_replicas, num_partitions = 1, np_dev.size
else:
num_replicas, num_partitions = np_dev.size, 1
if pmap_nreps > 1:
# In `jit` device_assignment is set to None when num_replicas > 1. Do
# the same thing here too.
xla_device_assignment = None
else:
xla_device_assignment = np_dev.reshape((num_replicas, num_partitions))
fdo_profile = compiler_options.pop("fdo_profile", None)
compile_options = compiler.get_compile_options(
num_replicas=num_replicas,
num_partitions=num_partitions,
device_assignment=xla_device_assignment,
use_spmd_partitioning=spmd_lowering,
use_shardy_partitioner=config.use_shardy_partitioner.value,
use_auto_spmd_partitioning=auto_spmd_lowering,
env_options_overrides=compiler_options,
fdo_profile=fdo_profile,
detailed_logging=compiler.use_detailed_logging(computation),
backend=backend,
)
opts = compile_options.executable_build_options
if auto_spmd_lowering:
assert mesh is not None
opts.auto_spmd_partitioning_mesh_shape = list(mesh.shape.values())
opts.auto_spmd_partitioning_mesh_ids = (
get_logical_mesh_ids(list(mesh.shape.values()))
.reshape(-1))
compile_options.parameter_is_tupled_arguments = tuple_args
opts.allow_spmd_sharding_propagation_to_parameters = list(allow_prop_to_inputs)
opts.allow_spmd_sharding_propagation_to_output = list(allow_prop_to_outputs)
return compile_options
@weakref_lru_cache
def _cached_compilation(computation, name, mesh, spmd_lowering,
tuple_args, auto_spmd_lowering, allow_prop_to_inputs,
allow_prop_to_outputs, host_callbacks, backend,
da, pmap_nreps, compiler_options_kvs, pgle_profiler):
# One would normally just write: dev = np.array(device_assignment)
# The formulation below is substantially faster if there are many devices.
dev = np.vectorize(lambda i: da[i], otypes=[object])(np.arange(len(da)))
compiler_options = dict(compiler_options_kvs)
compile_options = create_compile_options(
computation, mesh, spmd_lowering, tuple_args, auto_spmd_lowering,
allow_prop_to_inputs, allow_prop_to_outputs, backend,
dev, pmap_nreps, compiler_options)
with dispatch.log_elapsed_time(
"Finished XLA compilation of {fun_name} in {elapsed_time:.9f} sec",
fun_name=name, event=dispatch.BACKEND_COMPILE_EVENT):
xla_executable = compiler.compile_or_get_cached(
backend, computation, dev, compile_options, host_callbacks,
pgle_profiler)
return xla_executable
def _maybe_get_and_check_in_shardings(
xla_executable, in_shardings, device_assignment,
global_in_avals, num_ordered_effects):
"""Returns in_shardings extracted from XLA or checks and returns original
shardings.
If in_shardings exist on `jit` or on `jax.Array`, then this function will
check that sharding against what XLA returns as in_shardings. If they don't
match, an error is raised.
If in_sharding is unspecified, then the sharding returned by XLA is returned.
"""
in_shardings_xla = _get_in_shardings_from_xla(
xla_executable, device_assignment, len(global_in_avals),
num_ordered_effects)
if in_shardings_xla is None:
return in_shardings
new_in_shardings = []
for xla_s, orig, aval in safe_zip(in_shardings_xla, in_shardings,
global_in_avals):
if isinstance(orig, UnspecifiedValue):
if (aval is not core.abstract_token and
dtypes.issubdtype(aval.dtype, dtypes.extended)):
xla_s = sharding_impls.logical_sharding(aval, xla_s)
new_in_shardings.append(xla_s)
else:
xla_hlo_s = xla_s._to_xla_hlo_sharding(aval.ndim)
orig_hlo_s = orig._to_xla_hlo_sharding(aval.ndim) # pytype: disable=attribute-error
# MANUAL HloSharding comes from other partitioning frameworks.
if (not dtypes.issubdtype(aval.dtype, dtypes.extended) and
not xla_hlo_s.is_manual() and
(not op_shardings.are_op_shardings_equal(xla_hlo_s, orig_hlo_s))):
raise AssertionError(
f"Unexpected XLA sharding override: (XLA) {xla_s} != {orig} "
"(User sharding)")
new_in_shardings.append(orig)
new_in_shardings = maybe_recover_user_shardings(
in_shardings, new_in_shardings, global_in_avals, global_in_avals)
return new_in_shardings
def _maybe_get_and_check_out_shardings(
xla_executable, out_shardings, device_assignment, global_out_avals,
num_ordered_effects
):
out_shardings_xla = get_out_shardings_from_executable(
xla_executable, device_assignment, len(global_out_avals),
num_ordered_effects)
if out_shardings_xla is None:
return out_shardings
new_out_shardings = []
for xla_s, orig, aval in safe_zip(out_shardings_xla, out_shardings,
global_out_avals):
if isinstance(orig, UnspecifiedValue):
if (aval is not core.abstract_token and
dtypes.issubdtype(aval.dtype, dtypes.extended)):
xla_s = sharding_impls.logical_sharding(aval, xla_s)
new_out_shardings.append(xla_s)
elif mlir.contains_unconstrained(orig):
if (aval is not core.abstract_token and
dtypes.issubdtype(aval.dtype, dtypes.extended)):
xla_s = sharding_impls.logical_sharding(aval, xla_s)
try:
new_out_shardings.append(_gspmd_to_named_sharding(xla_s, orig)) # type: ignore
except:
new_out_shardings.append(xla_s)
else:
xla_hlo_s = xla_s._to_xla_hlo_sharding(aval.ndim)
orig_hlo_s = orig._to_xla_hlo_sharding(aval.ndim) # pytype: disable=attribute-error
# MANUAL HloSharding comes from other partitioning frameworks.
if (not dtypes.issubdtype(aval.dtype, dtypes.extended) and
not xla_hlo_s.is_manual() and
(not op_shardings.are_op_shardings_equal(xla_hlo_s, orig_hlo_s) or
xla_s.memory_kind != orig.memory_kind)): # pytype: disable=attribute-error
raise AssertionError(
f"Unexpected XLA sharding override: (XLA) {xla_s} != {orig} "
"(User sharding)")
new_out_shardings.append(orig)
return new_out_shardings
def finalize_shardings(shardings, device_assignment):
if len(device_assignment) == 1:
return [SingleDeviceSharding(device_assignment[0], memory_kind=o.memory_kind)
if isinstance(o, GSPMDSharding) else o for o in shardings]
return shardings
@dataclasses.dataclass
class UnloadedMeshExecutable:
xla_executable: Any
device_assignment: xc.DeviceList | Sequence[xc.Device]
backend: xb.XlaBackend
input_avals: Sequence[ShapedArray]
input_shardings: Sequence[JSharding]
output_avals: Sequence[ShapedArray]
output_shardings: Sequence[JSharding]
committed: bool
name: str
unordered_effects: list[core.Effect]
ordered_effects: list[core.Effect]
keepalive: Sequence[Any]
host_callbacks: Sequence[Any]
kept_var_idx: set[int]
mut: MutationData | None
auto_spmd_lowering: bool
xla_in_layouts: Sequence[DeviceLocalLayout | None]
dispatch_in_layouts: Sequence[DeviceLocalLayout | None]
xla_out_layouts: Sequence[DeviceLocalLayout | None]
all_args_info: AllArgsInfo | None
pgle_profiler: profiler.PGLEProfiler | None
def build_unsafe_call(self):
handle_args = InputsHandler(self.input_shardings, self.dispatch_in_layouts)
handle_outs = global_avals_to_results_handler(
self.output_avals, self.output_shardings, self.committed)
unsafe_call = ExecuteReplicated(
self.xla_executable, self.name, self.backend, handle_args,
handle_outs, self.unordered_effects, self.ordered_effects, self.keepalive,
bool(self.host_callbacks), self.kept_var_idx, self.mut,
self.pgle_profiler)
return unsafe_call
def load(self) -> MeshExecutable:
return MeshExecutable(self.xla_executable, self.build_unsafe_call,
self.input_avals, self.output_avals,
self.input_shardings, self.output_shardings,
self.auto_spmd_lowering, self.kept_var_idx,
self.xla_in_layouts, self.dispatch_in_layouts,
self.xla_out_layouts, self.all_args_info, self)
@staticmethod
def from_hlo(name: str,
hlo: ir.Module,
global_in_avals: Sequence[ShapedArray],
global_out_avals: Sequence[ShapedArray],
in_shardings: Sequence[JSharding | AUTO],
out_shardings: Sequence[(JSharding | AUTO | UnspecifiedValue)],
spmd_lowering: bool,
tuple_args: bool,
auto_spmd_lowering: bool,
unordered_effects: list[core.Effect],
ordered_effects: list[core.Effect],
host_callbacks: list[Any],
keepalive: Any,
kept_var_idx: set[int],
backend: xb.XlaBackend,
device_assignment: xc.DeviceList | Sequence[xc.Device] | None,
committed: bool,
in_layouts: MaybeLayout,
out_layouts: MaybeLayout,
compiler_options_kvs: tuple[tuple[str, Any], ...],
num_devices: int,
pmap_nreps: int = 1,
mut: MutationData | None = None,
shape_poly_state: mlir.ShapePolyLoweringState | None = None,
all_args_info: AllArgsInfo | None = None,
pgle_profiler: profiler.PGLEProfiler | None = None,
intermediate_shardings: Sequence[JSharding] | None = None,
context_mesh: Mesh | None = None,
) -> MeshExecutable:
del num_devices # For compilation, we have an actual device_assignment
if (device_assignment is None or
any(isinstance(s, NamedSharding) and isinstance(s.mesh, AbstractMesh)
for s in it.chain(in_shardings, out_shardings))):
raise RuntimeError(
"A jitted computation cannot contain AbstractMesh in in_shardings and"
" out_shardings during compilation. You can use `jax.export` to "
" lower with an AbstractMesh and later compile with concrete devices.")
if shape_poly_state is not None and shape_poly_state.uses_dim_vars:
hlo = mlir.refine_polymorphic_shapes(hlo)
if isinstance(device_assignment, xc.DeviceList):
da = device_assignment
else:
da = _create_da_object(tuple(device_assignment))
del device_assignment
allow_prop_to_inputs = (False,) * len(ordered_effects) + tuple(
isinstance(i, (UnspecifiedValue, AUTO)) for i in in_shardings)
allow_prop_to_outputs = (False,) * len(ordered_effects) + tuple(
isinstance(o, (UnspecifiedValue, AUTO)) or mlir.contains_unconstrained(o)
for o in out_shardings)
mesh = None
if auto_spmd_lowering:
for i in it.chain.from_iterable([in_shardings, out_shardings]):
if isinstance(i, AUTO):
mesh = i.mesh
break
util.test_event("pxla_cached_compilation")
xla_executable = _cached_compilation(
hlo, name, mesh, spmd_lowering,
tuple_args, auto_spmd_lowering, allow_prop_to_inputs,
allow_prop_to_outputs, tuple(host_callbacks), backend, da, pmap_nreps,
compiler_options_kvs, pgle_profiler)
orig_out_shardings = out_shardings
if auto_spmd_lowering:
assert mesh is not None
in_shardings_xla, out_shardings_xla = _get_mesh_pspec_shardings_from_executable(
xla_executable, mesh)
in_shardings = [x if isinstance(i, AUTO) else i
for x, i in safe_zip(in_shardings_xla, in_shardings)]
out_shardings = [x if isinstance(o, AUTO) else o
for x, o in safe_zip(out_shardings_xla, out_shardings)]
else:
if pmap_nreps == 1:
assert mesh is None
in_shardings = _maybe_get_and_check_in_shardings(
xla_executable, in_shardings, tuple(da), global_in_avals,
len(ordered_effects))
out_shardings = _maybe_get_and_check_out_shardings(
xla_executable, out_shardings, tuple(da), global_out_avals,
len(ordered_effects))
else:
in_shardings, out_shardings, committed, da = _get_metadata_jit_pmap(
xla_executable.local_devices(), len(in_shardings), len(out_shardings))
# xla_in_layouts are all either None or DeviceLocalLayout. Even default
# layout are concrete layouts and they are used in `compiled.input_layouts`
# to return concrete layouts to users.
# `dispatch_in_layouts` replaces default layouts with `None` to simplify
# dispatch logic downstream.
xla_in_layouts, xla_out_layouts = _get_layouts_from_executable(
xla_executable, in_layouts, out_layouts, len(ordered_effects))
del in_layouts, out_layouts
dispatch_in_layouts = [
None if is_default_layout(l, s, a) else l
for l, s, a, in safe_zip(xla_in_layouts, in_shardings, global_in_avals)
]
out_shardings = maybe_recover_user_shardings(
in_shardings, out_shardings, global_in_avals, global_out_avals,
intermediate_shardings, context_mesh, orig_out_shardings)
in_shardings = finalize_shardings(in_shardings, da)
out_shardings = finalize_shardings(out_shardings, da)
return UnloadedMeshExecutable(
xla_executable=xla_executable,
device_assignment=da,
backend=backend,
input_avals=global_in_avals,
input_shardings=in_shardings, # type: ignore
output_avals=global_out_avals,
output_shardings=out_shardings, # type: ignore # arg-type
committed=committed,
name=name,
unordered_effects=unordered_effects,
ordered_effects=ordered_effects,
keepalive=keepalive,
host_callbacks=host_callbacks,
kept_var_idx=kept_var_idx,
mut=mut,
auto_spmd_lowering=auto_spmd_lowering,
xla_in_layouts=xla_in_layouts,
dispatch_in_layouts=dispatch_in_layouts,
xla_out_layouts=xla_out_layouts,
all_args_info=all_args_info,
pgle_profiler=pgle_profiler).load()
class MeshExecutableFastpathData(NamedTuple):
xla_executable: xc.LoadedExecutable
out_pytree_def: Any
in_shardings: Sequence[JSharding]
out_shardings: Sequence[JSharding]
out_avals: Sequence[ShapedArray]
out_committed: Sequence[bool]
kept_var_bitvec: Iterable[bool]
in_device_local_layouts: Sequence[DeviceLocalLayout | None]
@dataclasses.dataclass(frozen=True, kw_only=True)
class JitGlobalCppCacheKeys:
donate_argnums: tuple[int, ...] | None = None
donate_argnames: tuple[str, ...] | None = None
device: xc.Device | None = None
backend: str | None = None
in_shardings_treedef: PyTreeDef | None = None
in_shardings_leaves: tuple[Any, ...] | None = None
out_shardings_treedef: PyTreeDef | None = None
out_shardings_leaves: tuple[Any, ...] | None = None
in_layouts_treedef: PyTreeDef | None = None
in_layouts_leaves: tuple[Any, ...] | None = None
out_layouts_treedef: PyTreeDef | None = None
out_layouts_leaves: tuple[Any, ...] | None = None
use_resource_env: bool = False
compiler_options_kvs: tuple[tuple[str, Any], ...] | None = None
@functools.cached_property
def contains_explicit_attributes(self):
return (self.donate_argnums is not None or
self.donate_argnames is not None or
self.device is not None or
self.backend is not None or
any(not isinstance(i, UnspecifiedValue) for i in self.in_shardings_leaves) or
any(not isinstance(o, UnspecifiedValue) for o in self.out_shardings_leaves) or
any(i is not None for i in self.in_layouts_leaves) or
any(o is not None for o in self.out_layouts_leaves) or
self.compiler_options_kvs)
def reflatten_outputs_for_dispatch(out_tree, out_flat):
# We arrive at dispatch having flattened according to the default
# pytree registry, but we want to re-flatten according to our
# dispatch-specific registry.
out_unflat = tree_util.tree_unflatten(out_tree, out_flat)
return tree_util.dispatch_registry.flatten(out_unflat, None)
class MeshExecutable(stages.XlaExecutable):
__slots__ = [
"xla_executable", "_unsafe_call", "build_unsafe_call", "in_avals",
"out_avals", "_in_shardings", "_out_shardings", "_auto_spmd_lowering",
"_kept_var_idx", "_xla_in_layouts", "_dispatch_in_layouts",
"_xla_out_layouts", "_all_args_info", "_unloaded_executable",
]
def __init__(self, xla_executable, build_unsafe_call, in_avals, out_avals,
in_shardings, out_shardings, auto_spmd_lowering, kept_var_idx,
xla_in_layouts, dispatch_in_layouts, xla_out_layouts,
all_args_info: AllArgsInfo | None = None,
unloaded_executable=None):
self.xla_executable = xla_executable
self.build_unsafe_call = build_unsafe_call
# in_avals is a list of global and local avals. Aval is global if input
# is a GDA or jax.Array else local.
self.in_avals = in_avals
self.out_avals = out_avals
self._unsafe_call = None
self._in_shardings = in_shardings
self._out_shardings = out_shardings
self._auto_spmd_lowering = auto_spmd_lowering
self._kept_var_idx = kept_var_idx
self._xla_in_layouts = xla_in_layouts
self._dispatch_in_layouts = dispatch_in_layouts
self._xla_out_layouts = xla_out_layouts
self._all_args_info = all_args_info
self._unloaded_executable = unloaded_executable
@property
def unsafe_call(self) -> Callable[..., Any]:
if self._unsafe_call is None:
self._unsafe_call = self.build_unsafe_call()
return self._unsafe_call # type: ignore
# -- stages.XlaExecutable overrides
def xla_extension_executable(self):
return self.xla_executable
def call(self, *args):
args_after_dce = [a for i, a in enumerate(args) if i in self._kept_var_idx]
if self._all_args_info is None:
kept_args = args_after_dce
ref_avals = self.in_avals
# TODO(necula): ensure we have actual debug info; need debug info
# before DCE.
# See https://github.com/jax-ml/jax/issues/26480.
debug_info = core.DebugInfo(
"MeshExecutable", "<unknown>",
tuple(f"args[{i}]" for i in range(len(args))), ())
else:
kept_args = args
ref_avals = self._all_args_info.in_avals
debug_info = self._all_args_info.debug_info
all_arg_avals = map(core.abstractify, kept_args)
check_arg_avals_for_call(ref_avals, all_arg_avals, debug_info)
check_array_xla_sharding_layout_match(
args_after_dce, self._in_shardings, self._xla_in_layouts, debug_info,
self._kept_var_idx)
return self.unsafe_call(*args) # pylint: disable=not-callable
def input_shardings(self) -> Sequence[JSharding]:
return self._in_shardings
def output_shardings(self) -> Sequence[JSharding]:
return self._out_shardings
def input_layouts(self):
return [Layout(l, s)
for l, s in safe_zip(self._xla_in_layouts, self._in_shardings)]
def output_layouts(self):
return [Layout(l, s)
for l, s in safe_zip(self._xla_out_layouts, self._out_shardings)]
def create_cpp_call(self, no_kwargs, in_tree, out_tree):
if not (isinstance(self.unsafe_call, ExecuteReplicated) and
not self.unsafe_call.has_unordered_effects and
not self.unsafe_call.has_host_callbacks):
return None
def aot_cache_miss(*args, **kwargs):
params = stages.CompiledCallParams(self, no_kwargs, in_tree, out_tree)
outs, out_flat, args_flat = stages.Compiled.call(params, *args, **kwargs)
out_flat, out_tree_dispatch = reflatten_outputs_for_dispatch(
out_tree, out_flat)
use_fastpath = (all(isinstance(x, xc.ArrayImpl) for x in out_flat))
if use_fastpath:
out_avals = [o.aval for o in out_flat]
out_committed = [o._committed for o in out_flat]
kept_var_bitvec = [i in self._kept_var_idx
for i in range(len(args_flat))]
in_shardings = [
sharding_impls.physical_sharding(a, s)
if a is not core.abstract_token and dtypes.issubdtype(a.dtype, dtypes.extended)
else s
for s, a in zip(self._in_shardings, self.in_avals)
]
fastpath_data = MeshExecutableFastpathData(
self.xla_executable, out_tree_dispatch, in_shardings,
self._out_shardings, out_avals, out_committed, kept_var_bitvec,
self._dispatch_in_layouts)
else:
fastpath_data = None
return outs, fastpath_data, False # Do not remove cache entry
return xc._xla.pjit(
self.unsafe_call.name, None, aot_cache_miss, [], [],
JitGlobalCppCacheKeys(), tree_util.dispatch_registry, cc_shard_arg)
def cc_shard_arg(x, sharding, layout):
return shard_args([sharding], [layout], [None], [x])[0]
def check_arg_avals_for_call(ref_avals, arg_avals,
jaxpr_debug_info: core.DebugInfo | None = None):
if len(ref_avals) != len(arg_avals):
raise TypeError(
f"Computation compiled for {len(ref_avals)} inputs "
f"but called with {len(arg_avals)}")
if jaxpr_debug_info is not None:
arg_names = [f"'{name}'" for name in jaxpr_debug_info.safe_arg_names(len(ref_avals))]
else:
num_args = len(ref_avals)
arg_names = [f"{i + 1}/{num_args}" for i in range(num_args)]
errors = []
for ref_aval, arg_aval, name in safe_zip(ref_avals, arg_avals, arg_names):
# Don't compare shardings of avals because you can lower with
# numpy arrays + in_shardings and call compiled executable with
# sharded arrays. We also have sharding checks downstream.
if (ref_aval.shape, ref_aval.dtype) != (arg_aval.shape, arg_aval.dtype):
errors.append(
f"Argument {name} compiled with {ref_aval.str_short()} and called "
f"with {arg_aval.str_short()}")
if errors:
max_num_errors = 5
str_errors = "\n".join(errors[:max_num_errors])
if len(errors) >= max_num_errors:
num_mismatch_str = f"The first {max_num_errors} of {len(errors)}"
else:
num_mismatch_str = "The"
raise TypeError(
"Argument types differ from the types for which this computation was "
f"compiled. {num_mismatch_str} mismatches are:\n{str_errors}")
def _get_metadata_jit_pmap(local_devices, num_in_shardings, num_out_shardings):
# Create replicated shardings for jit(pmap) path with local devices
# because multihost jit(pmap) is not allowed.
gs = sharding_impls.GSPMDSharding.get_replicated(local_devices)
in_shardings = [gs] * num_in_shardings
out_shardings = [gs] * num_out_shardings
# jit(pmap) will generate Arrays with multi-device sharding.
# It is unsupported for these shardings to be uncommitted, so force
# the outputs to be committed.
committed = True
return in_shardings, out_shardings, committed, tuple(local_devices)
create_mesh_pspec_sharding = sharding_impls.create_mesh_pspec_sharding
def check_device_backend_on_shardings(shardings) -> bool:
for i in shardings:
if isinstance(i, (UnspecifiedValue, AUTO)):
continue
if getattr(i, '_device_backend', False):
return True
return False
def check_array_xla_sharding_layout_match(
args_after_dce,
in_xla_shardings: Sequence[JSharding],
in_xla_layouts: Sequence[DeviceLocalLayout],
jaxpr_debug_info: core.DebugInfo | None,
kept_var_idx: set[int]) -> None:
from jax._src.array import ArrayImpl
# jaxpr_debug_info.arg_names are before DCE, so need to DCE them.
arg_names = (
[""] * len(args_after_dce) if jaxpr_debug_info is None
else [a for i, a in enumerate(jaxpr_debug_info.arg_names) # type: ignore
if i in kept_var_idx]
)
errors = []
num_errors = 5
for arg, xs, xl, name in safe_zip(
args_after_dce, in_xla_shardings, in_xla_layouts, arg_names):
if not isinstance(arg, ArrayImpl):
continue
if isinstance(xs, (UnspecifiedValue, AUTO)):
continue
db_xs = check_device_backend_on_shardings([xs])
if (not db_xs and arg._committed and
not arg.sharding.is_equivalent_to(xs, arg.ndim)):
errors.append(
("Got input sharding(s) that compiled object was called with: "
f"{arg.sharding} and sharding(s) the computation was compiled "
f"with: {xs} for arg {name} with shape: {arg.aval.str_short()}",
'sharding'))
if (not db_xs and arg._committed and
arg.layout.device_local_layout is not None and xl is not None and
arg.layout.device_local_layout != xl):
errors.append(
("Got input layout(s) that compiled object was called with: "
f"{arg.layout.device_local_layout} and layout(s) the computation was "
f"compiled with: {xl} for arg {name} with "
f"shape: {arg.aval.str_short()}",
'layout'))
if errors:
first_errors, error_kinds = unzip2(errors[:num_errors])
str_errors = '\n'.join(first_errors)
if all(k == 'sharding' for k in error_kinds):
kind_str = r'sharding(s)'
elif all(k == 'layout' for k in error_kinds):
kind_str = 'layout(s)'
else:
kind_str = 'sharding(s) and layout(s)'
num_mismatch_str = (
f'the {len(errors)} mismatches' if len(errors) < num_errors else
f"{num_errors} mismatches out of {len(errors)}")
raise ValueError(
f"Compiled object called with input {kind_str} does "
f"not match the {kind_str} the computation was "
"compiled with. "
f"Here are {num_mismatch_str}:\n{str_errors}")
def get_array_mapping(pspec: PartitionSpec) -> ArrayMappingOrAutoOrUnspecified:
parsed_pspec = sharding_impls.prepare_axis_resources(
pspec, "pspec to array_mapping")
return _get_array_mapping(parsed_pspec)