mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 10:56:06 +00:00

I initially wanted to upgrade to 1.15, but it seems to have a bug in how ternary expressions are type checked. For example, def f(x: int) -> str: ... def g(x: int) -> str: ... callback = f if ... else g # has type object!
312 lines
13 KiB
Python
312 lines
13 KiB
Python
# Copyright 2020 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import annotations
|
|
|
|
from collections.abc import Sequence
|
|
from functools import partial
|
|
from typing import Any, overload
|
|
|
|
import warnings
|
|
|
|
from jax._src import api
|
|
from jax._src import config
|
|
from jax._src import core
|
|
from jax._src import dtypes
|
|
from jax._src.lax import lax
|
|
from jax._src.lib import xla_client as xc
|
|
from jax._src.sharding_impls import SingleDeviceSharding
|
|
from jax._src.util import safe_zip, safe_map
|
|
from jax._src.typing import Array, ArrayLike, DimSize, DType, DTypeLike, Shape
|
|
from jax.sharding import Sharding
|
|
|
|
import numpy as np
|
|
|
|
zip, unsafe_zip = safe_zip, zip
|
|
map, unsafe_map = safe_map, map
|
|
|
|
_dtype = partial(dtypes.dtype, canonicalize=True)
|
|
|
|
def promote_shapes(fun_name: str, *args: ArrayLike) -> list[Array]:
|
|
"""Apply NumPy-style broadcasting, making args shape-compatible for lax.py."""
|
|
if len(args) < 2:
|
|
return [lax.asarray(arg) for arg in args]
|
|
else:
|
|
shapes = [np.shape(arg) for arg in args]
|
|
if config.dynamic_shapes.value:
|
|
# With dynamic shapes we don't support singleton-dimension broadcasting;
|
|
# we instead broadcast out to the full shape as a temporary workaround.
|
|
# TODO(mattjj): revise this workaround
|
|
res_shape = lax.broadcast_shapes(*shapes) # Can raise an error!
|
|
return [_broadcast_to(arg, res_shape) for arg, shp in zip(args, shapes)]
|
|
else:
|
|
if all(len(shapes[0]) == len(s) for s in shapes[1:]):
|
|
return [lax.asarray(arg) for arg in args] # no need for rank promotion, so rely on lax promotion
|
|
nonscalar_ranks = {len(shp) for shp in shapes if shp}
|
|
if len(nonscalar_ranks) < 2:
|
|
return [lax.asarray(arg) for arg in args] # rely on lax scalar promotion
|
|
else:
|
|
if config.numpy_rank_promotion.value != "allow":
|
|
_rank_promotion_warning_or_error(fun_name, shapes)
|
|
result_rank = len(lax.broadcast_shapes(*shapes))
|
|
return [lax.broadcast_to_rank(arg, result_rank) for arg in args]
|
|
|
|
|
|
def _rank_promotion_warning_or_error(fun_name: str, shapes: Sequence[Shape]):
|
|
if config.numpy_rank_promotion.value == "warn":
|
|
msg = ("Following NumPy automatic rank promotion for {} on shapes {}. "
|
|
"Set the jax_numpy_rank_promotion config option to 'allow' to "
|
|
"disable this warning; for more information, see "
|
|
"https://jax.readthedocs.io/en/latest/rank_promotion_warning.html.")
|
|
warnings.warn(msg.format(fun_name, ' '.join(map(str, shapes))))
|
|
elif config.numpy_rank_promotion.value == "raise":
|
|
msg = ("Operands could not be broadcast together for {} on shapes {} "
|
|
"and with the config option jax_numpy_rank_promotion='raise'. "
|
|
"For more information, see "
|
|
"https://jax.readthedocs.io/en/latest/rank_promotion_warning.html.")
|
|
raise ValueError(msg.format(fun_name, ' '.join(map(str, shapes))))
|
|
|
|
|
|
def promote_dtypes(*args: ArrayLike) -> list[Array]:
|
|
"""Convenience function to apply Numpy argument dtype promotion."""
|
|
# TODO(dougalm,mattjj): This is a performance bottleneck. Consider memoizing.
|
|
if len(args) < 2:
|
|
return [lax.asarray(arg) for arg in args]
|
|
else:
|
|
to_dtype, weak_type = dtypes._lattice_result_type(*args)
|
|
to_dtype = dtypes.canonicalize_dtype(to_dtype, allow_extended_dtype=True) # type: ignore[assignment]
|
|
return [lax._convert_element_type(x, to_dtype, weak_type) for x in args]
|
|
|
|
|
|
def promote_dtypes_inexact(*args: ArrayLike) -> list[Array]:
|
|
"""Convenience function to apply Numpy argument dtype promotion.
|
|
|
|
Promotes arguments to an inexact type."""
|
|
to_dtype, weak_type = dtypes._lattice_result_type(*args)
|
|
to_dtype = dtypes.canonicalize_dtype(to_dtype, allow_extended_dtype=True) # type: ignore[assignment]
|
|
to_dtype_inexact = dtypes.to_inexact_dtype(to_dtype) # type: ignore[arg-type]
|
|
return [lax._convert_element_type(x, to_dtype_inexact, weak_type)
|
|
for x in args]
|
|
|
|
|
|
def promote_dtypes_numeric(*args: ArrayLike) -> list[Array]:
|
|
"""Convenience function to apply Numpy argument dtype promotion.
|
|
|
|
Promotes arguments to a numeric (non-bool) type."""
|
|
to_dtype, weak_type = dtypes._lattice_result_type(*args)
|
|
to_dtype = dtypes.canonicalize_dtype(to_dtype)
|
|
to_dtype_numeric = dtypes.to_numeric_dtype(to_dtype)
|
|
return [lax._convert_element_type(x, to_dtype_numeric, weak_type)
|
|
for x in args]
|
|
|
|
|
|
def promote_dtypes_complex(*args: ArrayLike) -> list[Array]:
|
|
"""Convenience function to apply Numpy argument dtype promotion.
|
|
|
|
Promotes arguments to a complex type."""
|
|
to_dtype, weak_type = dtypes._lattice_result_type(*args)
|
|
to_dtype = dtypes.canonicalize_dtype(to_dtype)
|
|
to_dtype_complex = dtypes.to_complex_dtype(to_dtype)
|
|
return [lax._convert_element_type(x, to_dtype_complex, weak_type)
|
|
for x in args]
|
|
|
|
|
|
def _complex_elem_type(dtype: DTypeLike) -> DType:
|
|
"""Returns the float type of the real/imaginary parts of a complex dtype."""
|
|
return np.abs(np.zeros((), dtype)).dtype
|
|
|
|
|
|
def _arraylike(x: ArrayLike) -> bool:
|
|
return (isinstance(x, np.ndarray) or isinstance(x, Array) or
|
|
hasattr(x, '__jax_array__') or np.isscalar(x))
|
|
|
|
|
|
def _arraylike_asarray(x: Any) -> Array:
|
|
"""Convert an array-like object to an array."""
|
|
if hasattr(x, '__jax_array__'):
|
|
x = x.__jax_array__()
|
|
return lax.asarray(x)
|
|
|
|
|
|
@overload
|
|
def ensure_arraylike(fun_name: str, /) -> tuple[()]: ...
|
|
@overload
|
|
def ensure_arraylike(fun_name: str, a1: Any, /) -> Array: ...
|
|
@overload
|
|
def ensure_arraylike(fun_name: str, a1: Any, a2: Any, /) -> tuple[Array, Array]: ...
|
|
@overload
|
|
def ensure_arraylike(fun_name: str, a1: Any, a2: Any, a3: Any, /) -> tuple[Array, Array, Array]: ...
|
|
@overload
|
|
def ensure_arraylike(fun_name: str, a1: Any, a2: Any, a3: Any, a4: Any, /, *args: Any) -> tuple[Array, ...]: ...
|
|
def ensure_arraylike(fun_name: str, /, *args: Any) -> Array | tuple[Array, ...]:
|
|
"""Check that arguments are arraylike and convert them to arrays."""
|
|
check_arraylike(fun_name, *args)
|
|
if len(args) == 1:
|
|
return _arraylike_asarray(args[0]) # pytype: disable=bad-return-type
|
|
return tuple(_arraylike_asarray(arg) for arg in args) # pytype: disable=bad-return-type
|
|
|
|
|
|
def ensure_arraylike_tuple(fun_name: str, tup: tuple[Any, ...]) -> tuple[Array, ...]:
|
|
"""Check that argument elements are arraylike and convert to a tuple of arrays.
|
|
|
|
This is useful because ensure_arraylike with a single argument returns a single array.
|
|
"""
|
|
check_arraylike(fun_name, *tup)
|
|
return tuple(_arraylike_asarray(arg) for arg in tup)
|
|
|
|
|
|
def check_arraylike(fun_name: str, *args: Any, emit_warning=False, stacklevel=3):
|
|
"""Check if all args fit JAX's definition of arraylike."""
|
|
assert isinstance(fun_name, str), f"fun_name must be a string. Got {fun_name}"
|
|
if any(not _arraylike(arg) for arg in args):
|
|
pos, arg = next((i, arg) for i, arg in enumerate(args)
|
|
if not _arraylike(arg))
|
|
msg = f"{fun_name} requires ndarray or scalar arguments, got {type(arg)} at position {pos}."
|
|
if emit_warning:
|
|
warnings.warn(msg + " In a future JAX release this will be an error.",
|
|
category=DeprecationWarning, stacklevel=stacklevel)
|
|
else:
|
|
raise TypeError(msg.format(fun_name, type(arg), pos))
|
|
|
|
|
|
def check_arraylike_or_none(fun_name: str, *args: Any):
|
|
assert isinstance(fun_name, str), f"fun_name must be a string. Got {fun_name}"
|
|
if any(not (_arraylike(arg) or arg is None) for arg in args):
|
|
pos, arg = next((i, arg) for i, arg in enumerate(args)
|
|
if not (_arraylike(arg) or arg is None))
|
|
msg = "{} requires ndarray, scalar, or None arguments, got {} at position {}."
|
|
raise TypeError(msg.format(fun_name, type(arg), pos))
|
|
|
|
|
|
def check_no_float0s(fun_name: str, *args: Any):
|
|
"""Check if none of the args have dtype float0."""
|
|
if any(dtypes.dtype(arg) == dtypes.float0 for arg in args):
|
|
raise TypeError(
|
|
f"Called {fun_name} with a float0 array. "
|
|
"float0s do not support any operations by design because they "
|
|
"are not compatible with non-trivial vector spaces. No implicit dtype "
|
|
"conversion is done. You can use np.zeros_like(arr, dtype=np.float) "
|
|
"to cast a float0 array to a regular zeros array. \n"
|
|
"If you didn't expect to get a float0 you might have accidentally "
|
|
"taken a gradient with respect to an integer argument.")
|
|
_check_no_float0s = check_no_float0s
|
|
|
|
|
|
def check_for_prngkeys(fun_name: str, *args: Any):
|
|
"""Check if args don't match and none of the args have typed prng dtype"""
|
|
arg_dtypes = [dtypes.dtype(arg) for arg in args]
|
|
if len(set(arg_dtypes)) < 2:
|
|
return # Will be caught by extended dtype impl rules.
|
|
if any(dtypes.issubdtype(dt, dtypes.prng_key) for dt in arg_dtypes):
|
|
if len(arg_dtypes) == 1:
|
|
raise TypeError(
|
|
f"{fun_name} does not accept dtype {str(arg_dtypes[0])}.")
|
|
else:
|
|
raise TypeError(
|
|
f"{fun_name} does not accept dtypes {', '.join(map(str, arg_dtypes))}."
|
|
)
|
|
|
|
|
|
def promote_args(fun_name: str, *args: ArrayLike) -> list[Array]:
|
|
"""Convenience function to apply Numpy argument shape and dtype promotion."""
|
|
check_arraylike(fun_name, *args)
|
|
_check_no_float0s(fun_name, *args)
|
|
check_for_prngkeys(fun_name, *args)
|
|
return promote_shapes(fun_name, *promote_dtypes(*args))
|
|
|
|
|
|
def promote_args_numeric(fun_name: str, *args: ArrayLike) -> list[Array]:
|
|
check_arraylike(fun_name, *args)
|
|
_check_no_float0s(fun_name, *args)
|
|
check_for_prngkeys(fun_name, *args)
|
|
return promote_shapes(fun_name, *promote_dtypes_numeric(*args))
|
|
|
|
|
|
def promote_args_inexact(fun_name: str, *args: ArrayLike) -> list[Array]:
|
|
"""Convenience function to apply Numpy argument shape and dtype promotion.
|
|
|
|
Promotes non-inexact types to an inexact type."""
|
|
check_arraylike(fun_name, *args)
|
|
_check_no_float0s(fun_name, *args)
|
|
check_for_prngkeys(fun_name, *args)
|
|
return promote_shapes(fun_name, *promote_dtypes_inexact(*args))
|
|
|
|
|
|
@partial(api.jit, inline=True)
|
|
def _broadcast_arrays(*args: ArrayLike) -> list[Array]:
|
|
"""Like Numpy's broadcast_arrays but doesn't return views."""
|
|
avals = [core.shaped_abstractify(arg) for arg in args]
|
|
shapes = [a.shape for a in avals]
|
|
if not shapes or all(core.definitely_equal_shape(shapes[0], s) for s in shapes):
|
|
return [lax.asarray(arg) for arg in args]
|
|
result_shape = lax.broadcast_shapes(*shapes)
|
|
result_sharding = (lax.broadcast_shardings(*avals) # type: ignore
|
|
if config.sharding_in_types.value else None)
|
|
return [_broadcast_to(arg, result_shape, result_sharding) for arg in args]
|
|
|
|
|
|
def _broadcast_to(arr: ArrayLike, shape: DimSize | Shape, sharding=None
|
|
) -> Array:
|
|
check_arraylike("broadcast_to", arr)
|
|
arr = arr if isinstance(arr, Array) else lax.asarray(arr)
|
|
if not isinstance(shape, tuple) and np.ndim(shape) == 0:
|
|
shape = (shape,)
|
|
# check that shape is concrete
|
|
shape = core.canonicalize_shape(shape) # type: ignore[arg-type]
|
|
arr_shape = np.shape(arr)
|
|
if core.definitely_equal_shape(arr_shape, shape):
|
|
return arr
|
|
elif len(shape) < len(arr_shape):
|
|
raise ValueError(f"Cannot broadcast to shape with fewer dimensions: {arr_shape=} {shape=}")
|
|
else:
|
|
nlead = len(shape) - len(arr_shape)
|
|
shape_tail = shape[nlead:]
|
|
compatible = all(core.definitely_equal_one_of_dim(arr_d, [1, shape_d])
|
|
for arr_d, shape_d in safe_zip(arr_shape, shape_tail))
|
|
if nlead < 0 or not compatible:
|
|
msg = "Incompatible shapes for broadcasting: {} and requested shape {}"
|
|
raise ValueError(msg.format(arr_shape, shape))
|
|
return lax.broadcast_in_dim(arr, shape, tuple(range(nlead, len(shape))),
|
|
out_sharding=sharding)
|
|
|
|
|
|
# The `jit` on `where` exists to avoid materializing constants in cases like
|
|
# `np.where(np.zeros(1000), 7, 4)`. In op-by-op mode, we don't want to
|
|
# materialize the broadcast forms of scalar arguments.
|
|
@api.jit
|
|
def _where(condition: ArrayLike, x: ArrayLike, y: ArrayLike) -> Array:
|
|
if x is None or y is None:
|
|
raise ValueError("Either both or neither of the x and y arguments should "
|
|
"be provided to jax.numpy.where, got {} and {}."
|
|
.format(x, y))
|
|
if not np.issubdtype(_dtype(condition), np.bool_):
|
|
condition = lax.ne(condition, lax._zero(condition))
|
|
x, y = promote_dtypes(x, y)
|
|
if np.ndim(condition) == 0:
|
|
# lax.select() handles scalar conditions without broadcasting.
|
|
x_arr, y_arr = _broadcast_arrays(x, y)
|
|
else:
|
|
condition, x_arr, y_arr = _broadcast_arrays(condition, x, y)
|
|
try:
|
|
is_always_empty = core.is_empty_shape(x_arr.shape)
|
|
except:
|
|
is_always_empty = False # can fail with dynamic shapes
|
|
return lax.select(condition, x_arr, y_arr) if not is_always_empty else x_arr
|
|
|
|
|
|
def normalize_device_to_sharding(device: xc.Device | Sharding | None) -> Sharding | None:
|
|
if isinstance(device, xc.Device):
|
|
return SingleDeviceSharding(device)
|
|
else:
|
|
return device
|