rocm_jax/jax/_src/scipy/linalg.py
Peter Hawkins 1cead779a3 Add support for Hessenberg and tridiagonal matrix reductions on CPU.
* Implement jax.scipy.linalg.hessenberg and jax.lax.linalg.hessenberg.
* Export what was previously jax._src.lax.linalg.orgqr as jax.lax.linalg.householder_product, since it can be used with some minor tweaks to compute the unitary matrix of a Hessenberg reduction.
* Implement jax.lax.linalg.tridiagonal, which is the symmetric (Hermitian) equivalent of Hessenberg reduction.

None of these primitives are differentiable at the moment.

PiperOrigin-RevId: 487224934
2022-11-09 06:23:55 -08:00

1035 lines
41 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import numpy as np
import scipy.linalg
import textwrap
import warnings
from typing import cast, overload, Any, Optional, Tuple, Union
from typing_extensions import Literal
import jax
from jax import jit, vmap, jvp
from jax import lax
from jax._src import dtypes
from jax._src.lax import linalg as lax_linalg
from jax._src.lax import qdwh
from jax._src.numpy.util import _wraps, _promote_dtypes_inexact, _promote_dtypes_complex
from jax._src.numpy import lax_numpy as jnp
from jax._src.numpy import linalg as np_linalg
from jax._src.typing import Array, ArrayLike
_T = lambda x: jnp.swapaxes(x, -1, -2)
_no_chkfinite_doc = textwrap.dedent("""
Does not support the Scipy argument ``check_finite=True``,
because compiled JAX code cannot perform checks of array values at runtime.
""")
_no_overwrite_and_chkfinite_doc = _no_chkfinite_doc + "\nDoes not support the Scipy argument ``overwrite_*=True``."
@partial(jit, static_argnames=('lower',))
def _cholesky(a: ArrayLike, lower: bool) -> Array:
a, = _promote_dtypes_inexact(jnp.asarray(a))
l = lax_linalg.cholesky(a if lower else jnp.conj(_T(a)), symmetrize_input=False)
return l if lower else jnp.conj(_T(l))
@_wraps(scipy.linalg.cholesky,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_a', 'check_finite'))
def cholesky(a: ArrayLike, lower: bool = False, overwrite_a: bool = False,
check_finite: bool = True) -> Array:
del overwrite_a, check_finite # Unused
return _cholesky(a, lower)
@_wraps(scipy.linalg.cho_factor,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_a', 'check_finite'))
def cho_factor(a: ArrayLike, lower: bool = False, overwrite_a: bool = False,
check_finite: bool = True) -> Tuple[Array, bool]:
del overwrite_a, check_finite # Unused
return (cholesky(a, lower=lower), lower)
@partial(jit, static_argnames=('lower',))
def _cho_solve(c: ArrayLike, b: ArrayLike, lower: bool) -> Array:
c, b = _promote_dtypes_inexact(jnp.asarray(c), jnp.asarray(b))
lax_linalg._check_solve_shapes(c, b)
b = lax_linalg.triangular_solve(c, b, left_side=True, lower=lower,
transpose_a=not lower, conjugate_a=not lower)
b = lax_linalg.triangular_solve(c, b, left_side=True, lower=lower,
transpose_a=lower, conjugate_a=lower)
return b
@_wraps(scipy.linalg.cho_solve, update_doc=False,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_b', 'check_finite'))
def cho_solve(c_and_lower: Tuple[ArrayLike, bool], b: ArrayLike,
overwrite_b: bool = False, check_finite: bool = True) -> Array:
del overwrite_b, check_finite # Unused
c, lower = c_and_lower
return _cho_solve(c, b, lower)
@overload
def _svd(x: ArrayLike, *, full_matrices: bool, compute_uv: Literal[True]) -> Tuple[Array, Array, Array]: ...
@overload
def _svd(x: ArrayLike, *, full_matrices: bool, compute_uv: Literal[False]) -> Array: ...
@overload
def _svd(x: ArrayLike, *, full_matrices: bool, compute_uv: bool) -> Union[Array, Tuple[Array, Array, Array]]: ...
@partial(jit, static_argnames=('full_matrices', 'compute_uv'))
def _svd(a: ArrayLike, *, full_matrices: bool, compute_uv: bool) -> Union[Array, Tuple[Array, Array, Array]]:
a, = _promote_dtypes_inexact(jnp.asarray(a))
return lax_linalg.svd(a, full_matrices=full_matrices, compute_uv=compute_uv)
@overload
def svd(a: ArrayLike, full_matrices: bool = True, compute_uv: Literal[True] = True,
overwrite_a: bool = False, check_finite: bool = True,
lapack_driver: str = 'gesdd') -> Tuple[Array, Array, Array]: ...
@overload
def svd(a: ArrayLike, full_matrices: bool, compute_uv: Literal[False],
overwrite_a: bool = False, check_finite: bool = True,
lapack_driver: str = 'gesdd') -> Array: ...
@overload
def svd(a: ArrayLike, full_matrices: bool = True, *, compute_uv: Literal[False],
overwrite_a: bool = False, check_finite: bool = True,
lapack_driver: str = 'gesdd') -> Array: ...
@overload
def svd(a: ArrayLike, full_matrices: bool = True, compute_uv: bool = True,
overwrite_a: bool = False, check_finite: bool = True,
lapack_driver: str = 'gesdd') -> Union[Array, Tuple[Array, Array, Array]]: ...
@_wraps(scipy.linalg.svd,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_a', 'check_finite', 'lapack_driver'))
def svd(a: ArrayLike, full_matrices: bool = True, compute_uv: bool = True,
overwrite_a: bool = False, check_finite: bool = True,
lapack_driver: str = 'gesdd') -> Union[Array, Tuple[Array, Array, Array]]:
del overwrite_a, check_finite, lapack_driver # unused
return _svd(a, full_matrices=full_matrices, compute_uv=compute_uv)
@_wraps(scipy.linalg.det,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_a', 'check_finite'))
def det(a: ArrayLike, overwrite_a: bool = False, check_finite: bool = True) -> Array:
del overwrite_a, check_finite # unused
return np_linalg.det(a)
@overload
def _eigh(a: ArrayLike, b: Optional[ArrayLike], lower: bool, eigvals_only: Literal[True],
eigvals: None, type: int) -> Array: ...
@overload
def _eigh(a: ArrayLike, b: Optional[ArrayLike], lower: bool, eigvals_only: Literal[False],
eigvals: None, type: int) -> Tuple[Array, Array]: ...
@overload
def _eigh(a: ArrayLike, b: Optional[ArrayLike], lower: bool, eigvals_only: bool,
eigvals: None, type: int) -> Union[Array, Tuple[Array, Array]]: ...
@partial(jit, static_argnames=('lower', 'eigvals_only', 'eigvals', 'type'))
def _eigh(a: ArrayLike, b: Optional[ArrayLike], lower: bool, eigvals_only: bool,
eigvals: None, type: int) -> Union[Array, Tuple[Array, Array]]:
if b is not None:
raise NotImplementedError("Only the b=None case of eigh is implemented")
if type != 1:
raise NotImplementedError("Only the type=1 case of eigh is implemented.")
if eigvals is not None:
raise NotImplementedError(
"Only the eigvals=None case of eigh is implemented.")
a, = _promote_dtypes_inexact(jnp.asarray(a))
v, w = lax_linalg.eigh(a, lower=lower)
if eigvals_only:
return w
else:
return w, v
@overload
def eigh(a: ArrayLike, b: Optional[ArrayLike] = None, lower: bool = True,
eigvals_only: Literal[False] = False, overwrite_a: bool = False,
overwrite_b: bool = False, turbo: bool = True, eigvals: None = None,
type: int = 1, check_finite: bool = True) -> Tuple[Array, Array]: ...
@overload
def eigh(a: ArrayLike, b: Optional[ArrayLike] = None, lower: bool = True, *,
eigvals_only: Literal[True], overwrite_a: bool = False,
overwrite_b: bool = False, turbo: bool = True, eigvals: None = None,
type: int = 1, check_finite: bool = True) -> Array: ...
@overload
def eigh(a: ArrayLike, b: Optional[ArrayLike], lower: bool,
eigvals_only: Literal[True], overwrite_a: bool = False,
overwrite_b: bool = False, turbo: bool = True, eigvals: None = None,
type: int = 1, check_finite: bool = True) -> Array: ...
@overload
def eigh(a: ArrayLike, b: Optional[ArrayLike] = None, lower: bool = True,
eigvals_only: bool = False, overwrite_a: bool = False,
overwrite_b: bool = False, turbo: bool = True, eigvals: None = None,
type: int = 1, check_finite: bool = True) -> Union[Array, Tuple[Array, Array]]: ...
@_wraps(scipy.linalg.eigh,
lax_description=_no_overwrite_and_chkfinite_doc,
skip_params=('overwrite_a', 'overwrite_b', 'turbo', 'check_finite'))
def eigh(a: ArrayLike, b: Optional[ArrayLike] = None, lower: bool = True,
eigvals_only: bool = False, overwrite_a: bool = False,
overwrite_b: bool = False, turbo: bool = True, eigvals: None = None,
type: int = 1, check_finite: bool = True) -> Union[Array, Tuple[Array, Array]]:
del overwrite_a, overwrite_b, turbo, check_finite # unused
return _eigh(a, b, lower, eigvals_only, eigvals, type)
@partial(jit, static_argnames=('output',))
def _schur(a: Array, output: str) -> Tuple[Array, Array]:
if output == "complex":
a = a.astype(dtypes.to_complex_dtype(a.dtype))
return lax_linalg.schur(a)
@_wraps(scipy.linalg.schur)
def schur(a: ArrayLike, output: str = 'real') -> Tuple[Array, Array]:
if output not in ('real', 'complex'):
raise ValueError(
f"Expected 'output' to be either 'real' or 'complex', got output={output}.")
return _schur(a, output)
@_wraps(scipy.linalg.inv,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_a', 'check_finite'))
def inv(a: ArrayLike, overwrite_a: bool = False, check_finite: bool = True) -> Array:
del overwrite_a, check_finite # unused
return np_linalg.inv(a)
@_wraps(scipy.linalg.lu_factor,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_a', 'check_finite'))
@partial(jit, static_argnames=('overwrite_a', 'check_finite'))
def lu_factor(a: ArrayLike, overwrite_a: bool = False, check_finite: bool = True) -> Tuple[Array, Array]:
del overwrite_a, check_finite # unused
a, = _promote_dtypes_inexact(jnp.asarray(a))
lu, pivots, _ = lax_linalg.lu(a)
return lu, pivots
@_wraps(scipy.linalg.lu_solve,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_b', 'check_finite'))
@partial(jit, static_argnames=('trans', 'overwrite_b', 'check_finite'))
def lu_solve(lu_and_piv: Tuple[Array, ArrayLike], b: ArrayLike, trans: int = 0,
overwrite_b: bool = False, check_finite: bool = True) -> Array:
del overwrite_b, check_finite # unused
lu, pivots = lu_and_piv
m, _ = lu.shape[-2:]
perm = lax_linalg.lu_pivots_to_permutation(pivots, m)
return lax_linalg.lu_solve(lu, perm, b, trans)
@overload
def _lu(a: ArrayLike, permute_l: Literal[True]) -> Tuple[Array, Array]: ...
@overload
def _lu(a: ArrayLike, permute_l: Literal[False]) -> Tuple[Array, Array, Array]: ...
@overload
def _lu(a: ArrayLike, permute_l: bool) -> Union[Tuple[Array, Array], Tuple[Array, Array, Array]]: ...
@partial(jit, static_argnums=(1,))
def _lu(a: ArrayLike, permute_l: bool) -> Union[Tuple[Array, Array], Tuple[Array, Array, Array]]:
a, = _promote_dtypes_inexact(jnp.asarray(a))
lu, _, permutation = lax_linalg.lu(a)
dtype = lax.dtype(a)
m, n = jnp.shape(a)
p = jnp.real(jnp.array(permutation[None, :] == jnp.arange(m, dtype=permutation.dtype)[:, None], dtype=dtype))
k = min(m, n)
l = jnp.tril(lu, -1)[:, :k] + jnp.eye(m, k, dtype=dtype)
u = jnp.triu(lu)[:k, :]
if permute_l:
return jnp.matmul(p, l, precision=lax.Precision.HIGHEST), u
else:
return p, l, u
@overload
def lu(a: ArrayLike, permute_l: Literal[False] = False, overwrite_a: bool = False,
check_finite: bool = True) -> Tuple[Array, Array, Array]: ...
@overload
def lu(a: ArrayLike, permute_l: Literal[True], overwrite_a: bool = False,
check_finite: bool = True) -> Tuple[Array, Array]: ...
@overload
def lu(a: ArrayLike, permute_l: bool = False, overwrite_a: bool = False,
check_finite: bool = True) -> Union[Tuple[Array, Array], Tuple[Array, Array, Array]]: ...
@_wraps(scipy.linalg.lu, update_doc=False,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_a', 'check_finite'))
@partial(jit, static_argnames=('permute_l', 'overwrite_a', 'check_finite'))
def lu(a: ArrayLike, permute_l: bool = False, overwrite_a: bool = False,
check_finite: bool = True) -> Union[Tuple[Array, Array], Tuple[Array, Array, Array]]:
del overwrite_a, check_finite # unused
return _lu(a, permute_l)
@overload
def _qr(a: ArrayLike, mode: Literal["r"], pivoting: bool) -> Tuple[Array]: ...
@overload
def _qr(a: ArrayLike, mode: Literal["full", "economic"], pivoting: bool) -> Tuple[Array, Array]: ...
@overload
def _qr(a: ArrayLike, mode: str, pivoting: bool) -> Union[Tuple[Array], Tuple[Array, Array]]: ...
@partial(jit, static_argnames=('mode', 'pivoting'))
def _qr(a: ArrayLike, mode: str, pivoting: bool) -> Union[Tuple[Array], Tuple[Array, Array]]:
if pivoting:
raise NotImplementedError(
"The pivoting=True case of qr is not implemented.")
if mode in ("full", "r"):
full_matrices = True
elif mode == "economic":
full_matrices = False
else:
raise ValueError(f"Unsupported QR decomposition mode '{mode}'")
a, = _promote_dtypes_inexact(jnp.asarray(a))
q, r = lax_linalg.qr(a, full_matrices=full_matrices)
if mode == "r":
return (r,)
return q, r
@overload
def qr(a: ArrayLike, overwrite_a: bool = False, lwork: Any = None, mode: Literal["full", "economic"] = "full",
pivoting: bool = False, check_finite: bool = True) -> Tuple[Array, Array]: ...
@overload
def qr(a: ArrayLike, overwrite_a: bool, lwork: Any, mode: Literal["r"],
pivoting: bool = False, check_finite: bool = True) -> Tuple[Array]: ...
@overload
def qr(a: ArrayLike, overwrite_a: bool = False, lwork: Any = None, *, mode: Literal["r"],
pivoting: bool = False, check_finite: bool = True) -> Tuple[Array]: ...
@overload
def qr(a: ArrayLike, overwrite_a: bool = False, lwork: Any = None, mode: str = "full",
pivoting: bool = False, check_finite: bool = True) -> Union[Tuple[Array], Tuple[Array, Array]]: ...
@_wraps(scipy.linalg.qr,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_a', 'check_finite', 'lwork'))
def qr(a: ArrayLike, overwrite_a: bool = False, lwork: Any = None, mode: str = "full",
pivoting: bool = False, check_finite: bool = True) -> Union[Tuple[Array], Tuple[Array, Array]]:
del overwrite_a, lwork, check_finite # unused
return _qr(a, mode, pivoting)
@partial(jit, static_argnames=('assume_a', 'lower'))
def _solve(a: ArrayLike, b: ArrayLike, assume_a: str, lower: bool) -> Array:
if assume_a != 'pos':
return np_linalg.solve(a, b)
a, b = _promote_dtypes_inexact(jnp.asarray(a), jnp.asarray(b))
lax_linalg._check_solve_shapes(a, b)
# With custom_linear_solve, we can reuse the same factorization when
# computing sensitivities. This is considerably faster.
factors = cho_factor(lax.stop_gradient(a), lower=lower)
custom_solve = partial(
lax.custom_linear_solve,
lambda x: lax_linalg._matvec_multiply(a, x),
solve=lambda _, x: cho_solve(factors, x),
symmetric=True)
if a.ndim == b.ndim + 1:
# b.shape == [..., m]
return custom_solve(b)
else:
# b.shape == [..., m, k]
return vmap(custom_solve, b.ndim - 1, max(a.ndim, b.ndim) - 1)(b)
@_wraps(scipy.linalg.solve,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_a', 'overwrite_b', 'debug', 'check_finite'))
def solve(a: ArrayLike, b: ArrayLike, sym_pos: bool = False, lower: bool = False,
overwrite_a: bool = False, overwrite_b: bool = False, debug: bool = False,
check_finite: bool = True, assume_a: str = 'gen') -> Array:
# TODO(jakevdp) remove sym_pos argument after October 2022
del overwrite_a, overwrite_b, debug, check_finite #unused
valid_assume_a = ['gen', 'sym', 'her', 'pos']
if assume_a not in valid_assume_a:
raise ValueError(f"Expected assume_a to be one of {valid_assume_a}; got {assume_a!r}")
if sym_pos:
warnings.warn("The sym_pos argument to solve() is deprecated and will be removed "
"in a future JAX release. Use assume_a='pos' instead.",
category=FutureWarning, stacklevel=2)
assume_a = 'pos'
return _solve(a, b, assume_a, lower)
@partial(jit, static_argnames=('trans', 'lower', 'unit_diagonal'))
def _solve_triangular(a: ArrayLike, b: ArrayLike, trans: Union[int, str],
lower: bool, unit_diagonal: bool) -> Array:
if trans == 0 or trans == "N":
transpose_a, conjugate_a = False, False
elif trans == 1 or trans == "T":
transpose_a, conjugate_a = True, False
elif trans == 2 or trans == "C":
transpose_a, conjugate_a = True, True
else:
raise ValueError(f"Invalid 'trans' value {trans}")
a, b = _promote_dtypes_inexact(jnp.asarray(a), jnp.asarray(b))
# lax_linalg.triangular_solve only supports matrix 'b's at the moment.
b_is_vector = jnp.ndim(a) == jnp.ndim(b) + 1
if b_is_vector:
b = b[..., None]
out = lax_linalg.triangular_solve(a, b, left_side=True, lower=lower,
transpose_a=transpose_a,
conjugate_a=conjugate_a,
unit_diagonal=unit_diagonal)
if b_is_vector:
return out[..., 0]
else:
return out
@_wraps(scipy.linalg.solve_triangular,
lax_description=_no_overwrite_and_chkfinite_doc, skip_params=('overwrite_b', 'debug', 'check_finite'))
def solve_triangular(a: ArrayLike, b: ArrayLike, trans: Union[int, str] = 0, lower: bool = False,
unit_diagonal: bool = False, overwrite_b: bool = False,
debug: Any = None, check_finite: bool = True) -> Array:
del overwrite_b, debug, check_finite # unused
return _solve_triangular(a, b, trans, lower, unit_diagonal)
@_wraps(scipy.linalg.tril)
def tril(m: ArrayLike, k: int = 0) -> Array:
return jnp.tril(m, k)
@_wraps(scipy.linalg.triu)
def triu(m: ArrayLike, k: int = 0) -> Array:
return jnp.triu(m, k)
_expm_description = textwrap.dedent("""
In addition to the original NumPy argument(s) listed below,
also supports the optional boolean argument ``upper_triangular``
to specify whether the ``A`` matrix is upper triangular, and the optional
argument ``max_squarings`` to specify the max number of squarings allowed
in the scaling-and-squaring approximation method. Return nan if the actual
number of squarings required is more than ``max_squarings``.
The number of required squarings = max(0, ceil(log2(norm(A)) - c)
where norm() denotes the L1 norm, and
- c=2.42 for float64 or complex128,
- c=1.97 for float32 or complex64
""")
@_wraps(scipy.linalg.expm, lax_description=_expm_description)
@partial(jit, static_argnames=('upper_triangular', 'max_squarings'))
def expm(A: ArrayLike, *, upper_triangular: bool = False, max_squarings: int = 16) -> Array:
P, Q, n_squarings = _calc_P_Q(A)
def _nan(args):
A, *_ = args
return jnp.full_like(A, jnp.nan)
def _compute(args):
A, P, Q = args
R = _solve_P_Q(P, Q, upper_triangular)
R = _squaring(R, n_squarings, max_squarings)
return R
R = lax.cond(n_squarings > max_squarings, _nan, _compute, (A, P, Q))
return R
@jit
def _calc_P_Q(A: ArrayLike) -> Tuple[Array, Array, Array]:
A = jnp.asarray(A)
if A.ndim != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected A to be a square matrix')
A_L1 = np_linalg.norm(A,1)
n_squarings: Array
U: Array
V: Array
if A.dtype == 'float64' or A.dtype == 'complex128':
maxnorm = 5.371920351148152
n_squarings = jnp.maximum(0, jnp.floor(jnp.log2(A_L1 / maxnorm)))
A = A / 2 ** n_squarings.astype(A.dtype)
conds = jnp.array([1.495585217958292e-002, 2.539398330063230e-001,
9.504178996162932e-001, 2.097847961257068e+000],
dtype=A_L1.dtype)
idx = jnp.digitize(A_L1, conds)
U, V = lax.switch(idx, [_pade3, _pade5, _pade7, _pade9, _pade13], A)
elif A.dtype == 'float32' or A.dtype == 'complex64':
maxnorm = 3.925724783138660
n_squarings = jnp.maximum(0, jnp.floor(jnp.log2(A_L1 / maxnorm)))
A = A / 2 ** n_squarings.astype(A.dtype)
conds = jnp.array([4.258730016922831e-001, 1.880152677804762e+000],
dtype=A_L1.dtype)
idx = jnp.digitize(A_L1, conds)
U, V = lax.switch(idx, [_pade3, _pade5, _pade7], A)
else:
raise TypeError(f"A.dtype={A.dtype} is not supported.")
P = U + V # p_m(A) : numerator
Q = -U + V # q_m(A) : denominator
return P, Q, n_squarings
def _solve_P_Q(P: ArrayLike, Q: ArrayLike, upper_triangular: bool = False) -> Array:
if upper_triangular:
return solve_triangular(Q, P)
else:
return np_linalg.solve(Q, P)
def _precise_dot(A: ArrayLike, B: ArrayLike) -> Array:
return jnp.dot(A, B, precision=lax.Precision.HIGHEST)
@partial(jit, static_argnums=2)
def _squaring(R: Array, n_squarings: Array, max_squarings: int) -> Array:
# squaring step to undo scaling
def _squaring_precise(x):
return _precise_dot(x, x)
def _identity(x):
return x
def _scan_f(c, i):
return lax.cond(i < n_squarings, _squaring_precise, _identity, c), None
res, _ = lax.scan(_scan_f, R, jnp.arange(max_squarings, dtype=n_squarings.dtype))
return res
def _pade3(A: Array) -> Tuple[Array, Array]:
b = (120., 60., 12., 1.)
M, N = A.shape
ident = jnp.eye(M, N, dtype=A.dtype)
A2 = _precise_dot(A, A)
U = _precise_dot(A, (b[3]*A2 + b[1]*ident))
V: Array = b[2]*A2 + b[0]*ident
return U, V
def _pade5(A: Array) -> Tuple[Array, Array]:
b = (30240., 15120., 3360., 420., 30., 1.)
M, N = A.shape
ident = jnp.eye(M, N, dtype=A.dtype)
A2 = _precise_dot(A, A)
A4 = _precise_dot(A2, A2)
U = _precise_dot(A, b[5]*A4 + b[3]*A2 + b[1]*ident)
V: Array = b[4]*A4 + b[2]*A2 + b[0]*ident
return U, V
def _pade7(A: Array) -> Tuple[Array, Array]:
b = (17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.)
M, N = A.shape
ident = jnp.eye(M, N, dtype=A.dtype)
A2 = _precise_dot(A, A)
A4 = _precise_dot(A2, A2)
A6 = _precise_dot(A4, A2)
U = _precise_dot(A, b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident)
V = b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident
return U,V
def _pade9(A: Array) -> Tuple[Array, Array]:
b = (17643225600., 8821612800., 2075673600., 302702400., 30270240.,
2162160., 110880., 3960., 90., 1.)
M, N = A.shape
ident = jnp.eye(M, N, dtype=A.dtype)
A2 = _precise_dot(A, A)
A4 = _precise_dot(A2, A2)
A6 = _precise_dot(A4, A2)
A8 = _precise_dot(A6, A2)
U = _precise_dot(A, b[9]*A8 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident)
V = b[8]*A8 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident
return U,V
def _pade13(A: Array) -> Tuple[Array, Array]:
b = (64764752532480000., 32382376266240000., 7771770303897600.,
1187353796428800., 129060195264000., 10559470521600., 670442572800.,
33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.)
M, N = A.shape
ident = jnp.eye(M, N, dtype=A.dtype)
A2 = _precise_dot(A, A)
A4 = _precise_dot(A2, A2)
A6 = _precise_dot(A4, A2)
U = _precise_dot(A, _precise_dot(A6, b[13]*A6 + b[11]*A4 + b[9]*A2) + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident)
V = _precise_dot(A6, b[12]*A6 + b[10]*A4 + b[8]*A2) + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident
return U,V
_expm_frechet_description = textwrap.dedent("""
Does not currently support the Scipy argument ``jax.numpy.asarray_chkfinite``,
because `jax.numpy.asarray_chkfinite` does not exist at the moment. Does not
support the ``method='blockEnlarge'`` argument.
""")
@overload
def expm_frechet(A: ArrayLike, E: ArrayLike, *, method: Optional[str] = None,
compute_expm: Literal[True] = True) -> Tuple[Array, Array]: ...
@overload
def expm_frechet(A: ArrayLike, E: ArrayLike, *, method: Optional[str] = None,
compute_expm: Literal[False]) -> Array: ...
@overload
def expm_frechet(A: ArrayLike, E: ArrayLike, *, method: Optional[str] = None,
compute_expm: bool = True) -> Union[Array, Tuple[Array, Array]]: ...
@_wraps(scipy.linalg.expm_frechet, lax_description=_expm_frechet_description)
@partial(jit, static_argnames=('method', 'compute_expm'))
def expm_frechet(A: ArrayLike, E: ArrayLike, *, method: Optional[str] = None,
compute_expm: bool = True) -> Union[Array, Tuple[Array, Array]]:
A = jnp.asarray(A)
E = jnp.asarray(E)
if A.ndim != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected A to be a square matrix')
if E.ndim != 2 or E.shape[0] != E.shape[1]:
raise ValueError('expected E to be a square matrix')
if A.shape != E.shape:
raise ValueError('expected A and E to be the same shape')
if method is None:
method = 'SPS'
if method == 'SPS':
bound_fun = partial(expm, upper_triangular=False, max_squarings=16)
expm_A, expm_frechet_AE = jvp(bound_fun, (A,), (E,))
else:
raise ValueError('only method=\'SPS\' is supported')
if compute_expm:
return expm_A, expm_frechet_AE
else:
return expm_frechet_AE
@_wraps(scipy.linalg.block_diag)
@jit
def block_diag(*arrs: ArrayLike) -> Array:
if len(arrs) == 0:
arrs = cast(Tuple[ArrayLike], (jnp.zeros((1, 0)),))
arrs = cast(Tuple[ArrayLike], jnp._promote_dtypes(*arrs))
bad_shapes = [i for i, a in enumerate(arrs) if jnp.ndim(a) > 2]
if bad_shapes:
raise ValueError("Arguments to jax.scipy.linalg.block_diag must have at "
"most 2 dimensions, got {} at argument {}."
.format(arrs[bad_shapes[0]], bad_shapes[0]))
converted_arrs = [jnp.atleast_2d(a) for a in arrs]
acc = converted_arrs[0]
dtype = lax.dtype(acc)
for a in converted_arrs[1:]:
_, c = a.shape
a = lax.pad(a, dtype.type(0), ((0, 0, 0), (acc.shape[-1], 0, 0)))
acc = lax.pad(acc, dtype.type(0), ((0, 0, 0), (0, c, 0)))
acc = lax.concatenate([acc, a], dimension=0)
return acc
@_wraps(scipy.linalg.eigh_tridiagonal)
@partial(jit, static_argnames=("eigvals_only", "select", "select_range"))
def eigh_tridiagonal(d: ArrayLike, e: ArrayLike, *, eigvals_only: bool = False,
select: str = 'a', select_range: Optional[Tuple[float, float]] = None,
tol: Optional[float] = None) -> Array:
if not eigvals_only:
raise NotImplementedError("Calculation of eigenvectors is not implemented")
def _sturm(alpha, beta_sq, pivmin, alpha0_perturbation, x):
"""Implements the Sturm sequence recurrence."""
n = alpha.shape[0]
zeros = jnp.zeros(x.shape, dtype=jnp.int32)
ones = jnp.ones(x.shape, dtype=jnp.int32)
# The first step in the Sturm sequence recurrence
# requires special care if x is equal to alpha[0].
def sturm_step0():
q = alpha[0] - x
count = jnp.where(q < 0, ones, zeros)
q = jnp.where(alpha[0] == x, alpha0_perturbation, q)
return q, count
# Subsequent steps all take this form:
def sturm_step(i, q, count):
q = alpha[i] - beta_sq[i - 1] / q - x
count = jnp.where(q <= pivmin, count + 1, count)
q = jnp.where(q <= pivmin, jnp.minimum(q, -pivmin), q)
return q, count
# The first step initializes q and count.
q, count = sturm_step0()
# Peel off ((n-1) % blocksize) steps from the main loop, so we can run
# the bulk of the iterations unrolled by a factor of blocksize.
blocksize = 16
i = 1
peel = (n - 1) % blocksize
unroll_cnt = peel
def unrolled_steps(args):
start, q, count = args
for j in range(unroll_cnt):
q, count = sturm_step(start + j, q, count)
return start + unroll_cnt, q, count
i, q, count = unrolled_steps((i, q, count))
# Run the remaining steps of the Sturm sequence using a partially
# unrolled while loop.
unroll_cnt = blocksize
def cond(iqc):
i, q, count = iqc
return jnp.less(i, n)
_, _, count = lax.while_loop(cond, unrolled_steps, (i, q, count))
return count
alpha = jnp.asarray(d)
beta = jnp.asarray(e)
supported_dtypes = (jnp.float32, jnp.float64, jnp.complex64, jnp.complex128)
if alpha.dtype != beta.dtype:
raise TypeError("diagonal and off-diagonal values must have same dtype, "
f"got {alpha.dtype} and {beta.dtype}")
if alpha.dtype not in supported_dtypes or beta.dtype not in supported_dtypes:
raise TypeError("Only float32 and float64 inputs are supported as inputs "
"to jax.scipy.linalg.eigh_tridiagonal, got "
f"{alpha.dtype} and {beta.dtype}")
n = alpha.shape[0]
if n <= 1:
return jnp.real(alpha)
if jnp.issubdtype(alpha.dtype, jnp.complexfloating):
alpha = jnp.real(alpha)
beta_sq = jnp.real(beta * jnp.conj(beta))
beta_abs = jnp.sqrt(beta_sq)
else:
beta_abs = jnp.abs(beta)
beta_sq = jnp.square(beta)
# Estimate the largest and smallest eigenvalues of T using the Gershgorin
# circle theorem.
off_diag_abs_row_sum = jnp.concatenate(
[beta_abs[:1], beta_abs[:-1] + beta_abs[1:], beta_abs[-1:]], axis=0)
lambda_est_max = jnp.amax(alpha + off_diag_abs_row_sum)
lambda_est_min = jnp.amin(alpha - off_diag_abs_row_sum)
# Upper bound on 2-norm of T.
t_norm = jnp.maximum(jnp.abs(lambda_est_min), jnp.abs(lambda_est_max))
# Compute the smallest allowed pivot in the Sturm sequence to avoid
# overflow.
finfo = np.finfo(alpha.dtype)
one = np.ones([], dtype=alpha.dtype)
safemin = np.maximum(one / finfo.max, (one + finfo.eps) * finfo.tiny)
pivmin = safemin * jnp.maximum(1, jnp.amax(beta_sq))
alpha0_perturbation = jnp.square(finfo.eps * beta_abs[0])
abs_tol = finfo.eps * t_norm
if tol is not None:
abs_tol = jnp.maximum(tol, abs_tol)
# In the worst case, when the absolute tolerance is eps*lambda_est_max and
# lambda_est_max = -lambda_est_min, we have to take as many bisection steps
# as there are bits in the mantissa plus 1.
# The proof is left as an exercise to the reader.
max_it = finfo.nmant + 1
# Determine the indices of the desired eigenvalues, based on select and
# select_range.
if select == 'a':
target_counts = jnp.arange(n, dtype=jnp.int32)
elif select == 'i':
if select_range is None:
raise ValueError("for select='i', select_range must be specified.")
if select_range[0] > select_range[1]:
raise ValueError('Got empty index range in select_range.')
target_counts = jnp.arange(select_range[0], select_range[1] + 1, dtype=jnp.int32)
elif select == 'v':
# TODO(phawkins): requires dynamic shape support.
raise NotImplementedError("eigh_tridiagonal(..., select='v') is not "
"implemented")
else:
raise ValueError("'select must have a value in {'a', 'i', 'v'}.")
# Run binary search for all desired eigenvalues in parallel, starting from
# the interval lightly wider than the estimated
# [lambda_est_min, lambda_est_max].
fudge = 2.1 # We widen starting interval the Gershgorin interval a bit.
norm_slack = jnp.array(n, alpha.dtype) * fudge * finfo.eps * t_norm
lower = lambda_est_min - norm_slack - 2 * fudge * pivmin
upper = lambda_est_max + norm_slack + fudge * pivmin
# Pre-broadcast the scalars used in the Sturm sequence for improved
# performance.
target_shape = jnp.shape(target_counts)
lower = jnp.broadcast_to(lower, shape=target_shape)
upper = jnp.broadcast_to(upper, shape=target_shape)
mid = 0.5 * (upper + lower)
pivmin = jnp.broadcast_to(pivmin, target_shape)
alpha0_perturbation = jnp.broadcast_to(alpha0_perturbation, target_shape)
# Start parallel binary searches.
def cond(args):
i, lower, _, upper = args
return jnp.logical_and(
jnp.less(i, max_it),
jnp.less(abs_tol, jnp.amax(upper - lower)))
def body(args):
i, lower, mid, upper = args
counts = _sturm(alpha, beta_sq, pivmin, alpha0_perturbation, mid)
lower = jnp.where(counts <= target_counts, mid, lower)
upper = jnp.where(counts > target_counts, mid, upper)
mid = 0.5 * (lower + upper)
return i + 1, lower, mid, upper
_, _, mid, _ = lax.while_loop(cond, body, (0, lower, mid, upper))
return mid
@partial(jit, static_argnames=('side', 'method'))
@jax.default_matmul_precision("float32")
def polar(a: ArrayLike, side: str = 'right', *, method: str = 'qdwh', eps: Optional[float] = None,
max_iterations: Optional[int] = None) -> Tuple[Array, Array]:
r"""Computes the polar decomposition.
Given the :math:`m \times n` matrix :math:`a`, returns the factors of the polar
decomposition :math:`u` (also :math:`m \times n`) and :math:`p` such that
:math:`a = up` (if side is ``"right"``; :math:`p` is :math:`n \times n`) or
:math:`a = pu` (if side is ``"left"``; :math:`p` is :math:`m \times m`),
where :math:`p` is positive semidefinite. If :math:`a` is nonsingular,
:math:`p` is positive definite and the
decomposition is unique. :math:`u` has orthonormal columns unless
:math:`n > m`, in which case it has orthonormal rows.
Writing the SVD of :math:`a` as
:math:`a = u_\mathit{svd} \cdot s_\mathit{svd} \cdot v^h_\mathit{svd}`, we
have :math:`u = u_\mathit{svd} \cdot v^h_\mathit{svd}`. Thus the unitary
factor :math:`u` can be constructed as the application of the sign function to
the singular values of :math:`a`; or, if :math:`a` is Hermitian, the
eigenvalues.
Several methods exist to compute the polar decomposition. Currently two
are supported:
* ``method="svd"``:
Computes the SVD of :math:`a` and then forms
:math:`u = u_\mathit{svd} \cdot v^h_\mathit{svd}`.
* ``method="qdwh"``:
Applies the `QDWH`_ (QR-based Dynamically Weighted Halley) algorithm.
Args:
a: The :math:`m \times n` input matrix.
side: Determines whether a right or left polar decomposition is computed.
If ``side`` is ``"right"`` then :math:`a = up`. If ``side`` is ``"left"``
then :math:`a = pu`. The default is ``"right"``.
method: Determines the algorithm used, as described above.
precision: :class:`~jax.lax.Precision` object specifying the matmul precision.
eps: The final result will satisfy
:math:`\left|x_k - x_{k-1}\right| < \left|x_k\right| (4\epsilon)^{\frac{1}{3}}`,
where :math:`x_k` are the QDWH iterates. Ignored if ``method`` is not
``"qdwh"``.
max_iterations: Iterations will terminate after this many steps even if the
above is unsatisfied. Ignored if ``method`` is not ``"qdwh"``.
Returns:
A ``(unitary, posdef)`` tuple, where ``unitary`` is the unitary factor
(:math:`m \times n`), and ``posdef`` is the positive-semidefinite factor.
``posdef`` is either :math:`n \times n` or :math:`m \times m` depending on
whether ``side`` is ``"right"`` or ``"left"``, respectively.
.. _QDWH: https://epubs.siam.org/doi/abs/10.1137/090774999
"""
a = jnp.asarray(a)
if a.ndim != 2:
raise ValueError("The input `a` must be a 2-D array.")
if side not in ["right", "left"]:
raise ValueError("The argument `side` must be either 'right' or 'left'.")
m, n = a.shape
if method == "qdwh":
# TODO(phawkins): return info also if the user opts in?
if m >= n and side == "right":
unitary, posdef, _, _ = qdwh.qdwh(a, is_hermitian=False, eps=eps)
elif m < n and side == "left":
a = a.T.conj()
unitary, posdef, _, _ = qdwh.qdwh(a, is_hermitian=False, eps=eps)
posdef = posdef.T.conj()
unitary = unitary.T.conj()
else:
raise NotImplementedError("method='qdwh' only supports mxn matrices "
"where m < n where side='right' and m >= n "
f"side='left', got {a.shape} with side={side}")
elif method == "svd":
u_svd, s_svd, vh_svd = lax_linalg.svd(a, full_matrices=False)
s_svd = s_svd.astype(u_svd.dtype)
unitary = u_svd @ vh_svd
if side == "right":
# a = u * p
posdef = (vh_svd.T.conj() * s_svd[None, :]) @ vh_svd
else:
# a = p * u
posdef = (u_svd * s_svd[None, :]) @ (u_svd.T.conj())
else:
raise ValueError(f"Unknown polar decomposition method {method}.")
return unitary, posdef
def polar_unitary(a: ArrayLike, *, method: str = "qdwh", eps: Optional[float] = None,
max_iterations: Optional[int] = None) -> Tuple[Array, Array]:
""" Computes the unitary factor u in the polar decomposition ``a = u p``
(or ``a = p u``).
.. warning::
This function is deprecated. Use :func:`jax.scipy.linalg.polar` instead.
"""
# TODO(phawkins): delete this function after 2022/8/11.
warnings.warn("jax.scipy.linalg.polar_unitary is deprecated. Call "
"jax.scipy.linalg.polar instead.",
DeprecationWarning)
unitary, _ = polar(a, method, eps, max_iterations)
return unitary
@jit
def _sqrtm_triu(T: Array) -> Array:
"""
Implements Björck, Å., & Hammarling, S. (1983).
"A Schur method for the square root of a matrix". Linear algebra and
its applications", 52, 127-140.
"""
diag = jnp.sqrt(jnp.diag(T))
n = diag.size
U = jnp.diag(diag)
def i_loop(l, data):
j, U = data
i = j - 1 - l
s = lax.fori_loop(i + 1, j, lambda k, val: val + U[i, k] * U[k, j], 0.0)
value = jnp.where(T[i, j] == s, 0.0,
(T[i, j] - s) / (diag[i] + diag[j]))
return j, U.at[i, j].set(value)
def j_loop(j, U):
_, U = lax.fori_loop(0, j, i_loop, (j, U))
return U
U = lax.fori_loop(0, n, j_loop, U)
return U
@jit
def _sqrtm(A: ArrayLike) -> Array:
T, Z = schur(A, output='complex')
sqrt_T = _sqrtm_triu(T)
return jnp.matmul(jnp.matmul(Z, sqrt_T, precision=lax.Precision.HIGHEST),
jnp.conj(Z.T), precision=lax.Precision.HIGHEST)
@_wraps(scipy.linalg.sqrtm,
lax_description="""
This differs from ``scipy.linalg.sqrtm`` in that the return type of
``jax.scipy.linalg.sqrtm`` is always ``complex64`` for 32-bit input,
and ``complex128`` for 64-bit input.
This function implements the complex Schur method described in [A]. It does not use recursive blocking
to speed up computations as a Sylvester Equation solver is not available yet in JAX.
[A] Björck, Å., & Hammarling, S. (1983).
"A Schur method for the square root of a matrix". Linear algebra and its applications, 52, 127-140.
""")
def sqrtm(A: ArrayLike, blocksize: int = 1) -> Array:
if blocksize > 1:
raise NotImplementedError("Blocked version is not implemented yet.")
return _sqrtm(A)
@_wraps(scipy.linalg.rsf2csf, lax_description=_no_chkfinite_doc)
@partial(jit, static_argnames=('check_finite',))
def rsf2csf(T: ArrayLike, Z: ArrayLike, check_finite: bool = True) -> Tuple[Array, Array]:
del check_finite # unused
T = jnp.asarray(T)
Z = jnp.asarray(Z)
if T.ndim != 2 or T.shape[0] != T.shape[1]:
raise ValueError("Input 'T' must be square.")
if Z.ndim != 2 or Z.shape[0] != Z.shape[1]:
raise ValueError("Input 'Z' must be square.")
if T.shape[0] != Z.shape[0]:
raise ValueError(f"Input array shapes must match: Z: {Z.shape} vs. T: {T.shape}")
T, Z = _promote_dtypes_complex(T, Z)
eps = jnp.finfo(T.dtype).eps
N = T.shape[0]
if N == 1:
return T, Z
def _update_T_Z(m, T, Z):
mu = np_linalg.eigvals(lax.dynamic_slice(T, (m-1, m-1), (2, 2))) - T[m, m]
r = np_linalg.norm(jnp.array([mu[0], T[m, m-1]])).astype(T.dtype)
c = mu[0] / r
s = T[m, m-1] / r
G = jnp.array([[c.conj(), s], [-s, c]], dtype=T.dtype)
# T[m-1:m+1, m-1:] = G @ T[m-1:m+1, m-1:]
T_rows = lax.dynamic_slice_in_dim(T, m-1, 2, axis=0)
col_mask = jnp.arange(N) >= m-1
G_dot_T_zeroed_cols = G @ jnp.where(col_mask, T_rows, 0)
T_rows_new = jnp.where(~col_mask, T_rows, G_dot_T_zeroed_cols)
T = lax.dynamic_update_slice_in_dim(T, T_rows_new, m-1, axis=0)
# T[:m+1, m-1:m+1] = T[:m+1, m-1:m+1] @ G.conj().T
T_cols = lax.dynamic_slice_in_dim(T, m-1, 2, axis=1)
row_mask = jnp.arange(N)[:, jnp.newaxis] < m+1
T_zeroed_rows_dot_GH = jnp.where(row_mask, T_cols, 0) @ G.conj().T
T_cols_new = jnp.where(~row_mask, T_cols, T_zeroed_rows_dot_GH)
T = lax.dynamic_update_slice_in_dim(T, T_cols_new, m-1, axis=1)
# Z[:, m-1:m+1] = Z[:, m-1:m+1] @ G.conj().T
Z_cols = lax.dynamic_slice_in_dim(Z, m-1, 2, axis=1)
Z = lax.dynamic_update_slice_in_dim(Z, Z_cols @ G.conj().T, m-1, axis=1)
return T, Z
def _rsf2scf_iter(i, TZ):
m = N-i
T, Z = TZ
T, Z = lax.cond(
jnp.abs(T[m, m-1]) > eps*(jnp.abs(T[m-1, m-1]) + jnp.abs(T[m, m])),
_update_T_Z,
lambda m, T, Z: (T, Z),
m, T, Z)
T = T.at[m, m-1].set(0.0)
return T, Z
return lax.fori_loop(1, N, _rsf2scf_iter, (T, Z))
@overload
def hessenberg(a: ArrayLike, *, calc_q: Literal[False], overwrite_a: bool = False,
check_finite: bool = True) -> Array: ...
@overload
def hessenberg(a: ArrayLike, *, calc_q: Literal[True], overwrite_a: bool = False,
check_finite: bool = True) -> Tuple[Array, Array]: ...
@_wraps(scipy.linalg.hessenberg, lax_description=_no_overwrite_and_chkfinite_doc)
@partial(jit, static_argnames=('calc_q', 'check_finite', 'overwrite_a'))
def hessenberg(a: ArrayLike, *, calc_q: bool = False, overwrite_a: bool = False,
check_finite: bool = True) -> Union[Array, Tuple[Array, Array]]:
del overwrite_a, check_finite
n = jnp.shape(a)[-1]
if n == 0:
if calc_q:
return jnp.zeros_like(a), jnp.zeros_like(a)
else:
return jnp.zeros_like(a)
a_out, taus = lax_linalg.hessenberg(a)
h = jnp.triu(a_out, -1)
if calc_q:
q = lax_linalg.householder_product(a_out[..., 1:, :-1], taus)
batch_dims = a_out.shape[:-2]
q = jnp.block([[jnp.ones(batch_dims + (1, 1), dtype=a_out.dtype),
jnp.zeros(batch_dims + (1, n - 1), dtype=a_out.dtype)],
[jnp.zeros(batch_dims + (n - 1, 1), dtype=a_out.dtype), q]])
return h, q
else:
return h