rocm_jax/tests/nn_test.py
2025-01-10 11:54:09 -08:00

688 lines
25 KiB
Python

# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for nn module."""
import collections
from functools import partial
import itertools
import unittest
from absl.testing import absltest
from absl.testing import parameterized
import scipy.stats
from jax._src import ad_checkpoint
from jax._src import config
from jax._src import core
from jax._src import test_util as jtu
from jax._src.lib import cuda_versions
from jax.test_util import check_grads
from jax import nn
from jax import random
import jax
import jax.numpy as jnp
config.parse_flags_with_absl()
def _is_required_cudnn_version_satisfied(min_cudnn_version):
return (
jtu.is_cuda_compute_capability_at_least("8.0") and
cuda_versions is not None and
cuda_versions.cudnn_get_version() >= min_cudnn_version
)
def _check_cudnn_backend(fn, *args, **kwargs):
lowered = jax.jit(fn).lower(*args, **kwargs)
hlo = lowered.as_text('stablehlo', debug_info=True)
return '__cudnn$fmha' in hlo
_cudnn_dbias_error = 'cuDNN only supports bias gradient'
@jtu.with_config(jax_legacy_prng_key="allow",
jax_numpy_dtype_promotion="standard")
class NNFunctionsTest(jtu.JaxTestCase):
@parameterized.product(
dtype=[jnp.bfloat16, jnp.float16],
group_num=[1, 2, 4],
use_vmap=[False, True],
impl=['cudnn', 'xla'],
)
def testDotProductAttention(self, dtype, group_num, use_vmap, impl):
if impl == 'cudnn' and not _is_required_cudnn_version_satisfied(8904):
raise unittest.SkipTest("CUDA or cuDNN versions are not compatible.")
if impl == 'cudnn' and dtype == jnp.float32:
raise unittest.SkipTest("cuDNN only supports fp16 or bf16.")
B, S, T, N, H, G = 2, 128, 128, 4, 32, group_num
keys = random.split(random.PRNGKey(0), 5)
Q = random.normal(keys[0], (B, T, N, H), dtype)
K = random.normal(keys[1], (B, S, N // G, H), dtype)
V = random.normal(keys[2], (B, S, N // G, H), dtype)
grad = random.normal(keys[3], (B, T, N, H), dtype)
bias, mask = None, None
sdpa = nn.dot_product_attention
sdpa_ref = partial(sdpa, implementation=None)
sdpa_ans = partial(sdpa, implementation=impl)
if use_vmap:
sdpa_ans = jax.vmap(sdpa_ans, in_axes=(0, 0, 0, None, None), out_axes=0)
# For testing purposes, we call the non-GQA version without vmap in the
# reference code
K_ref = jnp.repeat(K, G, axis=2)
V_ref = jnp.repeat(V, G, axis=2)
out_ref, sdpa_vjp_ref = jax.vjp(sdpa_ref, Q, K_ref, V_ref, bias, mask)
out_ans, sdpa_vjp_ans = jax.vjp(sdpa_ans, Q, K, V, bias, mask)
dQ_ref, dK_ref, dV_ref = sdpa_vjp_ref(grad)[:3]
dQ_ans, dK_ans, dV_ans = sdpa_vjp_ans(grad)[:3]
dK_ref = dK_ref.reshape(B, S, N // G, G, H).sum(axis=3)
dV_ref = dV_ref.reshape(B, S, N // G, G, H).sum(axis=3)
if impl == 'cudnn':
self.assertTrue(_check_cudnn_backend(sdpa_ans, Q, K, V, bias, mask))
self.assertTrue(_check_cudnn_backend(sdpa_vjp_ans, grad))
self.assertAllClose(out_ref, out_ans, atol=.01, rtol=.01)
self.assertAllClose(dQ_ref, dQ_ans, rtol=.01, atol=.01)
self.assertAllClose(dK_ref, dK_ans, rtol=.01, atol=.01)
self.assertAllClose(dV_ref, dV_ans, rtol=.01, atol=.01)
@parameterized.product(
mask_mode=['bias', 'causal', 'padding', 'custom', ('causal', 'padding'),
('custom', 'padding'), ('bias', 'causal'),
('causal', 'sliding_window')],
)
def testDotProductAttentionMask(self, mask_mode):
if isinstance(mask_mode, str):
mask_mode = (mask_mode,)
min_cudnn_version = 90200 if 'sliding_window' in mask_mode else 8904
if not _is_required_cudnn_version_satisfied(min_cudnn_version):
raise unittest.SkipTest("CUDA or cuDNN versions are not compatible.")
dtype = jnp.bfloat16
B, S, T, N, H = 2, 128, 128, 4, 32
keys = random.split(random.PRNGKey(0), 4)
Q = random.normal(keys[0], (B, T, N, H), dtype)
K = random.normal(keys[1], (B, S, N, H), dtype)
V = random.normal(keys[2], (B, S, N, H), dtype)
grad = random.normal(keys[3], (B, T, N, H), dtype)
bias, mask = None, None
q_seqlen, kv_seqlen = None, None
window_size = None
is_causal = 'causal' in mask_mode
if 'padding' in mask_mode:
q_seqlen = jnp.array([T // 2, T // 4], dtype=jnp.int32)
kv_seqlen = jnp.array([S // 4, S // 2], dtype=jnp.int32)
if 'custom' in mask_mode:
# Use a generated causal mask as the custom mask.
custom_mask = jnp.tril(jnp.ones((T, S), dtype=jnp.bool_))
mask = custom_mask[None, None, :, :]
if 'bias' in mask_mode:
bias = random.normal(keys[4], (1, N, T, S), dtype)
if 'sliding_window' in mask_mode:
window_size = (3, 2) if is_causal else (3, 0)
sdpa = nn.dot_product_attention
sdpa_ref = partial(sdpa, is_causal=is_causal, implementation=None)
sdpa_ans = partial(sdpa, is_causal=is_causal, implementation='cudnn')
args = (Q, K, V, bias, mask)
kwargs = {'query_seq_lengths': q_seqlen, 'key_value_seq_lengths': kv_seqlen}
# Convert the kargs to positional args for the jax.vjp.
fn_ref = lambda q, k, v, b, m, qs, kvs: sdpa_ref(
q, k, v, b, m, query_seq_lengths=qs, key_value_seq_lengths=kvs,
local_window_size=window_size,
)
fn_ans = lambda q, k, v, b, m, qs, kvs: sdpa_ans(
q, k, v, b, m, query_seq_lengths=qs, key_value_seq_lengths=kvs,
local_window_size=window_size,
)
out_ref, sdpa_vjp_ref = jax.vjp(fn_ref, *args, q_seqlen, kv_seqlen)
out_ans, sdpa_vjp_ans = jax.vjp(fn_ans, *args, q_seqlen, kv_seqlen)
dQ_ref, dK_ref, dV_ref, dbias_ref = sdpa_vjp_ref(grad)[:4]
dQ_ans, dK_ans, dV_ans, dbias_ans = sdpa_vjp_ans(grad)[:4]
# Check if cudnn backend is called.
self.assertTrue(_check_cudnn_backend(sdpa_ans, *args, **kwargs))
self.assertTrue(_check_cudnn_backend(sdpa_vjp_ans, grad))
self.assertAllClose(out_ref, out_ans, atol=.01, rtol=.01)
self.assertAllClose(dQ_ref, dQ_ans, rtol=.02, atol=.02)
self.assertAllClose(dK_ref, dK_ans, rtol=.02, atol=.02)
self.assertAllClose(dV_ref, dV_ans, rtol=.01, atol=.01)
self.assertAllClose(dbias_ref, dbias_ans, rtol=.02, atol=.02)
@parameterized.product(
batch_size=[1, 16],
use_vmap=[False, True],
)
def testDotProductAttentionBiasGradient(self, batch_size, use_vmap):
if not _is_required_cudnn_version_satisfied(8904):
raise unittest.SkipTest("CUDA or cuDNN versions are not compatible.")
dtype = jnp.bfloat16
B, S, N, H = batch_size, 128, 4, 32
keys = random.split(random.PRNGKey(0), 2)
x = random.normal(keys[0], (B, S, N, H), dtype)
bias = random.normal(keys[1], (B, N, S, S), dtype=dtype)
mask = jnp.ones((1, 1, S), dtype=jnp.bool_)
def attention(x, bias, mask, impl):
return jax.nn.dot_product_attention(
query=x,
key=x,
value=x,
bias=bias,
mask=mask,
is_causal=False,
implementation=impl,
)
attn_ref = partial(attention, impl=None)
attn_ans = partial(attention, impl='cudnn')
if use_vmap:
attn_batched_ref = jax.vmap(attn_ref, in_axes=(0, 0, None))
attn_batched_ans = jax.vmap(attn_ans, in_axes=(0, 0, None))
else:
attn_batched_ref = attn_ref
attn_batched_ans = attn_ans
fwd_ref = jax.jit(attn_batched_ref)
fwd_ans = jax.jit(attn_batched_ans)
y_ref = fwd_ref(x, bias, mask)
y_ans = fwd_ans(x, bias, mask)
self.assertAllClose(y_ref, y_ans)
@jax.jit
def bwd_ref(x, bias, mask):
_, f_vjp = jax.vjp(attn_ref, x, bias, mask)
return f_vjp(x)
@jax.jit
def bwd_ans(x, bias, mask):
_, f_vjp = jax.vjp(attn_ans, x, bias, mask)
return f_vjp(x)
if batch_size != 1:
with self.assertRaisesRegex(ValueError, _cudnn_dbias_error):
_, dbias_ans, _ = bwd_ans(x, bias, mask)
else:
_, dbias_ref, _ = bwd_ref(x, bias, mask)
_, dbias_ans, _ = bwd_ans(x, bias, mask)
self.assertAllClose(dbias_ans, dbias_ref, rtol=.02, atol=.02)
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testSoftplusGrad(self):
check_grads(nn.softplus, (1e-8,), order=4,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
def testSoftplusGradZero(self):
check_grads(nn.softplus, (0.,), order=1,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
def testSoftplusGradInf(self):
self.assertAllClose(
1., jax.grad(nn.softplus)(float('inf')))
def testSoftplusGradNegInf(self):
check_grads(nn.softplus, (-float('inf'),), order=1,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
def testSoftplusGradNan(self):
check_grads(nn.softplus, (float('nan'),), order=1,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
@parameterized.parameters([int, float] + jtu.dtypes.floating + jtu.dtypes.integer)
def testSoftplusZero(self, dtype):
self.assertEqual(jnp.log(dtype(2)), nn.softplus(dtype(0)))
def testSparseplusGradZero(self):
check_grads(nn.sparse_plus, (-2.,), order=1,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
def testSparseplusGrad(self):
check_grads(nn.sparse_plus, (0.,), order=1,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
def testSparseplusAndSparseSigmoid(self):
self.assertAllClose(
jax.grad(nn.sparse_plus)(0.), nn.sparse_sigmoid(0.),
check_dtypes=False)
self.assertAllClose(
jax.grad(nn.sparse_plus)(2.), nn.sparse_sigmoid(2.),
check_dtypes=False)
self.assertAllClose(
jax.grad(nn.sparse_plus)(-2.), nn.sparse_sigmoid(-2.),
check_dtypes=False)
def testSquareplusGrad(self):
check_grads(nn.squareplus, (1e-8,), order=4,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
def testSquareplusGradZero(self):
check_grads(nn.squareplus, (0.,), order=1,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
def testSquareplusGradNegInf(self):
check_grads(nn.squareplus, (-float('inf'),), order=1,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
def testSquareplusGradNan(self):
check_grads(nn.squareplus, (float('nan'),), order=1,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
@parameterized.parameters([float] + jtu.dtypes.floating)
def testSquareplusZero(self, dtype):
self.assertEqual(dtype(1), nn.squareplus(dtype(0), dtype(4)))
def testMishGrad(self):
check_grads(nn.mish, (1e-8,), order=4,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
def testMishGradZero(self):
check_grads(nn.mish, (0.,), order=1,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
def testMishGradNegInf(self):
check_grads(nn.mish, (-float('inf'),), order=1,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
def testMishGradNan(self):
check_grads(nn.mish, (float('nan'),), order=1,
rtol=1e-2 if jtu.test_device_matches(["tpu"]) else None)
@parameterized.parameters([float] + jtu.dtypes.floating)
def testMishZero(self, dtype):
self.assertEqual(dtype(0), nn.mish(dtype(0)))
def testReluGrad(self):
rtol = 1e-2 if jtu.test_device_matches(["tpu"]) else None
check_grads(nn.relu, (1.,), order=3, rtol=rtol)
check_grads(nn.relu, (-1.,), order=3, rtol=rtol)
jaxpr = jax.make_jaxpr(jax.grad(nn.relu))(0.)
self.assertGreaterEqual(len(jaxpr.jaxpr.eqns), 2)
def testReluGradAtZero(self):
# https://dl.acm.org/doi/10.5555/3540261.3540297
grad = jax.grad(nn.relu)(0.)
self.assertEqual(grad, 0.)
def testRelu6Grad(self):
rtol = 1e-2 if jtu.test_device_matches(["tpu"]) else None
check_grads(nn.relu6, (1.,), order=3, rtol=rtol)
check_grads(nn.relu6, (-1.,), order=3, rtol=rtol)
self.assertAllClose(jax.grad(nn.relu6)(0.), 0., check_dtypes=False)
self.assertAllClose(jax.grad(nn.relu6)(6.), 0., check_dtypes=False)
def testSoftplusValue(self):
val = nn.softplus(89.)
self.assertAllClose(val, 89., check_dtypes=False)
def testSparseplusValue(self):
val = nn.sparse_plus(89.)
self.assertAllClose(val, 89., check_dtypes=False)
def testSparsesigmoidValue(self):
self.assertAllClose(nn.sparse_sigmoid(-2.), 0., check_dtypes=False)
self.assertAllClose(nn.sparse_sigmoid(2.), 1., check_dtypes=False)
self.assertAllClose(nn.sparse_sigmoid(0.), .5, check_dtypes=False)
def testSquareplusValue(self):
val = nn.squareplus(1e3)
self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
def testMishValue(self):
val = nn.mish(1e3)
self.assertAllClose(val, 1e3, check_dtypes=False, atol=1e-3)
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testEluGrad(self):
check_grads(nn.elu, (1e4,), order=4, eps=1.)
def testEluValue(self):
val = nn.elu(1e4)
self.assertAllClose(val, 1e4, check_dtypes=False)
def testGluValue(self):
val = nn.glu(jnp.array([1.0, 0.0]), axis=0)
self.assertAllClose(val, jnp.array([0.5]))
@parameterized.parameters(False, True)
def testGeluIntType(self, approximate):
val_float = nn.gelu(jnp.array(-1.0), approximate=approximate)
val_int = nn.gelu(jnp.array(-1), approximate=approximate)
self.assertAllClose(val_float, val_int)
@parameterized.parameters(False, True)
def testGelu(self, approximate):
def gelu_reference(x):
return x * scipy.stats.norm.cdf(x)
args_maker = lambda: [jnp.linspace(-12, 5, 10000, dtype=jnp.float32)]
rtol = 2e-5
atol = 1e-3 if approximate else 0
self._CheckAgainstNumpy(
gelu_reference,
partial(nn.gelu, approximate=approximate),
args_maker,
check_dtypes=False,
tol=0,
rtol=rtol,
atol=atol,
)
@parameterized.parameters(*itertools.product(
(jnp.float32, jnp.bfloat16, jnp.float16),
(partial(nn.gelu, approximate=False),
partial(nn.gelu, approximate=True),
nn.relu, nn.softplus, nn.sparse_plus, nn.sigmoid, nn.squareplus, nn.mish)))
def testDtypeMatchesInput(self, dtype, fn):
x = jnp.zeros((), dtype=dtype)
out = fn(x)
self.assertEqual(out.dtype, dtype)
def testEluMemory(self):
# see https://github.com/jax-ml/jax/pull/1640
with jax.enable_checks(False): # With checks we materialize the array
jax.make_jaxpr(lambda: nn.elu(jnp.ones((10 ** 12,)))) # don't oom
def testHardTanhMemory(self):
# see https://github.com/jax-ml/jax/pull/1640
with jax.enable_checks(False): # With checks we materialize the array
jax.make_jaxpr(lambda: nn.hard_tanh(jnp.ones((10 ** 12,)))) # don't oom
@parameterized.parameters([nn.softmax, nn.log_softmax])
def testSoftmaxEmptyArray(self, fn):
x = jnp.array([], dtype=float)
self.assertArraysEqual(fn(x), x)
@parameterized.parameters([nn.softmax, nn.log_softmax])
def testSoftmaxEmptyMask(self, fn):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
m = jnp.zeros_like(x, dtype=bool)
expected = jnp.full_like(x, 0.0 if fn is nn.softmax else -jnp.inf)
self.assertArraysEqual(fn(x, where=m), expected)
@parameterized.parameters([nn.softmax, nn.log_softmax])
def testSoftmaxWhereMask(self, fn):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
m = jnp.array([True, False, True, True])
out = fn(x, where=m)
self.assertAllClose(out[m], fn(x[m]))
probs = out if fn is nn.softmax else jnp.exp(out)
self.assertAllClose(probs.sum(), 1.0)
# TODO(mattjj): include log_softmax in these extra tests if/when we add a
# custom_jvp rule for it (since otherwise it doesn't pass the numerical
# checks below).
if fn is nn.softmax and config.softmax_custom_jvp.value:
g_fun = lambda x: jnp.take(fn(x, where=m, initial=-jnp.inf),
jnp.array([0, 2, 3]))
jtu.check_grads(g_fun, (x,), order=2)
@parameterized.parameters([nn.softmax, nn.log_softmax])
def testSoftmaxWhereGrad(self, fn):
# regression test for https://github.com/jax-ml/jax/issues/19490
x = jnp.array([36., 10000.])
mask = x < 1000
f = lambda x, mask: fn(x, where=mask)[0]
self.assertAllClose(jax.grad(f)(x, mask), jnp.zeros_like(x))
def testSoftmaxGrad(self):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
jtu.check_grads(nn.softmax, (x,), order=2, atol=5e-3)
def testSoftmaxGradResiduals(self):
if not config.softmax_custom_jvp.value:
raise unittest.SkipTest("only applies when upgrade flag enabled")
x = jnp.array([5.5, 1.3, -4.2, 0.9])
res = ad_checkpoint.saved_residuals(nn.softmax, x)
self.assertLen(res, 1)
def testSoftmaxGradFlag(self):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
with jax.softmax_custom_jvp(False):
res = ad_checkpoint.saved_residuals(nn.softmax, x)
self.assertLen(res, 3)
self.assertEqual(sum(a.size for a, _ in res), 6)
with jax.softmax_custom_jvp(True):
res = ad_checkpoint.saved_residuals(nn.softmax, x)
self.assertLen(res, 1)
self.assertEqual(sum(a.size for a, _ in res), 4)
def testStandardizeWhereMask(self):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
m = jnp.array([True, False, True, True])
x_filtered = jnp.take(x, jnp.array([0, 2, 3]))
out_masked = jnp.take(nn.standardize(x, where=m), jnp.array([0, 2, 3]))
out_filtered = nn.standardize(x_filtered)
self.assertAllClose(out_masked, out_filtered)
def testOneHot(self):
actual = nn.one_hot(jnp.array([0, 1, 2]), 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected, check_dtypes=False)
actual = nn.one_hot(jnp.array([1, 2, 0]), 3)
expected = jnp.array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.]])
self.assertAllClose(actual, expected, check_dtypes=False)
def testOneHotOutOfBound(self):
actual = nn.one_hot(jnp.array([-1, 3]), 3)
expected = jnp.array([[0., 0., 0.],
[0., 0., 0.]])
self.assertAllClose(actual, expected, check_dtypes=False)
def testOneHotNonArrayInput(self):
actual = nn.one_hot([0, 1, 2], 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected, check_dtypes=False)
def testOneHotCustomDtype(self):
actual = nn.one_hot(jnp.array([0, 1, 2]), 3, dtype=jnp.bool_)
expected = jnp.array([[True, False, False],
[False, True, False],
[False, False, True]])
self.assertAllClose(actual, expected)
def testOneHotConcretizationError(self):
# https://github.com/jax-ml/jax/issues/3654
msg = r"in jax.nn.one_hot argument `num_classes`"
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
jax.jit(nn.one_hot)(3, 5)
def testOneHotAxis(self):
expected = jnp.array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.]]).T
actual = nn.one_hot(jnp.array([1, 2, 0]), 3, axis=0)
self.assertAllClose(actual, expected, check_dtypes=False)
actual = nn.one_hot(jnp.array([1, 2, 0]), 3, axis=-2)
self.assertAllClose(actual, expected, check_dtypes=False)
def testOneHotNonInteger(self):
with self.assertDeprecationWarnsOrRaises("jax-nn-one-hot-float-input",
"jax.nn.one_hot input should be integer-typed"):
nn.one_hot(jnp.array([1.0]), 3)
def testTanhExists(self):
nn.tanh # doesn't crash
def testCustomJVPLeak(self):
# https://github.com/jax-ml/jax/issues/8171
@jax.jit
def fwd():
a = jnp.array(1.)
def f(hx, _):
hx = jax.nn.sigmoid(hx + a)
return hx, None
hx = jnp.array(0.)
jax.lax.scan(f, hx, None, length=2)
with jax.checking_leaks():
fwd() # doesn't crash
def testCustomJVPLeak2(self):
# https://github.com/jax-ml/jax/issues/8171
# The above test uses jax.nn.sigmoid, as in the original #8171, but that
# function no longer actually has a custom_jvp! So we inline the old def.
@jax.custom_jvp
def sigmoid(x):
one = jnp.float32(1)
return jax.lax.div(one, jax.lax.add(one, jax.lax.exp(jax.lax.neg(x))))
sigmoid.defjvps(lambda g, ans, x: g * ans * (jnp.float32(1) - ans))
@jax.jit
def fwd():
a = jnp.array(1., 'float32')
def f(hx, _):
hx = sigmoid(hx + a)
return hx, None
hx = jnp.array(0., 'float32')
jax.lax.scan(f, hx, None, length=2)
with jax.checking_leaks():
fwd() # doesn't crash
InitializerRecord = collections.namedtuple(
"InitializerRecord",
["name", "initializer", "shapes", "dtypes"])
ALL_SHAPES = [(2,), (2, 2), (2, 3), (3, 2), (2, 3, 4), (4, 3, 2), (2, 3, 4, 5)]
def initializer_record(name, initializer, dtypes, min_dims=2, max_dims=4):
shapes = [shape for shape in ALL_SHAPES
if min_dims <= len(shape) <= max_dims]
return InitializerRecord(name, initializer, shapes, dtypes)
INITIALIZER_RECS = [
initializer_record("uniform", nn.initializers.uniform, jtu.dtypes.floating, 1),
initializer_record("normal", nn.initializers.normal, jtu.dtypes.inexact, 1),
initializer_record("he_normal", nn.initializers.he_normal, jtu.dtypes.inexact),
initializer_record("he_uniform", nn.initializers.he_uniform, jtu.dtypes.inexact),
initializer_record("glorot_normal", nn.initializers.glorot_normal, jtu.dtypes.inexact),
initializer_record("glorot_uniform", nn.initializers.glorot_uniform, jtu.dtypes.inexact),
initializer_record("lecun_normal", nn.initializers.lecun_normal, jtu.dtypes.inexact),
initializer_record("lecun_uniform", nn.initializers.lecun_uniform, jtu.dtypes.inexact),
initializer_record("orthogonal", nn.initializers.orthogonal, jtu.dtypes.floating, 2, 2),
initializer_record("truncated_normal", nn.initializers.truncated_normal, jtu.dtypes.floating, 1),
initializer_record("delta_orthogonal", nn.initializers.delta_orthogonal, jtu.dtypes.floating, 4, 4)
]
@jtu.with_config(jax_legacy_prng_key="allow")
class NNInitializersTest(jtu.JaxTestCase):
@parameterized.parameters(itertools.chain.from_iterable(
jtu.sample_product_testcases(
[dict(initializer=rec.initializer())],
shape=rec.shapes,
dtype=rec.dtypes
)
for rec in INITIALIZER_RECS
))
def testInitializer(self, initializer, shape, dtype):
rng = random.PRNGKey(0)
val = initializer(rng, shape, dtype)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val))
@parameterized.parameters(itertools.chain.from_iterable(
jtu.sample_product_testcases(
[dict(initializer_provider=rec.initializer)],
shape=rec.shapes,
dtype=rec.dtypes
)
for rec in INITIALIZER_RECS
))
def testInitializerProvider(self, initializer_provider, shape, dtype):
rng = random.PRNGKey(0)
initializer = initializer_provider(dtype=dtype)
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val))
def testVarianceScalingMultiAxis(self):
rng = random.PRNGKey(0)
shape = (2, 3, 4, 5)
initializer = nn.initializers.variance_scaling(
scale=1.0, mode='fan_avg', distribution='truncated_normal',
in_axis=(0, 1), out_axis=(-2, -1))
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
def testVarianceScalingBatchAxis(self):
rng = random.PRNGKey(0)
shape = (2, 3, 4, 5)
initializer = nn.initializers.variance_scaling(
scale=1.0, mode='fan_avg', distribution='truncated_normal',
in_axis=0, out_axis=(2, 3), batch_axis=1)
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
def testVarianceScalingError(self):
rng = random.PRNGKey(0)
shape = (5,)
initializer = nn.initializers.variance_scaling(
scale=1.0, mode='fan_avg', distribution='truncated_normal')
with self.assertRaisesRegex(
ValueError,
"Can't compute input and output sizes of a 1"
"-dimensional weights tensor. Must be at least 2D."
):
initializer(rng, shape)
def testAccidentalUpcasting(self):
rng = random.PRNGKey(0)
shape = (4, 4)
scalar_param = jnp.array(1.0, dtype=jnp.float32)
for init_fn in (nn.initializers.uniform(scalar_param, jnp.bfloat16),
nn.initializers.normal(scalar_param, jnp.bfloat16),
nn.initializers.truncated_normal(scalar_param, jnp.bfloat16),
):
sub_rng, rng = random.split(rng)
val = init_fn(sub_rng, shape)
self.assertEqual(val.dtype, jnp.bfloat16)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())