rocm_jax/jaxlib/gpu_solver.py
Dan Foreman-Mackey 21884d4a14 Move (most) jaxlib linalg custom call registration into JAX.
My motivation here is to fix the plugin support for batch partitionable custom calls. Since plugin support for custom call partitioners is provided via register_plugin_callback in xla_bridge, instead of xla_client itself, it's much more straightforward to register the custom calls in JAX.

It would be possible to refactor things differently, but it actually seems like a reasonable choice to use the supported APIs from `jax.ffi` instead of `xla_client` so that we can take advantage of any new features we might add there in the future.

This is all still a little bit brittle and I'd eventually like to migrate to a version where the XLA FFI library provides a mechanism for exporting handlers, but this change is still compatible with any future changes like that.

PiperOrigin-RevId: 735381736
2025-03-10 08:17:44 -07:00

74 lines
2.3 KiB
Python

# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
from .plugin_support import import_from_plugin
_cublas = import_from_plugin("cuda", "_blas")
_cusolver = import_from_plugin("cuda", "_solver")
_cuhybrid = import_from_plugin("cuda", "_hybrid")
_hipblas = import_from_plugin("rocm", "_blas")
_hipsolver = import_from_plugin("rocm", "_solver")
_hiphybrid = import_from_plugin("rocm", "_hybrid")
def registrations() -> dict[str, list[tuple[str, Any, int]]]:
registrations = {"CUDA": [], "ROCM": []}
for platform, module in [("CUDA", _cublas), ("ROCM", _hipblas)]:
if module:
registrations[platform].extend(
(*i, 0) for i in module.registrations().items())
for platform, module in [("CUDA", _cusolver), ("ROCM", _hipsolver)]:
if module:
registrations[platform].extend(
(name, value, int(name.endswith("_ffi")))
for name, value in module.registrations().items()
)
for platform, module in [("CUDA", _cuhybrid), ("ROCM", _hiphybrid)]:
if module:
registrations[platform].extend(
(*i, 1) for i in module.registrations().items())
return registrations # pytype: disable=bad-return-type
def batch_partitionable_targets() -> list[str]:
targets = []
for module in [_cusolver, _hipsolver]:
if module:
targets.extend(
name for name in module.registrations()
if name.endswith("_ffi")
)
for module in [_cuhybrid, _hiphybrid]:
if module:
targets.extend(name for name in module.registrations())
return targets
def initialize_hybrid_kernels():
if _cuhybrid:
_cuhybrid.initialize()
if _hiphybrid:
_hiphybrid.initialize()
def has_magma():
if _cuhybrid:
return _cuhybrid.has_magma()
if _hiphybrid:
return _hiphybrid.has_magma()
return False