rocm_jax/jax/random.py
Peter Hawkins 42dd736afd
Change scalar promotion rules to prefer array types over scalar types. (#1709)
* Change scalar promotion rules to prefer array types over scalar types.

Currently JAX does not treat Python scalars specially during type promotion. This means that, for example:
`1. + np.array([...], np.float32)`
ends up as an array of type np.float64. The `1.` is promoted to a default type (here np.float64), and the type promotion of a np.float64 and an np.float32 is an np.float64. This is unlike classic NumPy, which treats scalars specially during type promotion, in particular, preferring the type of an array over the type of a scalar.

This change adds a notion of weak_type to JAX avals. During type promotion, we prefer non-weak types, i.e., the type of the array in the example above, ignoring the type of the scalar.

In contexts where a Python scalar is to be promoted to a NumPy value, a default type is used (e.g., `np.float_`). This change also makes it possible to use 32-bit default types that differ from NumPy's default types. The JAX test suite passes with 32-bit default types. However, we do not yet enable this change or expose it in the API.
2019-11-18 14:51:10 -05:00

1016 lines
38 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""JAX pseudo-random number generators (PRNGs).
The JAX PRNG system is based on "Parallel random numbers: as easy as 1, 2, 3"
(Salmon et al. 2011). For details on the design and its motivation, see:
https://github.com/google/jax/blob/master/design_notes/prng.md
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import numpy as onp
from . import lax
from . import numpy as np
from . import tree_util
from . import dtypes
from .api import custom_transforms, defjvp, jit, vmap
from .numpy.lax_numpy import _constant_like, asarray, stack
from jax.lib import xla_bridge
from jax import core
from jax.scipy.special import logit
from jax.scipy.linalg import cholesky
def PRNGKey(seed):
"""Create a pseudo-random number generator (PRNG) key given an integer seed.
Args:
seed: a 64- or 32-bit integer used as the value of the key.
Returns:
A PRNG key, which is modeled as an array of shape (2,) and dtype uint32. The
key is constructed from a 64-bit seed by effectively bit-casting to a pair
of uint32 values (or from a 32-bit seed by first padding out with zeros).
"""
if onp.shape(seed):
raise TypeError("PRNGKey seed must be a scalar.")
convert = lambda k: lax.reshape(lax.convert_element_type(k, onp.uint32), [1])
if isinstance(seed, (int, onp.ndarray)):
# Special handling of raw integer values, which may have be 64bit even
# when jax_enable_x64=False and we don't want to drop the top 32 bits
k1 = convert(onp.bitwise_and(onp.right_shift(seed, 32), 0xFFFFFFFF))
else:
k1 = convert(lax.shift_right_logical(seed, lax._const(seed, 32)))
k2 = convert(np.bitwise_and(seed, 0xFFFFFFFF))
return lax.concatenate([k1, k2], 0)
def _is_prng_key(key):
try:
return key.shape == (2,) and key.dtype == onp.uint32
except AttributeError:
return False
### utilities
def _make_rotate_left(dtype):
if not np.issubdtype(dtype, onp.integer):
raise TypeError("_rotate_left only accepts integer dtypes.")
nbits = onp.array(np.iinfo(dtype).bits, dtype)
def _rotate_left(x, d):
if lax.dtype(d) != lax.dtype(x):
d = lax.convert_element_type(d, x.dtype)
return lax.shift_left(x, d) | lax.shift_right_logical(x, nbits - d)
return _rotate_left
def _bit_stats(bits):
"""This is a debugging function to compute the statistics of bit fields."""
return onp.array([list(map(int, onp.binary_repr(x, 64))) for x in bits]).mean(0)
### hash function and split
@jit
def threefry_2x32(keypair, count):
"""Apply the Threefry 2x32 hash.
Args:
keypair: a pair of 32bit unsigned integers used for the key.
count: an array of dtype uint32 used for the counts.
Returns:
An array of dtype uint32 with the same shape as `count`.
"""
# Based on ThreeFry2x32 by phawkins@ in //.../xla/client/lib/prng.cc
key1, key2 = keypair
if not lax.dtype(key1) == lax.dtype(key2) == lax.dtype(count) == onp.uint32:
msg = "threefry_2x32 requires uint32 arguments, got {}"
raise TypeError(msg.format([lax.dtype(x) for x in [key1, key2, count]]))
rotate_left = _make_rotate_left(lax.dtype(count))
def apply_round(v, rot):
v = v[:]
v[0] = v[0] + v[1]
v[1] = rotate_left(v[1], rot)
v[1] = v[0] ^ v[1]
return v
odd_size = count.size % 2
if odd_size:
x = list(np.split(np.concatenate([count.ravel(), onp.uint32([0])]), 2))
else:
x = list(np.split(count.ravel(), 2))
rotations = [onp.array([13, 15, 26, 6], dtype=onp.uint32),
onp.array([17, 29, 16, 24], dtype=onp.uint32)]
ks = [key1, key2, key1 ^ key2 ^ onp.uint32(0x1BD11BDA)]
# TODO(mattjj): see https://github.com/google/jax/issues/1267, as a hopefully
# temporary workaround for the facts that (1) XLA:CPU compile time is too slow
# with unrolled loops and (2) XLA:GPU execution time is too slow with rolled
# loops, we switch on whether the default backend is CPU or GPU. If this kind
# of switch ends up sticking around, we should take into account #1211 and put
# the switch in the translation rule rather than here in the traceable.
use_rolled_loops = xla_bridge.get_backend().platform == "cpu"
x[0] = x[0] + ks[0]
x[1] = x[1] + ks[1]
if use_rolled_loops:
def rotate_list(xs): return xs[1:] + xs[:1]
def step(i, state):
x, ks, rotations = state
for r in rotations[0]:
x = apply_round(x, r)
new_x = [x[0] + ks[0], x[1] + ks[1] + asarray(i + 1, dtype=onp.uint32)]
return new_x, rotate_list(ks), rotate_list(rotations)
x, _, _ = lax.fori_loop(0, 5, step, (x, rotate_list(ks), rotations))
else:
for r in rotations[0]:
x = apply_round(x, r)
x[0] = x[0] + ks[1]
x[1] = x[1] + ks[2] + onp.uint32(1)
for r in rotations[1]:
x = apply_round(x, r)
x[0] = x[0] + ks[2]
x[1] = x[1] + ks[0] + onp.uint32(2)
for r in rotations[0]:
x = apply_round(x, r)
x[0] = x[0] + ks[0]
x[1] = x[1] + ks[1] + onp.uint32(3)
for r in rotations[1]:
x = apply_round(x, r)
x[0] = x[0] + ks[1]
x[1] = x[1] + ks[2] + onp.uint32(4)
for r in rotations[0]:
x = apply_round(x, r)
x[0] = x[0] + ks[2]
x[1] = x[1] + ks[0] + onp.uint32(5)
out = np.concatenate(x)
assert out.dtype == onp.uint32
return lax.reshape(out[:-1] if odd_size else out, count.shape)
def split(key, num=2):
"""Splits a PRNG key into `num` new keys by adding a leading axis.
Args:
key: a PRNGKey (an array with shape (2,) and dtype uint32).
num: optional, a positive integer indicating the number of keys to produce
(default 2).
Returns:
An array with shape (num, 2) and dtype uint32 representing `num` new keys.
"""
return _split(key, num)
@partial(jit, static_argnums=(1,))
def _split(key, num):
counts = lax.tie_in(key, lax.iota(onp.uint32, num * 2))
return lax.reshape(threefry_2x32(key, counts), (num, 2))
def fold_in(key, data):
"""Folds in data to a PRNG key to form a new PRNG key.
Args:
key: a PRNGKey (an array with shape (2,) and dtype uint32).
data: a 32bit integer representing data to be folded in to the key.
Returns:
A new PRNGKey that is a deterministic function of the inputs and is
statistically safe for producing a stream of new pseudo-random values.
"""
return _fold_in(key, data)
@jit
def _fold_in(key, data):
key2 = lax.tie_in(key, PRNGKey(data))
return threefry_2x32(key, key2)
def _random_bits(key, bit_width, shape):
"""Sample uniform random bits of given width and shape using PRNG key."""
if not _is_prng_key(key):
raise TypeError("_random_bits got invalid prng key.")
if bit_width not in (32, 64):
raise TypeError("requires 32- or 64-bit field width.")
max_count = (bit_width // 32) * onp.prod(shape)
if max_count >= np.iinfo(onp.uint32).max:
# TODO(mattjj): just split the key here
raise TypeError("requesting more random bits than a single call provides.")
counts = lax.tie_in(key, lax.iota(onp.uint32, max_count))
bits = threefry_2x32(key, counts)
if bit_width == 64:
bits = [lax.convert_element_type(x, onp.uint64) for x in np.split(bits, 2)]
bits = lax.shift_left(bits[0], onp.uint64(32)) | bits[1]
return lax.reshape(bits, shape)
### random samplers
def _check_shape(name, shape, *param_shapes):
try:
shape = tuple(map(int, shape))
except TypeError:
msg = "{} requires a concrete tuple of integers as shape argument, got {}."
raise ValueError(msg.format(name, shape))
if param_shapes:
shape_ = lax.broadcast_shapes(shape, *param_shapes)
if shape != shape_:
msg = ("{} parameter shapes must be broadcast-compatible with shape "
"argument, and the result of broadcasting the shapes must equal "
"the shape argument, but got result {} for shape argument {}.")
raise ValueError(msg.format(name, shape_, shape))
def uniform(key, shape=(), dtype=onp.float64, minval=0., maxval=1.):
"""Sample uniform random values in [minval, maxval) with given shape/dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
minval: optional, a minimum (inclusive) value for the range (default 0).
maxval: optional, a maximum (exclusive) value for the range (default 1).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _uniform(key, shape, dtype, minval, maxval)
@partial(jit, static_argnums=(1, 2))
def _uniform(key, shape, dtype, minval, maxval):
_check_shape("uniform", shape)
if not np.issubdtype(dtype, onp.floating):
raise TypeError("uniform only accepts floating point dtypes.")
minval = lax.convert_element_type(minval, dtype)
maxval = lax.convert_element_type(maxval, dtype)
finfo = np.finfo(dtype)
nbits, nmant = finfo.bits, finfo.nmant
if nbits not in (32, 64):
raise TypeError("uniform only accepts 32- or 64-bit dtypes.")
bits = _random_bits(key, nbits, shape)
# The strategy here is to randomize only the mantissa bits with an exponent of
# 1 (after applying the bias), then shift and scale to the desired range. The
# bit-level transformation we use relies on Numpy and XLA having bit-for-bit
# equivalent float representations, which might not be true on all platforms.
float_bits = lax.bitwise_or(
lax.shift_right_logical(bits, onp.array(nbits - nmant, lax.dtype(bits))),
onp.array(1., dtype).view(onp.uint32 if nbits == 32 else onp.uint64))
floats = lax.bitcast_convert_type(float_bits, dtype) - onp.array(1., dtype)
return lax.max(
minval,
lax.reshape(floats * (maxval - minval) + minval, shape))
def randint(key, shape, minval, maxval, dtype=onp.int64):
"""Sample uniform random values in [minval, maxval) with given shape/dtype.
Args:
key: a PRNGKey used as the random key.
shape: a tuple of nonnegative integers representing the shape.
minval: int or array of ints broadcast-compatible with ``shape``, a minimum
(inclusive) value for the range.
maxval: int or array of ints broadcast-compatible with ``shape``, a maximum
(exclusive) value for the range.
dtype: optional, an int dtype for the returned values (default int64 if
jax_enable_x64 is true, otherwise int32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _randint(key, shape, minval, maxval, dtype)
@partial(jit, static_argnums=(1, 4))
def _randint(key, shape, minval, maxval, dtype):
_check_shape("randint", shape, minval.shape, maxval.shape)
if not np.issubdtype(dtype, onp.integer):
raise TypeError("randint only accepts integer dtypes.")
minval = lax.convert_element_type(minval, dtype)
maxval = lax.convert_element_type(maxval, dtype)
nbits = np.iinfo(dtype).bits
if nbits not in (32, 64):
raise TypeError("randint only accepts 32- or 64-bit dtypes.")
# if we don't have minval < maxval, just always return minval
# https://github.com/google/jax/issues/222
maxval = lax.max(lax.add(minval, onp.array(1, dtype)), maxval)
# This algorithm is biased whenever (maxval - minval) is not a power of 2.
# We generate double the number of random bits required by the dtype so as to
# reduce that bias.
k1, k2 = split(key)
rbits = lambda key: _random_bits(key, nbits, shape)
higher_bits, lower_bits = rbits(k1), rbits(k2)
unsigned_dtype = onp.uint32 if nbits == 32 else onp.uint64
span = lax.convert_element_type(maxval - minval, unsigned_dtype)
# To compute a remainder operation on an integer that might have twice as many
# bits as we can represent in the native unsigned dtype, we compute a
# multiplier equal to 2**nbits % span (using that nbits is 32 or 64).
multiplier = lax.rem(onp.array(2**16, unsigned_dtype), span)
multiplier = lax.rem(lax.mul(multiplier, multiplier), span)
if nbits == 64:
multiplier = lax.rem(lax.mul(multiplier, multiplier), span)
random_offset = lax.add(lax.mul(lax.rem(higher_bits, span), multiplier),
lax.rem(lower_bits, span))
random_offset = lax.rem(random_offset, span)
return lax.add(minval, lax.convert_element_type(random_offset, dtype))
def shuffle(key, x, axis=0):
"""Shuffle the elements of an array uniformly at random along an axis.
Args:
key: a PRNGKey used as the random key.
x: the array to be shuffled.
axis: optional, an int axis along which to shuffle (default 0).
Returns:
A shuffled version of x.
"""
return _shuffle(key, x, axis)
@partial(jit, static_argnums=(2,))
def _shuffle(key, x, axis):
# On parallel architectures, Fisher-Yates is more expensive than doing
# multiple sorts. This algorithm is based on one developed and analyzed by
# tjablin@. We sort according to randomly-generated 32bit keys, but those keys
# may have collisions. If we repeat the process, using fresh 32bit keys for
# each sort, then whenever all pairs of elements have been assigned distinct
# keys at some iteration (or equivalently when the strings formed by
# concatenating the successive keys for each element are all distinct) then we
# are guaranteed to have a perfect sample (assuming that either the sort is
# stable or that any bias is not value-dependent). Since checking uniqueness
# at runtime may be expensive, we use a heuristic static stop criterion
# developed by tjablin@. See tensorflow/compiler/tf2xla/random_ops.cc for more
# info, and for the original implementation of this algorithm. See also
# Section 2 of http://people.csail.mit.edu/costis/6896sp11/lec5s.pdf for
# another analysis (where the keys are generated one bit at a time).
exponent = 3 # see tjablin@'s analysis for explanation of this parameter
uint32max = np.iinfo(onp.uint32).max
num_rounds = int(onp.ceil(exponent * onp.log(x.size) / onp.log(uint32max)))
for _ in range(num_rounds):
key, subkey = split(key)
sort_keys = _random_bits(subkey, 32, x.shape)
_, x = lax.sort_key_val(sort_keys, x, axis)
return x
def normal(key, shape=(), dtype=onp.float64):
"""Sample standard normal random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _normal(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _normal(key, shape, dtype):
_check_shape("normal", shape)
lo = onp.nextafter(onp.array(-1., dtype), 0., dtype=dtype)
hi = onp.array(1., dtype)
u = uniform(key, shape, dtype, lo, hi)
return onp.array(onp.sqrt(2), dtype) * lax.erf_inv(u)
def multivariate_normal(key, mean, cov, shape=None, dtype=onp.float64):
"""Sample multivariate normal random values with given mean and covariance.
Args:
key: a PRNGKey used as the random key.
mean: a mean vector of shape ``(..., n)``.
cov: a positive definite covariance matrix of shape ``(..., n, n)``. The
batch shape ``...`` must be broadcast-compatible with that of ``mean``.
shape: optional, a tuple of nonnegative integers specifying the result
batch shape; that is, the prefix of the result shape excluding the last
axis. Must be broadcast-compatible with ``mean.shape[:-1]`` and
``cov.shape[:-2]``. The default (None) produces a result batch shape by
broadcasting together the batch shapes of ``mean`` and ``cov``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and shape given by
``shape + mean.shape[-1:]`` if ``shape`` is not None, or else
``broadcast_shapes(mean.shape[:-1], cov.shape[:-2]) + mean.shape[-1:]``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _multivariate_normal(key, mean, cov, shape, dtype)
@partial(jit, static_argnums=(3, 4))
def _multivariate_normal(key, mean, cov, shape, dtype):
if not onp.ndim(mean) >= 1:
msg = "multivariate_normal requires mean.ndim >= 1, got mean.ndim == {}"
raise ValueError(msg.format(onp.ndim(mean)))
if not onp.ndim(cov) >= 2:
msg = "multivariate_normal requires cov.ndim >= 2, got cov.ndim == {}"
raise ValueError(msg.format(onp.ndim(cov)))
n = mean.shape[-1]
if onp.shape(cov)[-2:] != (n, n):
msg = ("multivariate_normal requires cov.shape == (..., n, n) for n={n}, "
"but got cov.shape == {shape}.")
raise ValueError(msg.format(n=n, shape=onp.shape(cov)))
if shape is None:
shape = lax.broadcast_shapes(mean.shape[:-1], cov.shape[:-2])
else:
_check_shape("normal", shape, mean.shape[:-1], mean.shape[:-2])
chol_factor = cholesky(cov)
normal_samples = normal(key, shape + mean.shape[-1:], dtype)
return mean + np.tensordot(normal_samples, chol_factor, [-1, 1])
def truncated_normal(key, lower, upper, shape=None, dtype=onp.float64):
"""Sample truncated standard normal random values with given shape and dtype.
Args:
key: a PRNGKey used as the random key.
lower: a float or array of floats representing the lower bound for
truncation. Must be broadcast-compatible with ``upper``.
upper: a float or array of floats representing the upper bound for
truncation. Must be broadcast-compatible with ``lower``.
shape: optional, a tuple of nonnegative integers specifying the result
shape. Must be broadcast-compatible with ``lower`` and ``upper``. The
default (None) produces a result shape by broadcasting ``lower`` and
``upper``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and shape given by ``shape`` if
``shape`` is not None, or else by broadcasting ``lower`` and ``upper``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _truncated_normal(key, lower, upper, shape, dtype)
@partial(jit, static_argnums=(3, 4))
def _truncated_normal(key, lower, upper, shape, dtype):
if shape is None:
shape = lax.broadcast_shapes(lower.shape, upper.shape)
else:
_check_shape("truncated_normal", shape, lower.shape, upper.shape)
sqrt2 = onp.array(onp.sqrt(2), dtype)
a = lax.erf(lax.convert_element_type(lower, dtype) / sqrt2)
b = lax.erf(lax.convert_element_type(upper, dtype) / sqrt2)
if not np.issubdtype(dtype, onp.floating):
raise TypeError("truncated_normal only accepts floating point dtypes.")
u = uniform(key, shape, dtype, minval=np.finfo(dtype).tiny)
return sqrt2 * lax.erf_inv(a + u * (b - a))
def bernoulli(key, p=onp.float32(0.5), shape=None):
"""Sample Bernoulli random values with given shape and mean.
Args:
key: a PRNGKey used as the random key.
p: optional, a float or array of floats for the mean of the random
variables. Must be broadcast-compatible with ``shape``. Default 0.5.
shape: optional, a tuple of nonnegative integers representing the result
shape. Must be broadcast-compatible with ``p.shape``. The default (None)
produces a result shape equal to ``p.shape``.
Returns:
A random array with boolean dtype and shape given by ``shape`` if ``shape``
is not None, or else ``p.shape``.
"""
dtype = dtypes.canonicalize_dtype(lax.dtype(p))
if not np.issubdtype(dtype, onp.floating):
msg = "bernoulli probability `p` must have a floating dtype, got {}."
raise TypeError(msg.format(dtype))
p = lax.convert_element_type(p, dtype)
return _bernoulli(key, p, shape)
@partial(jit, static_argnums=(2,))
def _bernoulli(key, p, shape):
if shape is None:
shape = p.shape
else:
_check_shape("bernoulli", shape, p.shape)
return uniform(key, shape, lax.dtype(p)) < p
def beta(key, a, b, shape=None, dtype=onp.float64):
"""Sample Bernoulli random values with given shape and mean.
Args:
key: a PRNGKey used as the random key.
a: a float or array of floats broadcast-compatible with ``shape``
representing the first parameter "alpha".
b: a float or array of floats broadcast-compatible with ``shape``
representing the second parameter "beta".
shape: optional, a tuple of nonnegative integers specifying the result
shape. Must be broadcast-compatible with ``a`` and ``b``. The default
(None) produces a result shape by broadcasting ``a`` and ``b``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and shape given by ``shape`` if
``shape`` is not None, or else by broadcasting ``a`` and ``b``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _beta(key, a, b, shape, dtype)
@partial(jit, static_argnums=(3, 4))
def _beta(key, a, b, shape, dtype):
if shape is None:
shape = lax.broadcast_shapes(a.shape, b.shape)
else:
_check_shape("beta", shape, a.shape, b.shape)
a = lax.convert_element_type(a, dtype)
b = lax.convert_element_type(b, dtype)
key_a, key_b = split(key)
gamma_a = gamma(key_a, a, shape, dtype)
gamma_b = gamma(key_b, b, shape, dtype)
return gamma_a / (gamma_a + gamma_b)
def cauchy(key, shape=(), dtype=onp.float64):
"""Sample Cauchy random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _cauchy(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _cauchy(key, shape, dtype):
_check_shape("cauchy", shape)
u = uniform(key, shape, dtype, minval=np.finfo(dtype).eps, maxval=1.)
pi = _constant_like(u, onp.pi)
return lax.tan(lax.mul(pi, lax.sub(u, _constant_like(u, 0.5))))
def dirichlet(key, alpha, shape=None, dtype=onp.float64):
"""Sample Cauchy random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
alpha: an array of shape ``(..., n)`` used as the concentration
parameter of the random variables.
shape: optional, a tuple of nonnegative integers specifying the result
batch shape; that is, the prefix of the result shape excluding the last
element of value ``n``. Must be broadcast-compatible with
``alpha.shape[:-1]``. The default (None) produces a result shape equal to
``alpha.shape``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and shape given by
``shape + (alpha.shape[-1],)`` if ``shape`` is not None, or else
``alpha.shape``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _dirichlet(key, alpha, shape, dtype)
@partial(jit, static_argnums=(2, 3))
def _dirichlet(key, alpha, shape, dtype):
if not onp.ndim(alpha) >= 1:
msg = "dirichlet requires alpha.ndim >= 1, got alpha.ndim == {}"
raise ValueError(msg.format(onp.ndim(alpha)))
if shape is None:
shape = alpha.shape[:-1]
else:
_check_shape("dirichlet", shape, alpha.shape[:-1])
alpha = lax.convert_element_type(alpha, dtype)
gamma_samples = gamma(key, alpha, shape + alpha.shape[-1:], dtype)
return gamma_samples / np.sum(gamma_samples, axis=-1, keepdims=True)
def exponential(key, shape=(), dtype=onp.float64):
"""Sample Exponential random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _exponential(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _exponential(key, shape, dtype):
_check_shape("exponential", shape)
u = uniform(key, shape, dtype)
# taking 1 - u to move the domain of log to (0, 1] instead of [0, 1)
return lax.neg(lax.log1p(lax.neg(u)))
def _gamma_one(key, alpha):
# Ref: A simple method for generating gamma variables, George Marsaglia and Wai Wan Tsang
# The algorithm can also be founded in:
# https://en.wikipedia.org/wiki/Gamma_distribution#Generating_gamma-distributed_random_variables
zero = _constant_like(alpha, 0)
one = _constant_like(alpha, 1)
minus_one = _constant_like(alpha, -1)
one_over_two = _constant_like(alpha, 0.5)
one_over_three = _constant_like(alpha, 1. / 3.)
squeeze_const = _constant_like(alpha, 0.0331)
dtype = lax.dtype(alpha)
key, subkey = split(key)
# for alpha < 1, we boost alpha to alpha + 1 and get a sample according to
# Gamma(alpha) ~ Gamma(alpha+1) * Uniform()^(1 / alpha)
boost = lax.select(lax.ge(alpha, one),
one,
lax.pow(uniform(subkey, (), dtype=dtype), lax.div(one, alpha)))
alpha = lax.select(lax.ge(alpha, one), alpha, lax.add(alpha, one))
d = lax.sub(alpha, one_over_three)
c = lax.div(one_over_three, lax.pow(d, one_over_two))
def _cond_fn(kXVU):
_, X, V, U = kXVU
# TODO: use lax.cond when its batching rule is supported
# The reason is to avoid evaluating second condition which involves log+log
# if the first condition is satisfied
cond = lax.bitwise_and(lax.ge(U, lax.sub(one, lax.mul(squeeze_const, lax.mul(X, X)))),
lax.ge(lax.log(U), lax.add(lax.mul(X, one_over_two),
lax.mul(d, lax.add(lax.sub(one, V),
lax.log(V))))))
return cond
def _body_fn(kXVU):
def _next_kxv(kxv):
key = kxv[0]
key, subkey = split(key)
x = normal(subkey, (), dtype=dtype)
v = lax.add(one, lax.mul(x, c))
return key, x, v
key = kXVU[0]
key, x_key, U_key = split(key, 3)
_, x, v = lax.while_loop(lambda kxv: lax.le(kxv[2], zero), _next_kxv, (x_key, zero, minus_one))
X = lax.mul(x, x)
V = lax.mul(lax.mul(v, v), v)
U = uniform(U_key, (), dtype=dtype)
return key, X, V, U
# initial state is chosen such that _cond_fn will return True
_, _, V, _ = lax.while_loop(_cond_fn, _body_fn, (key, zero, one, _constant_like(alpha, 2)))
z = lax.mul(lax.mul(d, V), boost)
return lax.select(lax.eq(z, zero), np.finfo(z.dtype).tiny, z)
_bivariate_coef = [[0.16009398, -0.094634816, 0.025146379, -0.0030648348,
1, 0.3266811, 0.10406087, 0.0014179033],
[0.53487893, 0.12980707, 0.06573594, -0.0015649787,
0.16639465, 0.020070098, -0.0035938937, -0.00058392601],
[0.040121005, -0.0065914079, -0.002628604, -0.0013441777,
0.017050642, -0.0021309345, 0.00085092385, -1.5248239e-07]]
def _gamma_grad_one(z, alpha):
# Ref 1: Pathwise Derivatives Beyond the Reparameterization Trick, Martin & Fritz
# Ref 2: Case 4 follows https://github.com/fritzo/notebooks/blob/master/gamma-reparameterized.ipynb
# TODO: use lax.cond instead of lax.while_loop when its batching rule is available
# See https://github.com/google/jax/issues/490
def _case1(zagf):
z, alpha, _, flag = zagf
# dz = - dCDF(z; a) / pdf(z; a)
# pdf = z^(a-1) * e^(-z) / Gamma(a)
# CDF(z; a) = IncompleteGamma(a, z) / Gamma(a)
# dCDF(z; a) = (dIncompleteGamma - IncompleteGamma * Digamma(a)) / Gamma(a)
# =: unnormalized_dCDF / Gamma(a)
# IncompleteGamma ~ z^a [ 1/a - z/(a+1) + z^2/2!(a+2) - z^3/3!(a+3) + z^4/4!(a+4) - z^5/5!(a+5) ]
# =: z^a * term1
# dIncompleteGamma ~ z^a * log(z) * term1 - z^a [1/a^2 - z/(a+1)^2 + z^2/2!(a+2)^2
# - z^3/3!(a+3)^2 + z^4/4!(a+4)^2 - z^5/5!(a+5)^2 ]
# =: z^a * log(z) * term1 - z^a * term2
# unnormalized_dCDF = z^a { [log(z) - Digamma(a)] * term1 - term2 }
zi = 1.0
update = zi / alpha
term1 = update
term2 = update / alpha
for i in range(1, 6):
zi = -zi * z / i
update = zi / (alpha + i)
term1 = term1 + update
term2 = term2 + update / (alpha + i)
unnormalized_cdf_dot = np.power(z, alpha) * ((np.log(z) - lax.digamma(alpha)) * term1 - term2)
unnormalized_pdf = np.power(z, alpha - 1) * np.exp(-z)
grad = -unnormalized_cdf_dot / unnormalized_pdf
return z, alpha, grad, ~flag
def _cond2(zagf):
z, alpha, _, flag = zagf
return (~flag) & (alpha > 8.0) & ((z < 0.9 * alpha) | (z > 1.1 * alpha))
def _case2(zagf):
z, alpha, _, flag = zagf
# Formula 58 of [1]
sqrt_8a = np.sqrt(8 * alpha)
z_minus_a = z - alpha
log_z_div_a = np.log(z / alpha)
sign = np.where(z < alpha, 1.0, -1.0)
term1 = 4 * (z + alpha) / (sqrt_8a * z_minus_a * z_minus_a)
term2 = log_z_div_a * (sqrt_8a / z_minus_a + sign * np.power(z_minus_a - alpha * log_z_div_a, -1.5))
term3 = z * (1.0 + 1.0 / (12 * alpha) + 1.0 / (288 * alpha * alpha)) / sqrt_8a
grad = (term1 + term2) * term3
return z, alpha, grad, ~flag
def _cond3(zagf):
z, alpha, _, flag = zagf
return (~flag) & (alpha > 8.0) & (z >= 0.9 * alpha) & (z <= 1.1 * alpha)
def _case3(zagf):
z, alpha, _, flag = zagf
# Formula 59 of [1]
z_div_a = np.divide(z, alpha)
aa = alpha * alpha
term1 = 1440 * alpha + 6 * z_div_a * (53 - 120 * z) - 65 * z_div_a * z_div_a + 3600 * z + 107
term2 = 1244160 * alpha * aa
term3 = 1 + 24 * alpha + 288 * aa
grad = term1 * term3 / term2
return z, alpha, grad, ~flag
def _case4(zagf):
z, alpha, _, flag = zagf
# Ref [2]
u = np.log(z / alpha)
v = np.log(alpha)
c = []
for i in range(8):
c.append(_bivariate_coef[0][i] + u * (_bivariate_coef[1][i] + u * _bivariate_coef[2][i]))
p = c[0] + v * (c[1] + v * (c[2] + v * c[3]))
q = c[4] + v * (c[5] + v * (c[6] + v * c[7]))
grad = np.exp(p / np.maximum(q, 0.01))
return z, alpha, grad, ~flag
_, _, grad, flag = lax.while_loop(lambda zagf: (~zagf[3]) & (zagf[0] < 0.8),
_case1,
(z, alpha, lax._const(alpha, 0.0), False))
_, _, grad, flag = lax.while_loop(_cond2, _case2, (z, alpha, grad, flag))
_, _, grad, flag = lax.while_loop(_cond3, _case3, (z, alpha, grad, flag))
_, _, grad, flag = lax.while_loop(lambda zagf: ~zagf[3], _case4, (z, alpha, grad, flag))
return grad
def _gamma_grad(sample, a):
samples = np.reshape(sample, -1)
alphas = np.reshape(a, -1)
grads = vmap(_gamma_grad_one)(samples, alphas)
return grads.reshape(a.shape)
@custom_transforms
def _gamma_impl(key, a):
alphas = np.reshape(a, -1)
keys = split(key, onp.size(alphas))
samples = vmap(_gamma_one)(keys, alphas)
return np.reshape(samples, np.shape(a))
defjvp(_gamma_impl, None,
lambda tangent, ans, key, a, **kwargs: tangent * _gamma_grad(ans, a))
def gamma(key, a, shape=None, dtype=onp.float64):
"""Sample Gamma random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
a: a float or array of floats broadcast-compatible with ``shape``
representing the parameter of the distribution.
shape: optional, a tuple of nonnegative integers specifying the result
shape. Must be broadcast-compatible with ``a``. The default (None)
produces a result shape equal to ``a.shape``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and with shape given by ``shape`` if
``shape`` is not None, or else by ``a.shape``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _gamma(key, a, shape, dtype)
@partial(jit, static_argnums=(2, 3))
def _gamma(key, a, shape, dtype):
if shape is None:
shape = a.shape
else:
_check_shape("gamma", shape, a.shape)
a = lax.convert_element_type(a, dtype)
if onp.shape(a) != shape:
a = np.broadcast_to(a, shape)
return _gamma_impl(key, a)
def gumbel(key, shape=(), dtype=onp.float64):
"""Sample Gumbel random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _gumbel(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _gumbel(key, shape, dtype):
_check_shape("gumbel", shape)
return -np.log(-np.log(
uniform(key, shape, dtype, minval=np.finfo(dtype).eps, maxval=1.)))
def laplace(key, shape=(), dtype=onp.float64):
"""Sample Laplace random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _laplace(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _laplace(key, shape, dtype):
_check_shape("laplace", shape)
u = uniform(
key, shape, dtype, minval=-1. + np.finfo(dtype).epsneg, maxval=1.)
return lax.mul(lax.sign(u), lax.log1p(lax.neg(lax.abs(u))))
def logistic(key, shape=(), dtype=onp.float64):
"""Sample logistic random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _logistic(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _logistic(key, shape, dtype):
_check_shape("logistic", shape)
return logit(uniform(key, shape, dtype))
def pareto(key, b, shape=None, dtype=onp.float64):
"""Sample Pareto random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
a: a float or array of floats broadcast-compatible with ``shape``
representing the parameter of the distribution.
shape: optional, a tuple of nonnegative integers specifying the result
shape. Must be broadcast-compatible with ``b``. The default (None)
produces a result shape equal to ``b.shape``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and with shape given by ``shape`` if
``shape`` is not None, or else by ``b.shape``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _pareto(key, b, shape, dtype)
@partial(jit, static_argnums=(2, 3))
def _pareto(key, b, shape, dtype):
if shape is None:
shape = b.shape
else:
_check_shape("pareto", shape)
b = lax.convert_element_type(b, dtype)
e = exponential(key, shape, dtype)
return lax.exp(e / b)
def t(key, df, shape=(), dtype=onp.float64):
"""Sample Student's t random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
df: a float or array of floats broadcast-compatible with ``shape``
representing the parameter of the distribution.
shape: optional, a tuple of nonnegative integers specifying the result
shape. Must be broadcast-compatible with ``df``. The default (None)
produces a result shape equal to ``df.shape``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and with shape given by ``shape`` if
``shape`` is not None, or else by ``df.shape``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _t(key, df, shape, dtype)
@partial(jit, static_argnums=(2, 3))
def _t(key, df, shape, dtype):
if shape is None:
shape = df.shape
else:
_check_shape("t", shape, df.shape)
df = lax.convert_element_type(df, dtype)
key_n, key_g = split(key)
n = normal(key_n, shape, dtype)
two = _constant_like(n, 2)
half_df = lax.div(df, two)
g = gamma(key_n, half_df, shape, dtype)
return n * np.sqrt(half_df / g)