mirror of
https://github.com/ROCm/jax.git
synced 2025-04-18 12:56:07 +00:00

Previously we had no way to tell XLA that inputs and outputs of GPU custom calls must alias. This now works in XLA:GPU so we can just ask XLA to enforce the aliasing we need. This seems to be causing some test failures downstream, so reverting this for the moment until I can debug them. PiperOrigin-RevId: 479670565
619 lines
23 KiB
C++
619 lines
23 KiB
C++
/* Copyright 2021 The JAX Authors.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "jaxlib/cuda/cusparse_kernels.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <stdexcept>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "absl/status/status.h"
|
|
#include "absl/status/statusor.h"
|
|
#include "absl/synchronization/mutex.h"
|
|
#include "third_party/gpus/cuda/include/cuComplex.h"
|
|
#include "third_party/gpus/cuda/include/cuda.h"
|
|
#if JAX_CUDA_11080
|
|
#include "third_party/gpus/cuda/include/cuda_fp8.h"
|
|
#endif
|
|
#include "third_party/gpus/cuda/include/cuda_runtime_api.h"
|
|
#include "third_party/gpus/cuda/include/cusparse.h"
|
|
#include "jaxlib/cuda/cuda_gpu_kernel_helpers.h"
|
|
#include "jaxlib/handle_pool.h"
|
|
#include "jaxlib/kernel_helpers.h"
|
|
#include "tensorflow/compiler/xla/service/custom_call_status.h"
|
|
|
|
// cuSPARSE generic APIs are not supported on Windows until 11.0
|
|
// cusparseIndexType_t is used in very limited scope so manually define will
|
|
// workaround compiling issue without harm.
|
|
#if defined(_WIN32) && (CUSPARSE_VERSION < 11000)
|
|
typedef enum {
|
|
CUSPARSE_INDEX_16U = 1,
|
|
CUSPARSE_INDEX_32I = 2,
|
|
CUSPARSE_INDEX_64I = 3
|
|
} cusparseIndexType_t;
|
|
#endif
|
|
|
|
namespace jax {
|
|
|
|
template <>
|
|
/*static*/ absl::StatusOr<SparseHandlePool::Handle> SparseHandlePool::Borrow(
|
|
cudaStream_t stream) {
|
|
SparseHandlePool* pool = Instance();
|
|
absl::MutexLock lock(&pool->mu_);
|
|
cusparseHandle_t handle;
|
|
if (pool->handles_[stream].empty()) {
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreate(&handle)));
|
|
} else {
|
|
handle = pool->handles_[stream].back();
|
|
pool->handles_[stream].pop_back();
|
|
}
|
|
if (stream) {
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseSetStream(handle, stream)));
|
|
}
|
|
return Handle(pool, handle, stream);
|
|
}
|
|
|
|
CudaConst CudaZero(cudaDataType type) {
|
|
CudaConst c;
|
|
std::memset(&c, 0, sizeof(c));
|
|
return c;
|
|
}
|
|
|
|
CudaConst CudaOne(cudaDataType type) {
|
|
CudaConst c;
|
|
std::memset(&c, 0, sizeof(c));
|
|
switch (type) {
|
|
#if JAX_CUSPARSE_11300
|
|
// TODO(jakevdp): 4I/4U here might break on big endian platforms.
|
|
case CUDA_R_4I:
|
|
case CUDA_C_4I:
|
|
#endif
|
|
case CUDA_R_8I:
|
|
case CUDA_C_8I:
|
|
c.i8[0] = 1;
|
|
break;
|
|
#if JAX_CUSPARSE_11300
|
|
case CUDA_R_4U:
|
|
case CUDA_C_4U:
|
|
#endif
|
|
case CUDA_R_8U:
|
|
case CUDA_C_8U:
|
|
c.u8[0] = 1;
|
|
break;
|
|
#if JAX_CUSPARSE_11300
|
|
case CUDA_R_16I:
|
|
case CUDA_C_16I:
|
|
c.i16[0] = 1;
|
|
break;
|
|
case CUDA_R_16U:
|
|
case CUDA_C_16U:
|
|
c.u16[0] = 1;
|
|
break;
|
|
#endif
|
|
case CUDA_R_32I:
|
|
case CUDA_C_32I:
|
|
c.i32[0] = 1;
|
|
break;
|
|
case CUDA_R_32U:
|
|
case CUDA_C_32U:
|
|
c.u32[0] = 1;
|
|
break;
|
|
#if JAX_CUSPARSE_11300
|
|
case CUDA_R_64I:
|
|
case CUDA_C_64I:
|
|
c.i64[0] = 1;
|
|
break;
|
|
case CUDA_R_64U:
|
|
case CUDA_C_64U:
|
|
c.u64[0] = 1;
|
|
break;
|
|
#endif
|
|
#if JAX_CUDA_11080
|
|
case CUDA_R_8F_E4M3:
|
|
c.u8[0] = __nv_cvt_float_to_fp8(1.0f, __NV_NOSAT, __NV_E4M3);
|
|
break;
|
|
case CUDA_R_8F_E5M2:
|
|
c.u8[0] = __nv_cvt_float_to_fp8(1.0f, __NV_NOSAT, __NV_E5M2);
|
|
break;
|
|
#endif
|
|
// TODO(jakevdp): 16F/16BF here might break on big endian platforms.
|
|
case CUDA_R_16F:
|
|
case CUDA_C_16F:
|
|
c.u16[0] = 0b11110000000000; // 1.0 in little-endian float16
|
|
break;
|
|
#if JAX_CUSPARSE_11300
|
|
case CUDA_R_16BF:
|
|
case CUDA_C_16BF:
|
|
c.u16[0] = 0b11111110000000; // 1.0 in little-endian bfloat16
|
|
break;
|
|
#endif
|
|
case CUDA_R_32F:
|
|
case CUDA_C_32F:
|
|
c.f32[0] = 1.0;
|
|
break;
|
|
case CUDA_R_64F:
|
|
case CUDA_C_64F:
|
|
c.f64[0] = 1.0;
|
|
break;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
#if JAX_CUSPARSE_11300
|
|
// CsrToDense: Convert CSR matrix to dense matrix
|
|
|
|
static absl::Status CsrToDense_(cudaStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const SparseMatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
cusparseSpMatDescr_t mat_a = 0;
|
|
cusparseDnMatDescr_t mat_b = 0;
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cusparseCreateCsr(&mat_a, d.rows, d.cols, d.nnz,
|
|
/*csrRowOffsets=*/buffers[2],
|
|
/*csrColInd=*/buffers[1],
|
|
/*csrValues=*/buffers[0], d.index_type, d.index_type,
|
|
CUSPARSE_INDEX_BASE_ZERO, d.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
|
|
&mat_b, d.rows, d.cols,
|
|
/*ld=*/d.cols, buffers[3], d.value_type, CUSPARSE_ORDER_ROW)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cusparseSparseToDense(handle.get(), mat_a, mat_b,
|
|
CUSPARSE_SPARSETODENSE_ALG_DEFAULT, buffers[4])));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_b)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CsrToDense(cudaStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CsrToDense_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CsrFromDense: Convert dense matrix to CSR matrix
|
|
|
|
static absl::Status CsrFromDense_(cudaStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const SparseMatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
cusparseDnMatDescr_t mat_a = 0;
|
|
cusparseSpMatDescr_t mat_b = 0;
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
|
|
&mat_a, d.rows, d.cols,
|
|
/*ld=*/d.cols, buffers[0], d.value_type, CUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cusparseCreateCsr(&mat_b, d.rows, d.cols, d.nnz,
|
|
/*csrRowOffsets=*/buffers[3],
|
|
/*csrColInd=*/buffers[2],
|
|
/*csrValues=*/buffers[1], d.index_type, d.index_type,
|
|
CUSPARSE_INDEX_BASE_ZERO, d.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDenseToSparse_analysis(
|
|
handle.get(), mat_a, mat_b, CUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
|
|
buffers[4])));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDenseToSparse_convert(
|
|
handle.get(), mat_a, mat_b, CUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
|
|
buffers[4])));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_b)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CsrFromDense(cudaStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CsrFromDense_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CsrMatvec: Product of CSR matrix and dense vector.
|
|
|
|
static absl::Status CsrMatvec_(cudaStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<CsrMatvecDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const CsrMatvecDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
void* csr_values = buffers[0];
|
|
void* csr_col_ind = buffers[1];
|
|
void* csr_row_offsets = buffers[2];
|
|
void* xbuf = buffers[3];
|
|
void* ybuf = buffers[4];
|
|
void* buf = buffers[5];
|
|
|
|
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
|
|
// are sufficient for basic matvec operations.
|
|
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
|
|
// or else the operation will segfault.
|
|
CudaConst alpha = CudaOne(d.y.type);
|
|
CudaConst beta = CudaZero(d.y.type);
|
|
|
|
cusparseSpMatDescr_t mat_a = 0;
|
|
cusparseDnVecDescr_t vec_x = 0;
|
|
cusparseDnVecDescr_t vec_y = 0;
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cusparseCreateCsr(&mat_a, d.A.rows, d.A.cols, d.A.nnz, csr_row_offsets,
|
|
csr_col_ind, csr_values, d.A.index_type, d.A.index_type,
|
|
CUSPARSE_INDEX_BASE_ZERO, d.A.value_type)));
|
|
JAX_RETURN_IF_ERROR(
|
|
JAX_AS_STATUS(cusparseCreateDnVec(&vec_x, d.x.size, xbuf, d.x.type)));
|
|
JAX_RETURN_IF_ERROR(
|
|
JAX_AS_STATUS(cusparseCreateDnVec(&vec_y, d.y.size, ybuf, d.y.type)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cusparseSpMV(handle.get(), d.op, &alpha, mat_a, vec_x, &beta, vec_y,
|
|
d.y.type, CUSPARSE_MV_ALG_DEFAULT, buf)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnVec(vec_x)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnVec(vec_y)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CsrMatvec(cudaStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CsrMatvec_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CsrMatmat: Product of CSR matrix and dense matrix.
|
|
|
|
static absl::Status CsrMatmat_(cudaStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<CsrMatmatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const CsrMatmatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
void* csr_values = buffers[0];
|
|
void* csr_col_ind = buffers[1];
|
|
void* csr_row_offsets = buffers[2];
|
|
void* Bbuf = buffers[3];
|
|
void* Cbuf = buffers[4];
|
|
void* buf = buffers[5];
|
|
|
|
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
|
|
// are sufficient for basic matvec operations.
|
|
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
|
|
// or else the operation will segfault.
|
|
CudaConst alpha = CudaOne(d.C.type);
|
|
CudaConst beta = CudaZero(d.C.type);
|
|
|
|
cusparseSpMatDescr_t mat_a = 0;
|
|
cusparseDnMatDescr_t mat_b = 0;
|
|
cusparseDnMatDescr_t mat_c = 0;
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cusparseCreateCsr(&mat_a, d.A.rows, d.A.cols, d.A.nnz, csr_row_offsets,
|
|
csr_col_ind, csr_values, d.A.index_type, d.A.index_type,
|
|
CUSPARSE_INDEX_BASE_ZERO, d.A.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
|
|
&mat_b, d.B.rows, d.B.cols,
|
|
/*ld=*/d.B.cols, Bbuf, d.B.type, CUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
|
|
&mat_c, d.C.rows, d.C.cols,
|
|
/*ld=*/d.C.cols, Cbuf, d.C.type, CUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseSpMM(
|
|
handle.get(), d.op_A, /*opB=*/CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha,
|
|
mat_a, mat_b, &beta, mat_c, d.C.type, CUSPARSE_SPMM_ALG_DEFAULT, buf)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_b)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_c)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CsrMatmat(cudaStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CsrMatmat_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CooToDense: Convert COO matrix to dense matrix
|
|
|
|
static absl::Status CooToDense_(cudaStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const SparseMatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
cusparseSpMatDescr_t mat_a = 0;
|
|
cusparseDnMatDescr_t mat_b = 0;
|
|
JAX_RETURN_IF_ERROR(
|
|
JAX_AS_STATUS(cusparseCreateCoo(&mat_a, d.rows, d.cols, d.nnz,
|
|
/*cooRowInd=*/buffers[1],
|
|
/*cooColInd=*/buffers[2],
|
|
/*cooValues=*/buffers[0], d.index_type,
|
|
CUSPARSE_INDEX_BASE_ZERO, d.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
|
|
&mat_b, d.rows, d.cols,
|
|
/*ld=*/d.cols, buffers[3], d.value_type, CUSPARSE_ORDER_ROW)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cusparseSparseToDense(handle.get(), mat_a, mat_b,
|
|
CUSPARSE_SPARSETODENSE_ALG_DEFAULT, buffers[4])));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_b)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CooToDense(cudaStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CooToDense_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CooFromDense: Convert dense matrix to COO matrix
|
|
|
|
static absl::Status CooFromDense_(cudaStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const SparseMatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
cusparseDnMatDescr_t mat_a = 0;
|
|
cusparseSpMatDescr_t mat_b = 0;
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
|
|
&mat_a, d.rows, d.cols,
|
|
/*ld=*/d.cols, buffers[0], d.value_type, CUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(
|
|
JAX_AS_STATUS(cusparseCreateCoo(&mat_b, d.rows, d.cols, d.nnz,
|
|
/*cooRowInd=*/buffers[2],
|
|
/*cooColInd=*/buffers[3],
|
|
/*cooValues=*/buffers[1], d.index_type,
|
|
CUSPARSE_INDEX_BASE_ZERO, d.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDenseToSparse_analysis(
|
|
handle.get(), mat_a, mat_b, CUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
|
|
buffers[4])));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDenseToSparse_convert(
|
|
handle.get(), mat_a, mat_b, CUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
|
|
buffers[4])));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_b)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CooFromDense(cudaStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CooFromDense_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CooMatvec: Product of COO matrix and dense vector.
|
|
|
|
static absl::Status CooMatvec_(cudaStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<CooMatvecDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const CooMatvecDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
void* coo_values = buffers[0];
|
|
void* coo_row_ind = buffers[1];
|
|
void* coo_col_ind = buffers[2];
|
|
void* xbuf = buffers[3];
|
|
void* ybuf = buffers[4];
|
|
void* buf = buffers[5];
|
|
|
|
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
|
|
// are sufficient for basic matvec operations.
|
|
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
|
|
// or else the operation will segfault.
|
|
CudaConst alpha = CudaOne(d.y.type);
|
|
CudaConst beta = CudaZero(d.y.type);
|
|
|
|
cusparseSpMatDescr_t mat_a = 0;
|
|
cusparseDnVecDescr_t vec_x = 0;
|
|
cusparseDnVecDescr_t vec_y = 0;
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateCoo(
|
|
&mat_a, d.A.rows, d.A.cols, d.A.nnz, coo_row_ind, coo_col_ind, coo_values,
|
|
d.A.index_type, CUSPARSE_INDEX_BASE_ZERO, d.A.value_type)));
|
|
JAX_RETURN_IF_ERROR(
|
|
JAX_AS_STATUS(cusparseCreateDnVec(&vec_x, d.x.size, xbuf, d.x.type)));
|
|
JAX_RETURN_IF_ERROR(
|
|
JAX_AS_STATUS(cusparseCreateDnVec(&vec_y, d.y.size, ybuf, d.y.type)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cusparseSpMV(handle.get(), d.op, &alpha, mat_a, vec_x, &beta, vec_y,
|
|
d.y.type, CUSPARSE_MV_ALG_DEFAULT, buf)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnVec(vec_x)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnVec(vec_y)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CooMatvec(cudaStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CooMatvec_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CooMatmat: Product of COO matrix and dense matrix.
|
|
|
|
static absl::Status CooMatmat_(cudaStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<CooMatmatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const CooMatmatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
void* coo_values = buffers[0];
|
|
void* coo_row_ind = buffers[1];
|
|
void* coo_col_ind = buffers[2];
|
|
void* Bbuf = buffers[3];
|
|
void* Cbuf = buffers[4];
|
|
void* buf = buffers[5];
|
|
|
|
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
|
|
// are sufficient for basic matvec operations.
|
|
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
|
|
// or else the operation will segfault.
|
|
CudaConst alpha = CudaOne(d.C.type);
|
|
CudaConst beta = CudaZero(d.C.type);
|
|
|
|
cusparseSpMatDescr_t mat_a = 0;
|
|
cusparseDnMatDescr_t mat_b = 0;
|
|
cusparseDnMatDescr_t mat_c = 0;
|
|
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateCoo(
|
|
&mat_a, d.A.rows, d.A.cols, d.A.nnz, coo_row_ind, coo_col_ind, coo_values,
|
|
d.A.index_type, CUSPARSE_INDEX_BASE_ZERO, d.A.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cusparseCooSetStridedBatch(mat_a, /*batchCount=*/d.A.batch_count,
|
|
/*batchStride=*/d.A.batch_stride)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
|
|
&mat_b, d.B.rows, d.B.cols,
|
|
/*ld=*/d.B.cols, Bbuf, d.B.type, CUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cusparseDnMatSetStridedBatch(mat_b, /*batchCount=*/d.B.batch_count,
|
|
/*batchStride=*/d.B.batch_stride)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseCreateDnMat(
|
|
&mat_c, d.C.rows, d.C.cols,
|
|
/*ld=*/d.C.cols, Cbuf, d.C.type, CUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cusparseDnMatSetStridedBatch(mat_c, /*batchCount=*/d.C.batch_count,
|
|
/*batchStride=*/d.C.batch_stride)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseSpMM(
|
|
handle.get(), d.op_A, /*opB=*/CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha,
|
|
mat_a, mat_b, &beta, mat_c, d.C.type, CUSPARSE_SPMM_ALG_DEFAULT, buf)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_b)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(cusparseDestroyDnMat(mat_c)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CooMatmat(cudaStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CooMatmat_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
#endif // if JAX_CUSPARSE_11300
|
|
|
|
template <typename T, typename F>
|
|
static absl::Status gtsv2(F computeGtsv2, cudaStream_t stream, void** buffers,
|
|
const char* opaque, std::size_t opaque_len) {
|
|
auto h = SparseHandlePool::Borrow();
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
auto s = UnpackDescriptor<Gtsv2Descriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const Gtsv2Descriptor& descriptor = **s;
|
|
int m = descriptor.m;
|
|
int n = descriptor.n;
|
|
int ldb = descriptor.ldb;
|
|
|
|
const T* dl = (const T*)(buffers[0]);
|
|
const T* d = (const T*)(buffers[1]);
|
|
const T* du = (const T*)(buffers[2]);
|
|
const T* B = (T*)(buffers[3]);
|
|
T* X = (T*)(buffers[4]);
|
|
void* buffer = buffers[5];
|
|
|
|
// The solution X is written in place to B. We need to therefore copy the
|
|
// contents of B into the output buffer X and pass that into the kernel as B.
|
|
// Once copy insertion is supported for custom call aliasing, we could alias B
|
|
// with X and avoid the copy, the code below is written defensively assuming B
|
|
// and X might alias, but today we know they will not.
|
|
// TODO(b/182906199): Update the comment here once copy insertion is WAI.
|
|
if (X != B) {
|
|
size_t B_bytes = ldb * n * sizeof(T);
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
cudaMemcpyAsync(X, B, B_bytes, cudaMemcpyDeviceToDevice, stream)));
|
|
}
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
computeGtsv2(handle.get(), m, n, dl, d, du, /*B=*/X, ldb, buffer)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void gtsv2_f32(cudaStream_t stream, void** buffers, const char* opaque,
|
|
std::size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = gtsv2<float>(cusparseSgtsv2, stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
void gtsv2_f64(cudaStream_t stream, void** buffers, const char* opaque,
|
|
std::size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = gtsv2<double>(cusparseDgtsv2, stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
} // namespace jax
|