rocm_jax/tests/nn_test.py
Matthew Johnson 2d25773c21 add custom_jvp for logaddexp / logaddexp2
fixes #2107, draws from #2356 and #2357, thanks @yingted !

Co-authored-by: Ted Ying <yingted@gmail.com>
2020-04-13 11:20:16 -07:00

198 lines
7.0 KiB
Python

# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for nn module."""
import collections
import itertools
from absl.testing import absltest
from absl.testing import parameterized
import numpy as onp
from jax import test_util as jtu
from jax.test_util import check_grads
from jax import nn
from jax import random
import jax
import jax.numpy as np
from jax.config import config
config.parse_flags_with_absl()
class NNFunctionsTest(jtu.JaxTestCase):
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testSoftplusGrad(self):
check_grads(nn.softplus, (1e-8,), order=4,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradZero(self):
check_grads(nn.softplus, (0.,), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradInf(self):
self.assertAllClose(
1., jax.grad(nn.softplus)(float('inf')), check_dtypes=True)
def testSoftplusGradNegInf(self):
check_grads(nn.softplus, (-float('inf'),), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradNan(self):
check_grads(nn.softplus, (float('nan'),), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
@parameterized.parameters([
int, np.int32, float, np.float64, np.float32, np.float64,])
def testSoftplusZero(self, dtype):
self.assertEqual(np.log(dtype(2)), nn.softplus(dtype(0)))
def testReluGrad(self):
rtol = 1e-2 if jtu.device_under_test() == "tpu" else None
check_grads(nn.relu, (1.,), order=3, rtol=rtol)
check_grads(nn.relu, (-1.,), order=3, rtol=rtol)
jaxpr = jax.make_jaxpr(jax.grad(nn.relu))(0.)
self.assertEqual(len(jaxpr.jaxpr.eqns), 2)
def testSoftplusValue(self):
val = nn.softplus(89.)
self.assertAllClose(val, 89., check_dtypes=False)
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testEluGrad(self):
check_grads(nn.elu, (1e4,), order=4, eps=1.)
def testEluValue(self):
val = nn.elu(1e4)
self.assertAllClose(val, 1e4, check_dtypes=False)
@parameterized.parameters(*itertools.product(
(np.float32, np.bfloat16, np.float16),
(nn.gelu, nn.relu, nn.softplus, nn.sigmoid)))
def testDtypeMatchesInput(self, dtype, fn):
if dtype is np.float16 and jtu.device_under_test() == "tpu":
self.skipTest("float16 not supported on TPU")
x = np.zeros((), dtype=dtype)
out = fn(x)
self.assertEqual(out.dtype, dtype)
@jtu.skip_on_devices("gpu", "tpu")
def testEluMemory(self):
# see https://github.com/google/jax/pull/1640
jax.make_jaxpr(nn.elu)(np.ones((10 ** 12,))) # don't oom
@jtu.skip_on_devices("gpu", "tpu")
def testHardTanhMemory(self):
# see https://github.com/google/jax/pull/1640
jax.make_jaxpr(nn.hard_tanh)(np.ones((10 ** 12,))) # don't oom
def testOneHot(self):
actual = nn.one_hot(np.array([0, 1, 2]), 3)
expected = np.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected, check_dtypes=True)
actual = nn.one_hot(np.array([1, 2, 0]), 3)
expected = np.array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.]])
self.assertAllClose(actual, expected, check_dtypes=True)
def testOneHotOutOfBound(self):
actual = nn.one_hot(np.array([-1, 3]), 3)
expected = np.array([[0., 0., 0.],
[0., 0., 0.]])
self.assertAllClose(actual, expected, check_dtypes=True)
def testOneHotNonArrayInput(self):
actual = nn.one_hot([0, 1, 2], 3)
expected = np.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected, check_dtypes=True)
def testOneHotCustomDtype(self):
actual = nn.one_hot(np.array([0, 1, 2]), 3, dtype=np.bool_)
expected = np.array([[True, False, False],
[False, True, False],
[False, False, True]])
self.assertAllClose(actual, expected, check_dtypes=True)
InitializerRecord = collections.namedtuple(
"InitializerRecord",
["name", "initializer", "shapes"])
ALL_SHAPES = [(2,), (2, 2), (2, 3), (3, 2), (2, 3, 4), (4, 3, 2), (2, 3, 4, 5)]
def initializer_record(name, initializer, min_dims=2, max_dims=4):
shapes = [shape for shape in ALL_SHAPES
if min_dims <= len(shape) <= max_dims]
return InitializerRecord(name, initializer, shapes)
INITIALIZER_RECS = [
initializer_record("uniform", nn.initializers.uniform, 1),
initializer_record("normal", nn.initializers.normal, 1),
initializer_record("he_normal", nn.initializers.he_normal),
initializer_record("he_uniform", nn.initializers.he_uniform),
initializer_record("glorot_normal", nn.initializers.glorot_normal),
initializer_record("glorot_uniform", nn.initializers.glorot_uniform),
initializer_record("lecun_normal", nn.initializers.lecun_normal),
initializer_record("lecun_uniform", nn.initializers.lecun_uniform),
initializer_record("orthogonal", nn.initializers.orthogonal, 2, 2),
initializer_record("delta_orthogonal", nn.initializers.delta_orthogonal, 4, 4)
]
class NNInitializersTest(jtu.JaxTestCase):
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_{}_{}".format(
rec.name,
jtu.format_shape_dtype_string(shape, dtype)),
"initializer": rec.initializer(),
"shape": shape, "dtype": dtype}
for rec in INITIALIZER_RECS
for shape in rec.shapes
for dtype in [onp.float32, onp.float64]))
def testInitializer(self, initializer, shape, dtype):
rng = random.PRNGKey(0)
val = initializer(rng, shape, dtype)
self.assertEqual(shape, np.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), np.dtype(val))
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_{}_{}".format(
rec.name,
jtu.format_shape_dtype_string(shape, dtype)),
"initializer_provider": rec.initializer,
"shape": shape, "dtype": dtype}
for rec in INITIALIZER_RECS
for shape in rec.shapes
for dtype in [onp.float32, onp.float64]))
def testInitializerProvider(self, initializer_provider, shape, dtype):
rng = random.PRNGKey(0)
initializer = initializer_provider(dtype=dtype)
val = initializer(rng, shape)
self.assertEqual(shape, np.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), np.dtype(val))
if __name__ == "__main__":
absltest.main()