rocm_jax/jax/_src/dispatch.py
George Necula 3021d3e2e2 [hcb] Add support for remat2 to host_callback
A callback under ad_checkpoint.checkpoint will be invoked
twice when taking the gradient: once during the forward pass
and once again during the backward pass when the residuals
for the forward pass are rematerialized.
2021-12-15 10:32:15 +02:00

746 lines
28 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Primitive dispatch and jit dispatch.
import contextlib
from functools import partial
import itertools
import time
from typing import (
Any, Callable, Dict, Optional, Sequence, Set, Tuple, Type, Union)
from typing_extensions import Protocol
import os
import re
import warnings
from absl import logging
import numpy as np
from jax import core
from jax import linear_util as lu
import jax.interpreters.ad as ad
import jax.interpreters.batching as batching
import jax.interpreters.masking as masking
import jax.interpreters.mlir as mlir
import jax.interpreters.xla as xla
import jax.interpreters.partial_eval as pe
from jax.errors import UnexpectedTracerError
from jax._src.abstract_arrays import array_types
from jax._src.config import config, flags
from jax._src import device_array
from jax._src import dtypes
from jax._src import profiler
from jax._src.lib.mlir import ir
from jax._src.lib import xla_bridge as xb
from jax._src.lib import xla_client as xc
import jax._src.util as util
from jax._src import traceback_util
FLAGS = flags.FLAGS
flags.DEFINE_string(
'jax_dump_ir_to', os.getenv('JAX_DUMP_IR_TO', ''),
help="Path to which HLO/MHLO IR that is emitted by JAX as input to the "
"compiler should be dumped as text files. Optional. If omitted, JAX "
"will not dump IR.")
traceback_util.register_exclusion(__file__)
MYPY = False # Are we currently type checking with mypy?
xe = xc._xla
Backend = xe.Client
Device = xc.Device
Buffer = xe.Buffer
XlaExecutable = xc.Executable
map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip
# This flag is set on exit; no logging should be attempted
_on_exit = False
### op-by-op execution
ArgSpec = Tuple[core.AbstractValue, Optional[Device]]
def arg_spec(x: Any) -> ArgSpec:
aval = xla.abstractify(x)
try:
return aval, x._device
except:
return aval, None
def apply_primitive(prim, *args, **params):
"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""
compiled_fun = xla_primitive_callable(prim, *unsafe_map(arg_spec, args),
**params)
return compiled_fun(*args)
# TODO(phawkins): update code referring to xla.apply_primitive to point here.
xla.apply_primitive = apply_primitive
@util.cache()
def xla_primitive_callable(prim, *arg_specs: ArgSpec, **params):
avals, arg_devices = util.unzip2(arg_specs)
donated_invars = (False,) * len(arg_specs)
device = _device_from_arg_devices(arg_devices)
def prim_fun(*args):
out = prim.bind(*args, **params)
if prim.multiple_results:
return out
else:
return out,
compiled = _xla_callable_uncached(lu.wrap_init(prim_fun), device, None,
prim.name, donated_invars, *arg_specs)
if not prim.multiple_results:
return lambda *args, **kw: compiled(*args, **kw)[0]
else:
return compiled
def _device_from_arg_devices(devices: Sequence[Optional[Device]]) -> Optional[Device]:
"""Given devices of inputs, determine where to perform a computation.
Args:
devices: list where each element is a either a `Device` instance or `None`.
Returns:
A `Device` instance or None.
Raises:
ValueError if input devices are inconsistent.
"""
try:
device, = {d for d in devices if d is not None} or (None,)
return device
except ValueError as err:
msg = "primitive arguments must be colocated on the same device, got {}"
raise ValueError(msg.format(", ".join(map(str, devices)))) from err
# JIT execution
def _xla_call_impl(fun: lu.WrappedFun, *args, device, backend, name,
donated_invars, inline):
del inline # Only used at tracing time
compiled_fun = _xla_callable(fun, device, backend, name, donated_invars,
*unsafe_map(arg_spec, args))
try:
out = compiled_fun(*args)
except FloatingPointError:
assert config.jax_debug_nans or config.jax_debug_infs # compiled_fun can only raise in this case
print("Invalid value encountered in the output of a jit/pmap-ed function. "
"Calling the de-optimized version.")
# We want to run the wrapped function again (after _xla_callable already ran
# it), but linear_util.WrappedFun instances are meant to be run only once.
# In addition to re-executing the Python code, which is usually undesirable
# but which config.jax_debug_nans is meant to opt into, we'll be re-executing
# any linear_util.py-style side effects, i.e. re-populating Stores created
# by any transformation_with_aux's applied to fun. Since this is
# intentional here, to avoid "Store occupied" errors we clone the WrappedFun
# with empty stores.
stores = [lu.Store() for _ in fun.stores]
clone = lu.WrappedFun(fun.f, fun.transforms, stores, fun.params)
with core.new_sublevel():
_ = clone.call_wrapped(*args) # probably won't return
return out
xla.xla_call_p.def_impl(_xla_call_impl)
def _xla_callable_uncached(fun: lu.WrappedFun, device, backend, name,
donated_invars, *arg_specs):
return lower_xla_callable(fun, device, backend, name, donated_invars,
*arg_specs).compile().unsafe_call
_xla_callable = lu.cache(_xla_callable_uncached)
@contextlib.contextmanager
def log_elapsed_time(fmt: str):
if _on_exit:
yield
else:
log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
start_time = time.time()
yield
elapsed_time = time.time() - start_time
logging.log(log_priority, fmt.format(elapsed_time=elapsed_time))
@profiler.annotate_function
def lower_xla_callable(fun: lu.WrappedFun, device, backend, name,
donated_invars, *arg_specs):
if device is not None and backend is not None:
raise ValueError("can't specify both a device and a backend for jit, "
"got device={} and backend={}".format(device, backend))
abstract_args, arg_devices = util.unzip2(arg_specs)
with log_elapsed_time(f"Finished tracing + transforming {fun.__name__} "
"for jit in {elapsed_time} sec"):
jaxpr, out_avals, consts = pe.trace_to_jaxpr_final(
fun, abstract_args, pe.debug_info_final(fun, "jit"))
if any(isinstance(c, core.Tracer) for c in consts):
raise UnexpectedTracerError("Encountered an unexpected tracer.")
jaxpr, kept_const_idx, kept_var_idx = _prune_unused_inputs(jaxpr)
consts = [c for i, c in enumerate(consts) if i in kept_const_idx]
pruned_arg_specs = (a for i, a in enumerate(arg_specs) if i in kept_var_idx)
abstract_args, arg_devices = util.unzip2(pruned_arg_specs)
donated_invars = [
x for i, x in enumerate(donated_invars) if i in kept_var_idx
]
map(prefetch, itertools.chain(consts, jaxpr_literals(jaxpr)))
jaxpr = apply_outfeed_rewriter(jaxpr)
nreps = jaxpr_replicas(jaxpr)
device = _xla_callable_device(nreps, backend, device, arg_devices)
backend = xb.get_device_backend(device) if device else xb.get_backend(backend)
# Computations that only produce constants and/or only rearrange their inputs,
# which are often produced from partial evaluation, don't need compilation,
# and don't need to evaluate their arguments.
if not jaxpr.eqns:
return XlaComputation(
name, None, True, None, jaxpr=jaxpr, consts=consts, device=device,
in_avals=abstract_args, out_avals=out_avals, kept_var_idx=kept_var_idx)
if not _on_exit:
log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
if len(abstract_args) > 10:
msg = f"Compiling {fun.__name__} ({id(fun)}) for {len(abstract_args)} args."
else:
msg = f"Compiling {fun.__name__} ({id(fun)} for args {abstract_args}."
logging.log(log_priority, msg)
if nreps > 1:
warnings.warn(
f"The jitted function {name} includes a pmap. Using "
"jit-of-pmap can lead to inefficient data movement, as the outer jit "
"does not preserve sharded data representations and instead collects "
"input and output arrays onto a single device. "
"Consider removing the outer jit unless you know what you're doing. "
"See https://github.com/google/jax/issues/2926.")
if nreps > xb.device_count(backend):
raise ValueError(
f"compiling computation `{name}` that requires {nreps} replicas, but "
f"only {xb.device_count(backend)} XLA devices are available.")
if xb.process_count() > 1 and (nreps > 1 or jaxpr_has_pmap(jaxpr)):
raise NotImplementedError(
"jit of multi-host pmap not implemented (and jit-of-pmap can cause "
"extra data movement anyway, so maybe you don't want it after all).")
# pass long arg lists as tuple for TPU
tuple_args = len(abstract_args) > 100
axis_env = xla.AxisEnv(nreps, (), ())
name_stack = xla.extend_name_stack(xla.wrap_name(name, 'jit'))
closed_jaxpr = core.ClosedJaxpr(jaxpr, consts)
module: Union[str, xc.XlaComputation]
module_name = f"jit_{fun.__name__}"
if config.jax_enable_mlir:
module = mlir.lower_jaxpr_to_module(
module_name, closed_jaxpr, backend.platform, axis_env, name_stack,
donated_invars)
else:
module = xla.lower_jaxpr_to_xla_module(
module_name, closed_jaxpr, backend.platform, axis_env,
name_stack, tuple_args, donated_invars, replicated_args=None,
arg_partitions=None, out_partitions=None)
return XlaComputation(
name, module, False, donated_invars, nreps=nreps, device=device,
backend=backend, tuple_args=tuple_args, in_avals=abstract_args,
out_avals=out_avals, kept_var_idx=kept_var_idx)
def prefetch(x):
if isinstance(x, device_array.DeviceArray):
x.copy_to_host_async()
return x
def jaxpr_literals(jaxpr):
"""Generates all the literals inside a jaxpr, including nested subjaxprs."""
for eqn in jaxpr.eqns:
for v in eqn.invars:
if type(v) is core.Literal:
yield v.val
for subjaxpr in core.subjaxprs(jaxpr):
yield from jaxpr_literals(subjaxpr)
def jaxpr_has_pmap(jaxpr):
"""Whether there is an xla_pmap primitive anywhere inside a Jaxpr."""
for eqn in jaxpr.eqns:
if 'xla_pmap' in eqn.primitive.name:
return True
for subjaxpr in core.subjaxprs(jaxpr):
if jaxpr_has_pmap(subjaxpr):
return True
return False
def _prune_unused_inputs(
jaxpr: core.Jaxpr) -> Tuple[core.Jaxpr, Set[int], Set[int]]:
used = {v for v in jaxpr.outvars if isinstance(v, core.Var)}
# TODO(zhangqiaorjc): Improve the DCE algorithm by also pruning primitive
# applications that do not produce used outputs. Must handle side-effecting
# primitives and nested jaxpr.
used.update(
v for eqn in jaxpr.eqns for v in eqn.invars if isinstance(v, core.Var))
kept_const_idx, new_constvars = util.unzip2(
(i, v) for i, v in enumerate(jaxpr.constvars) if v in used)
kept_var_idx, new_invars = util.unzip2(
(i, v) for i, v in enumerate(jaxpr.invars) if v in used)
new_jaxpr = core.Jaxpr(new_constvars, new_invars, jaxpr.outvars, jaxpr.eqns)
return new_jaxpr, set(kept_const_idx), set(kept_var_idx)
# We can optionally set a Jaxpr rewriter that can be applied just before
# compilation. This mechanism is used for compiling id_tap, we can
# remove it once we bring the id_tap implementation into the core.
outfeed_rewriter: Optional[Callable[[core.Jaxpr], core.Jaxpr]] = None
def apply_outfeed_rewriter(jaxpr: core.Jaxpr) -> core.Jaxpr:
if outfeed_rewriter is not None:
return outfeed_rewriter(jaxpr)
else:
return jaxpr
def jaxpr_replicas(jaxpr) -> int:
"""The number of replicas needed for a jaxpr.
For a eqn, multiply the `axis_size` with the `jaxpr_replicas` of the
subjaxprs. For a list of eqns, take the maximum number of replicas.
"""
if isinstance(jaxpr, core.ClosedJaxpr):
jaxpr = jaxpr.jaxpr
return max(unsafe_map(eqn_replicas, jaxpr.eqns), default=1)
# TODO(mattjj): this function assumes that only pmap has a parameter named
# axis_size, and that it corresponds to cross-replica mapping
def eqn_replicas(eqn):
call_jaxpr = eqn.params.get("call_jaxpr")
if call_jaxpr:
return eqn.params.get('axis_size', 1) * jaxpr_replicas(call_jaxpr)
elif eqn.primitive in xla._initial_style_primitives:
return initial_style_primitive_replicas(eqn.params)
else:
return 1
def initial_style_primitive_replicas(params):
return max(core.traverse_jaxpr_params(jaxpr_replicas, params).values(), default=1)
def _xla_callable_device(nreps, backend, device, arg_devices):
if nreps > 1:
if device is not None or backend is not None:
raise ValueError(f"can't specify device or backend for jit-of-pmap, "
f"got device={device} and backend={backend}")
return None
else:
if device is None and backend is None:
return _device_from_arg_devices(arg_devices)
elif device is not None and backend is None:
return device
elif device is None and backend is not None:
return xb.get_backend(backend).get_default_device_assignment(1)[0]
else:
assert False # Unreachable given the error check in _xla_callable
# Argument and result handlers
num_buffers_handlers: Dict[Type[core.AbstractValue],
Callable[[core.AbstractValue], int]] = {}
def aval_to_num_buffers(aval: core.AbstractValue) -> int:
"""Returns the number of buffers in the runtime representation of `aval`.
In general this may differ from the number of buffers in the compiler-IR
representation of the same value.
"""
try:
return num_buffers_handlers[type(aval)](aval)
except KeyError as err:
raise TypeError(f"No num_buffers handler for type: {type(aval)}") from err
# TODO(phawkins): use zero buffers to represent a unit.
num_buffers_handlers[core.AbstractUnit] = lambda _: 1
num_buffers_handlers[core.AbstractToken] = lambda _: 1
num_buffers_handlers[core.ShapedArray] = lambda _: 1
num_buffers_handlers[core.ConcreteArray] = lambda _: 1
if MYPY:
ResultHandler = Any
else:
class ResultHandler(Protocol):
def __call__(self, *args: xla.Buffer) -> Any:
"""Boxes raw buffers into their user-facing representation."""
def aval_to_result_handler(sticky_device: Optional[Device],
aval: core.AbstractValue) -> ResultHandler:
try:
return result_handlers[type(aval)](sticky_device, aval)
except KeyError as err:
raise TypeError(f"No result handler for type: {type(aval)}") from err
def array_result_handler(sticky_device: Optional[Device],
aval: core.ShapedArray):
if aval.dtype is dtypes.float0:
return lambda _: np.zeros(aval.shape, dtypes.float0)
return partial(device_array.make_device_array, core.raise_to_shaped(aval),
sticky_device)
result_handlers: Dict[
Type[core.AbstractValue],
Callable[[Optional[Device], Any], ResultHandler]] = {}
result_handlers[core.AbstractUnit] = lambda _, __: lambda _: core.unit
result_handlers[core.AbstractToken] = lambda _, __: lambda _: core.token
result_handlers[core.ShapedArray] = array_result_handler
result_handlers[core.ConcreteArray] = array_result_handler
def needs_check_special():
return config.jax_debug_infs or config.jax_debug_nans
def check_special(name, bufs):
if needs_check_special():
for buf in bufs:
_check_special(name, buf.xla_shape(), buf)
def _check_special(name, xla_shape, buf):
assert not xla_shape.is_tuple()
if dtypes.issubdtype(xla_shape.element_type(), np.inexact):
if config.jax_debug_nans and np.any(np.isnan(buf.to_py())):
raise FloatingPointError(f"invalid value (nan) encountered in {name}")
if config.jax_debug_infs and np.any(np.isinf(buf.to_py())):
raise FloatingPointError(f"invalid value (inf) encountered in {name}")
def _execute_compiled(name: str, compiled: XlaExecutable,
output_buffer_counts: Optional[Sequence[int]],
result_handlers, kept_var_idx, *args):
device, = compiled.local_devices()
input_bufs = util.flatten(
device_put(x, device) for i, x in enumerate(args) if i in kept_var_idx)
out_bufs = compiled.execute(input_bufs)
check_special(name, out_bufs)
if output_buffer_counts is None:
return (result_handlers[0](*out_bufs),)
return tuple(
handler(*bs) for handler, bs in
unsafe_zip(result_handlers, util.unflatten(out_bufs, output_buffer_counts)))
def _execute_replicated(name: str, compiled: XlaExecutable,
output_buffer_counts: Optional[Sequence[int]],
result_handlers, kept_var_idx, *args):
input_bufs = [
util.flatten(
device_put(x, device) for i, x in enumerate(args) if i in kept_var_idx)
for device in compiled.local_devices()
]
out_bufs = [
buf[0] for buf in compiled.execute_sharded_on_local_devices(
list(zip(*input_bufs)))
]
check_special(name, out_bufs)
if output_buffer_counts is None:
return (result_handlers[0](*out_bufs),)
return tuple(
handler(*bs) for handler, bs in
unsafe_zip(result_handlers, util.unflatten(out_bufs, output_buffer_counts)))
def _execute_trivial(jaxpr, device: Optional[Device], consts, avals, handlers,
kept_var_idx, *args):
env = {core.unitvar: core.unit}
pruned_args = (x for i, x in enumerate(args) if i in kept_var_idx)
map(env.setdefault, jaxpr.invars, pruned_args)
map(env.setdefault, jaxpr.constvars, consts)
outs = [xla.canonicalize_dtype(v.val) if type(v) is core.Literal else env[v]
for v in jaxpr.outvars]
return [_copy_device_array_to_device(x, device) if device_array.type_is_device_array(x)
else h(*device_put(x, device)) for h, x in zip(handlers, outs)]
class XlaComputation:
name: str
_is_trivial: bool
_executable: Optional['XlaCompiledComputation']
_donated_invars: Optional[Sequence[bool]]
def __init__(self, name: str, hlo, is_trivial: bool,
donated_invars: Optional[Sequence[bool]],
**compile_args):
self.name = name
self._hlo = hlo
self._is_trivial = is_trivial
self._donated_invars = donated_invars
self._executable = None
self.compile_args = compile_args
def is_trivial(self):
return self._is_trivial
def hlo(self) -> xc.XlaComputation:
if self.is_trivial():
raise ValueError("A trivial computation has no HLO")
if isinstance(self._hlo, xc.XlaComputation):
return self._hlo
return xe.mlir.mlir_module_to_xla_computation(
mlir.module_to_string(self._hlo),
use_tuple_args=self.compile_args["tuple_args"])
def mhlo(self) -> str:
if self.is_trivial():
raise ValueError("A trivial computation has no MHLO")
if isinstance(self._hlo, xc.XlaComputation):
return xe.mlir.xla_computation_to_mlir_module(self._hlo)
return mlir.module_to_string(self._hlo)
def compile(self) -> 'XlaCompiledComputation':
if self._executable is None:
if self.is_trivial():
self._executable = XlaCompiledComputation.from_trivial_jaxpr(
**self.compile_args)
else:
self._executable = XlaCompiledComputation.from_xla_computation(
self.name, self._hlo, **self.compile_args)
return self._executable
@profiler.annotate_function
def backend_compile(backend, built_c, options):
# we use a separate function call to ensure that XLA compilation appears
# separately in Python profiling results
return backend.compile(built_c, compile_options=options)
# TODO(phawkins): update users.
xla.backend_compile = backend_compile
_ir_dump_counter = itertools.count()
def _make_string_safe_for_filename(s: str) -> str:
return re.sub(r'[^\w.)( -]', '', s)
def _dump_ir_to_file(name: str, ir: str):
id = next(_ir_dump_counter)
name = f"jax_ir{id}_{_make_string_safe_for_filename(name)}.mlir"
name = os.path.join(FLAGS.jax_dump_ir_to, name)
with open(name, "w") as f:
f.write(ir)
def compile_or_get_cached(backend, computation, compile_options):
# Avoid import cycle between jax and jax.experimental
from jax.experimental.compilation_cache import compilation_cache as cc
if isinstance(computation, ir.Module):
module_name = computation.operation.name
computation = mlir.module_to_string(computation)
else:
module_name = computation.name()
# Persistent compilation cache only implemented on TPU.
# TODO(skye): add warning when initializing cache on unsupported default platform
if cc.is_initialized() and backend.platform == 'tpu':
cached_executable = cc.get_executable(computation, compile_options, backend)
if cached_executable is not None:
logging.info('Persistent compilation cache hit for %s.', module_name)
return cached_executable
else:
compiled = backend_compile(backend, computation, compile_options)
cc.put_executable(module_name, computation, compile_options, compiled,
backend)
return compiled
if FLAGS.jax_dump_ir_to:
ir_str = (computation if isinstance(computation, str)
else computation.as_hlo_text())
_dump_ir_to_file(module_name, ir_str)
return backend_compile(backend, computation, compile_options)
class XlaCompiledComputation:
def __init__(self, xla_executable, in_avals, kept_var_idx, unsafe_call):
self._xla_executable = xla_executable
self.in_avals = in_avals
self._kept_var_idx = kept_var_idx
self.unsafe_call = unsafe_call
@staticmethod
def from_xla_computation(
name: str,
xla_computation,
nreps: int,
device: Optional[Device],
backend,
tuple_args: bool,
in_avals,
out_avals,
kept_var_idx) -> 'XlaCompiledComputation':
sticky_device = device
result_handlers = map(partial(aval_to_result_handler, sticky_device),
out_avals)
options = xb.get_compile_options(
num_replicas=nreps,
num_partitions=1,
device_assignment=(sticky_device.id,) if sticky_device else None)
options.parameter_is_tupled_arguments = tuple_args
with log_elapsed_time(f"Finished XLA compilation of {name} "
"in {elapsed_time} sec"):
compiled = compile_or_get_cached(backend, xla_computation, options)
buffer_counts = (None if len(out_avals) == 1 else
[aval_to_num_buffers(aval) for aval in out_avals])
execute = _execute_compiled if nreps == 1 else _execute_replicated
unsafe_call = partial(execute, name, compiled, buffer_counts,
result_handlers, kept_var_idx)
return XlaCompiledComputation(compiled, in_avals, kept_var_idx, unsafe_call)
def is_trivial(self):
return self._xla_executable == None
def xla_executable(self):
if self.is_trivial():
raise ValueError("A trivial compiled computation has no XLA executable")
return self._xla_executable
@staticmethod
def from_trivial_jaxpr(jaxpr, consts, device, in_avals, out_avals,
kept_var_idx) -> 'XlaCompiledComputation':
result_handlers = map(partial(aval_to_result_handler, device), out_avals)
unsafe_call = partial(_execute_trivial, jaxpr, device, consts,
out_avals, result_handlers, kept_var_idx)
return XlaCompiledComputation(None, in_avals, kept_var_idx, unsafe_call)
def call(self, *args):
arg_specs = unsafe_map(arg_spec, args)
arg_avals = [spec[0] for i, spec in enumerate(arg_specs)
if i in self._kept_var_idx]
check_arg_avals_for_call(self.in_avals, arg_avals)
return self.unsafe_call(*args)
def check_arg_avals_for_call(ref_avals, arg_avals):
if len(ref_avals) != len(arg_avals):
raise TypeError(
f"Computation compiled for {len(ref_avals)} inputs "
f"but called with {len(arg_avals)}")
for ref_aval, arg_aval in zip(ref_avals, arg_avals):
if not core.typematch(ref_aval, arg_aval):
ref_avals_fmt = ', '.join(str(a) for a in ref_avals)
arg_avals_fmt = ', '.join(str(a) for a in arg_avals)
raise TypeError(
f"Computation compiled for input types:\n {ref_avals_fmt}\n"
f"called with:\n {arg_avals_fmt}")
def device_put(x, device: Optional[Device] = None) -> Tuple[Any]:
x = xla.canonicalize_dtype(x)
try:
return device_put_handlers[type(x)](x, device)
except KeyError as err:
raise TypeError(f"No device_put handler for type: {type(x)}") from err
# TODO(phawkins): update users.
xla.device_put = device_put
def _device_put_array(x, device: Optional[Device]):
backend = xb.get_device_backend(device)
if x.dtype is dtypes.float0:
x = np.zeros(x.shape, dtype=np.dtype(bool))
return (backend.buffer_from_pyval(x, device),)
def _device_put_scalar(x, device):
return _device_put_array(dtypes.coerce_to_array(x), device)
def _device_put_unit(_, device):
backend = xb.get_device_backend(device)
return (backend.buffer_from_pyval(np.zeros((), dtype=np.dtype(np.bool_)),
device),)
def _device_put_token(_, device):
backend = xb.get_device_backend(device)
return (backend.buffer_from_pyval(np.zeros((), dtype=np.dtype(np.bool_)),
device),)
_scalar_types = dtypes.python_scalar_dtypes.keys()
device_put_handlers: Dict[Any, Callable[[Any, Optional[Device]], Tuple[Any]]] = {}
device_put_handlers.update((t, _device_put_array) for t in array_types)
device_put_handlers.update((t, _device_put_scalar) for t in _scalar_types)
device_put_handlers[core.Unit] = _device_put_unit
device_put_handlers[core.Token] = _device_put_token
def _device_put_device_array(x: Union[device_array.DeviceArrayProtocol, device_array._DeviceArray], device: Optional[Device]):
x = _copy_device_array_to_device(x, device)
return (x.device_buffer,)
for t in device_array.device_array_types:
device_put_handlers[t] = _device_put_device_array
def _copy_device_array_to_device(x: Union[device_array.DeviceArrayProtocol, device_array._DeviceArray], device: Optional[xc.Device]) -> Union[device_array.DeviceArrayProtocol, device_array._DeviceArray]:
if device is None:
# no copying to be done because there's no target specified
return x
elif xb.get_device_backend(device).platform == x.device_buffer.platform():
# source and target platforms are the same
if x.device_buffer.device() == device:
# no copying to be done because source equals target
if x._device == device:
return x
else:
moved_buf = x.device_buffer # We need to change stickyness
else:
# move the buffer with a device-to-device copy
moved_buf = x.device_buffer.copy_to_device(device)
else:
# buffers from different XLA backends are passed through the host.
backend = xb.get_device_backend(device)
moved_buf = backend.buffer_from_pyval(x.device_buffer.to_py(), device)
return device_array.make_device_array(x.aval, device, moved_buf)
def _device_put_impl(x, device: Optional[Device] = None):
if device_array.type_is_device_array(x):
return _copy_device_array_to_device(x, device)
try:
a = xla.abstractify(x)
except TypeError as err:
raise TypeError(
f"Argument '{x}' of type {type(x)} is not a valid JAX type") from err
return aval_to_result_handler(device, a)(*device_put(x, device))
device_put_p = core.Primitive('device_put')
device_put_p.def_impl(_device_put_impl)
device_put_p.def_abstract_eval(lambda x, device=None: x)
xla.translations[device_put_p] = lambda c, x, device=None: x
ad.deflinear2(device_put_p, lambda cotangent, _, **kwargs: [cotangent])
masking.defvectorized(device_put_p)
batching.defvectorized(device_put_p)
def _device_put_lowering(ctx, avals_in, avals_out, x, *, device):
return [x]
mlir.register_lowering(device_put_p, _device_put_lowering)