mirror of
https://github.com/ROCm/jax.git
synced 2025-04-25 11:06:07 +00:00
327 lines
12 KiB
Python
327 lines
12 KiB
Python
# Copyright 2022 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from functools import partial
|
|
import operator
|
|
from textwrap import dedent as _dedent
|
|
from typing import Optional
|
|
|
|
from jax._src import dtypes
|
|
from jax._src.lax import lax as lax_internal
|
|
from jax._src.numpy.lax_numpy import (
|
|
any, append, arange, array, asarray, concatenate, cumsum, diff,
|
|
empty, full_like, isnan, lexsort, moveaxis, nonzero, ones, ravel,
|
|
sort, where, zeros)
|
|
from jax._src.numpy.util import _check_arraylike, _wraps
|
|
from jax._src.util import prod as _prod
|
|
from jax import core
|
|
from jax import jit
|
|
from jax import lax
|
|
import numpy as np
|
|
|
|
|
|
_lax_const = lax_internal._const
|
|
|
|
|
|
@_wraps(np.in1d, lax_description="""
|
|
In the JAX version, the `assume_unique` argument is not referenced.
|
|
""")
|
|
@partial(jit, static_argnames=('assume_unique', 'invert',))
|
|
def in1d(ar1, ar2, assume_unique=False, invert=False): # noqa: F811
|
|
del assume_unique # unused
|
|
_check_arraylike("in1d", ar1, ar2)
|
|
ar1 = ravel(ar1)
|
|
ar2 = ravel(ar2)
|
|
# Note: an algorithm based on searchsorted has better scaling, but in practice
|
|
# is very slow on accelerators because it relies on lax control flow. If XLA
|
|
# ever supports binary search natively, we should switch to this:
|
|
# ar2 = jnp.sort(ar2)
|
|
# ind = jnp.searchsorted(ar2, ar1)
|
|
# if invert:
|
|
# return ar1 != ar2[ind]
|
|
# else:
|
|
# return ar1 == ar2[ind]
|
|
if invert:
|
|
return (ar1[:, None] != ar2[None, :]).all(-1)
|
|
else:
|
|
return (ar1[:, None] == ar2[None, :]).any(-1)
|
|
|
|
@_wraps(np.setdiff1d,
|
|
lax_description=_dedent("""
|
|
Because the size of the output of ``setdiff1d`` is data-dependent, the function is not
|
|
typically compatible with JIT. The JAX version adds the optional ``size`` argument which
|
|
must be specified statically for ``jnp.setdiff1d`` to be used within some of JAX's
|
|
transformations."""),
|
|
extra_params=_dedent("""
|
|
size : int, optional
|
|
If specified, the first ``size`` elements of the result will be returned. If there are
|
|
fewer elements than ``size`` indicates, the return value will be padded with ``fill_value``.
|
|
fill_value : array_like, optional
|
|
When ``size`` is specified and there are fewer than the indicated number of elements, the
|
|
remaining elements will be filled with ``fill_value``, which defaults to zero."""))
|
|
def setdiff1d(ar1, ar2, assume_unique=False, *, size=None, fill_value=None):
|
|
_check_arraylike("setdiff1d", ar1, ar2)
|
|
if size is None:
|
|
ar1 = core.concrete_or_error(None, ar1, "The error arose in setdiff1d()")
|
|
else:
|
|
size = core.concrete_or_error(operator.index, size, "The error arose in setdiff1d()")
|
|
ar1 = asarray(ar1)
|
|
fill_value = asarray(0 if fill_value is None else fill_value, dtype=ar1.dtype)
|
|
if ar1.size == 0:
|
|
return full_like(ar1, fill_value, shape=size or 0)
|
|
if not assume_unique:
|
|
ar1 = unique(ar1, size=size and ar1.size)
|
|
mask = in1d(ar1, ar2, invert=True)
|
|
if size is None:
|
|
return ar1[mask]
|
|
else:
|
|
if not (assume_unique or size is None):
|
|
# Set mask to zero at locations corresponding to unique() padding.
|
|
n_unique = ar1.size + 1 - (ar1 == ar1[0]).sum()
|
|
mask = where(arange(ar1.size) < n_unique, mask, False)
|
|
return where(arange(size) < mask.sum(), ar1[where(mask, size=size)], fill_value)
|
|
|
|
|
|
@_wraps(np.union1d,
|
|
lax_description=_dedent("""
|
|
Because the size of the output of ``union1d`` is data-dependent, the function is not
|
|
typically compatible with JIT. The JAX version adds the optional ``size`` argument which
|
|
must be specified statically for ``jnp.union1d`` to be used within some of JAX's
|
|
transformations."""),
|
|
extra_params=_dedent("""
|
|
size : int, optional
|
|
If specified, the first ``size`` elements of the result will be returned. If there are
|
|
fewer elements than ``size`` indicates, the return value will be padded with ``fill_value``.
|
|
fill_value : array_like, optional
|
|
When ``size`` is specified and there are fewer than the indicated number of elements, the
|
|
remaining elements will be filled with ``fill_value``, which defaults to the minimum
|
|
value of the union."""))
|
|
def union1d(ar1, ar2, *, size=None, fill_value=None):
|
|
_check_arraylike("union1d", ar1, ar2)
|
|
if size is None:
|
|
ar1 = core.concrete_or_error(None, ar1, "The error arose in union1d()")
|
|
ar2 = core.concrete_or_error(None, ar2, "The error arose in union1d()")
|
|
else:
|
|
size = core.concrete_or_error(operator.index, size, "The error arose in union1d()")
|
|
return unique(concatenate((ar1, ar2), axis=None), size=size, fill_value=fill_value)
|
|
|
|
|
|
@_wraps(np.setxor1d, lax_description="""
|
|
In the JAX version, the input arrays are explicitly flattened regardless
|
|
of assume_unique value.
|
|
""")
|
|
def setxor1d(ar1, ar2, assume_unique=False):
|
|
_check_arraylike("setxor1d", ar1, ar2)
|
|
ar1 = core.concrete_or_error(None, ar1, "The error arose in setxor1d()")
|
|
ar2 = core.concrete_or_error(None, ar2, "The error arose in setxor1d()")
|
|
|
|
ar1 = ravel(ar1)
|
|
ar2 = ravel(ar2)
|
|
|
|
if not assume_unique:
|
|
ar1 = unique(ar1)
|
|
ar2 = unique(ar2)
|
|
|
|
aux = concatenate((ar1, ar2))
|
|
if aux.size == 0:
|
|
return aux
|
|
|
|
aux = sort(aux)
|
|
flag = concatenate((array([True]), aux[1:] != aux[:-1], array([True])))
|
|
return aux[flag[1:] & flag[:-1]]
|
|
|
|
|
|
@partial(jit, static_argnums=2)
|
|
def _intersect1d_sorted_mask(ar1, ar2, return_indices=False):
|
|
"""
|
|
Helper function for intersect1d which is jit-able
|
|
"""
|
|
ar = concatenate((ar1, ar2))
|
|
if return_indices:
|
|
iota = lax.broadcasted_iota(np.int64, np.shape(ar), dimension=0)
|
|
aux, indices = lax.sort_key_val(ar, iota)
|
|
else:
|
|
aux = sort(ar)
|
|
|
|
mask = aux[1:] == aux[:-1]
|
|
if return_indices:
|
|
return aux, mask, indices
|
|
else:
|
|
return aux, mask
|
|
|
|
|
|
@_wraps(np.intersect1d)
|
|
def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
|
|
_check_arraylike("intersect1d", ar1, ar2)
|
|
ar1 = core.concrete_or_error(None, ar1, "The error arose in intersect1d()")
|
|
ar2 = core.concrete_or_error(None, ar2, "The error arose in intersect1d()")
|
|
|
|
if not assume_unique:
|
|
if return_indices:
|
|
ar1, ind1 = unique(ar1, return_index=True)
|
|
ar2, ind2 = unique(ar2, return_index=True)
|
|
else:
|
|
ar1 = unique(ar1)
|
|
ar2 = unique(ar2)
|
|
else:
|
|
ar1 = ravel(ar1)
|
|
ar2 = ravel(ar2)
|
|
|
|
if return_indices:
|
|
aux, mask, aux_sort_indices = _intersect1d_sorted_mask(ar1, ar2, return_indices)
|
|
else:
|
|
aux, mask = _intersect1d_sorted_mask(ar1, ar2, return_indices)
|
|
|
|
int1d = aux[:-1][mask]
|
|
|
|
if return_indices:
|
|
ar1_indices = aux_sort_indices[:-1][mask]
|
|
ar2_indices = aux_sort_indices[1:][mask] - ar1.size
|
|
if not assume_unique:
|
|
ar1_indices = ind1[ar1_indices]
|
|
ar2_indices = ind2[ar2_indices]
|
|
|
|
return int1d, ar1_indices, ar2_indices
|
|
else:
|
|
return int1d
|
|
|
|
|
|
@_wraps(np.isin, lax_description="""
|
|
In the JAX version, the `assume_unique` argument is not referenced.
|
|
""")
|
|
def isin(element, test_elements, assume_unique=False, invert=False): # noqa: F811
|
|
result = in1d(element, test_elements, assume_unique=assume_unique, invert=invert)
|
|
return result.reshape(np.shape(element))
|
|
|
|
|
|
### SetOps
|
|
|
|
UNIQUE_SIZE_HINT = (
|
|
"To make jnp.unique() compatible with JIT and other transforms, you can specify "
|
|
"a concrete value for the size argument, which will determine the output size.")
|
|
|
|
@partial(jit, static_argnums=1)
|
|
def _unique_sorted_mask(ar, axis):
|
|
aux = moveaxis(ar, axis, 0)
|
|
if np.issubdtype(aux.dtype, np.complexfloating):
|
|
# Work around issue in sorting of complex numbers with Nan only in the
|
|
# imaginary component. This can be removed if sorting in this situation
|
|
# is fixed to match numpy.
|
|
aux = where(isnan(aux), _lax_const(aux, np.nan), aux)
|
|
size, *out_shape = aux.shape
|
|
if _prod(out_shape) == 0:
|
|
size = 1
|
|
perm = zeros(1, dtype=int)
|
|
else:
|
|
perm = lexsort(aux.reshape(size, _prod(out_shape)).T[::-1])
|
|
aux = aux[perm]
|
|
if aux.size:
|
|
if dtypes.issubdtype(aux.dtype, np.inexact):
|
|
# This is appropriate for both float and complex due to the documented behavior of np.unique:
|
|
# See https://github.com/numpy/numpy/blob/v1.22.0/numpy/lib/arraysetops.py#L212-L220
|
|
neq = lambda x, y: lax.ne(x, y) & ~(isnan(x) & isnan(y))
|
|
else:
|
|
neq = lax.ne
|
|
mask = ones(size, dtype=bool).at[1:].set(any(neq(aux[1:], aux[:-1]), tuple(range(1, aux.ndim))))
|
|
else:
|
|
mask = zeros(size, dtype=bool)
|
|
return aux, mask, perm
|
|
|
|
def _unique(ar, axis, return_index=False, return_inverse=False, return_counts=False,
|
|
size=None, fill_value=None, return_true_size=False):
|
|
"""
|
|
Find the unique elements of an array along a particular axis.
|
|
"""
|
|
if ar.shape[axis] == 0 and size and fill_value is None:
|
|
raise ValueError(
|
|
"jnp.unique: for zero-sized input with nonzero size argument, fill_value must be specified")
|
|
|
|
aux, mask, perm = _unique_sorted_mask(ar, axis)
|
|
if size is None:
|
|
ind = core.concrete_or_error(None, mask,
|
|
"The error arose in jnp.unique(). " + UNIQUE_SIZE_HINT)
|
|
else:
|
|
ind = nonzero(mask, size=size)[0]
|
|
result = aux[ind] if aux.size else aux
|
|
if fill_value is not None:
|
|
fill_value = asarray(fill_value, dtype=result.dtype)
|
|
if size is not None and fill_value is not None:
|
|
if result.shape[0]:
|
|
valid = lax.expand_dims(arange(size) < mask.sum(), tuple(range(1, result.ndim)))
|
|
result = where(valid, result, fill_value)
|
|
else:
|
|
result = full_like(result, fill_value, shape=(size, *result.shape[1:]))
|
|
result = moveaxis(result, 0, axis)
|
|
|
|
ret = (result,)
|
|
if return_index:
|
|
if aux.size:
|
|
ret += (perm[ind],)
|
|
else:
|
|
ret += (perm,)
|
|
if return_inverse:
|
|
if aux.size:
|
|
imask = cumsum(mask) - 1
|
|
inv_idx = zeros(mask.shape, dtype=dtypes.canonicalize_dtype(dtypes.int_))
|
|
inv_idx = inv_idx.at[perm].set(imask)
|
|
else:
|
|
inv_idx = zeros(ar.shape[axis], dtype=int)
|
|
ret += (inv_idx,)
|
|
if return_counts:
|
|
if aux.size:
|
|
if size is None:
|
|
idx = append(nonzero(mask)[0], mask.size)
|
|
else:
|
|
idx = nonzero(mask, size=size + 1)[0]
|
|
idx = idx.at[1:].set(where(idx[1:], idx[1:], mask.size))
|
|
ret += (diff(idx),)
|
|
elif ar.shape[axis]:
|
|
ret += (array([ar.shape[axis]], dtype=dtypes.canonicalize_dtype(dtypes.int_)),)
|
|
else:
|
|
ret += (empty(0, dtype=int),)
|
|
if return_true_size:
|
|
# Useful for internal uses of unique().
|
|
ret += (mask.sum(),)
|
|
return ret[0] if len(ret) == 1 else ret
|
|
|
|
@_wraps(np.unique, skip_params=['axis'],
|
|
lax_description=_dedent("""
|
|
Because the size of the output of ``unique`` is data-dependent, the function is not
|
|
typically compatible with JIT. The JAX version adds the optional ``size`` argument which
|
|
must be specified statically for ``jnp.unique`` to be used within some of JAX's
|
|
transformations."""),
|
|
extra_params=_dedent("""
|
|
size : int, optional
|
|
If specified, the first ``size`` unique elements will be returned. If there are fewer unique
|
|
elements than ``size`` indicates, the return value will be padded with ``fill_value``.
|
|
fill_value : array_like, optional
|
|
When ``size`` is specified and there are fewer than the indicated number of elements, the
|
|
remaining elements will be filled with ``fill_value``. The default is the minimum value
|
|
along the specified axis of the input."""))
|
|
def unique(ar, return_index=False, return_inverse=False,
|
|
return_counts=False, axis: Optional[int] = None, *, size=None, fill_value=None):
|
|
_check_arraylike("unique", ar)
|
|
if size is None:
|
|
ar = core.concrete_or_error(None, ar,
|
|
"The error arose for the first argument of jnp.unique(). " + UNIQUE_SIZE_HINT)
|
|
else:
|
|
size = core.concrete_or_error(operator.index, size,
|
|
"The error arose for the size argument of jnp.unique(). " + UNIQUE_SIZE_HINT)
|
|
ar = asarray(ar)
|
|
if axis is None:
|
|
axis = 0
|
|
ar = ar.flatten()
|
|
axis = core.concrete_or_error(operator.index, axis, "axis argument of jnp.unique()")
|
|
return _unique(ar, axis, return_index, return_inverse, return_counts, size=size, fill_value=fill_value)
|