rocm_jax/docs/notebooks/How_JAX_primitives_work.ipynb
Peter Hawkins e783cbcb72 Port remaining translation rules inside JAX to new style.
PiperOrigin-RevId: 404288551
2021-10-19 09:48:37 -07:00

1530 lines
59 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "vfxqky4PCUnh"
},
"source": [
"# How JAX primitives work\n",
"\n",
"[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/google/jax/blob/main/docs/notebooks/How_JAX_primitives_work.ipynb)\n",
"\n",
"*necula@google.com*, October 2019.\n",
"\n",
"JAX implements certain transformations of Python functions, e.g., `jit`, `grad`,\n",
"`vmap`, or `pmap`. The Python functions to be transformed must be JAX-traceable, \n",
"which means that as the Python function executes\n",
"the only operations it applies to the data are either inspections of data\n",
"attributes such as shape or type, or special operations called JAX primitives.\n",
"In particular, a JAX-traceable function is sometimes invoked by JAX with\n",
"abstract arguments. An example of a JAX abstract value is `ShapedArray(float32[2,2])`, \n",
"which captures the type and the shape of values, but not the concrete data values.\n",
"JAX primitives know how to operate on both concrete data\n",
"values and on the JAX abstract values.\n",
"\n",
"\n",
"The JAX-transformed functions must themselves be JAX-traceable functions,\n",
"to ensure that these transformations\n",
"can be composed, e.g., `jit(jacfwd(grad(f)))`.\n",
"\n",
"There are pre-defined JAX primitives corresponding to most XLA operations, \n",
"e.g., add, matmul, sin, cos, indexing.\n",
"JAX comes with an implementation of numpy functions in terms of JAX primitives, which means that Python programs\n",
"using JAXs implementation of numpy are JAX-traceable and therefore transformable.\n",
"Other libraries can be made JAX-traceable by implementing them in terms of JAX primitives.\n",
"\n",
"The set of JAX primitives is extensible. Instead of reimplementing a function in terms of pre-defined JAX primitives,\n",
"one can define a new primitive that encapsulates the behavior of the function.\n",
"\n",
"**The goal of this document is to explain the interface that a JAX primitive must support in order to allow JAX to perform all its transformations.**\n",
"\n",
"Consider that we want to add to JAX support for a multiply-add function with three arguments, defined mathematically\n",
"as \"multiply_add(x, y, z) = x * y + z\". \n",
"This function operates on 3 identically-shaped tensors of floating point \n",
"values and performs the operations pointwise."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HIJYIHNTD1yI"
},
"source": [
"## Using existing primitives\n",
"\n",
"The easiest way to define new functions is to write them in terms of JAX primitives, or in terms of other\n",
"functions that are themselves written using JAX primitives, e.g., those \n",
"defined in the `jax.lax` module:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "tbOF0LB0EMne",
"outputId": "3fb1c8a7-7a4c-4a3a-f7ff-37b7dc740528"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"square_add_lax = 14.0\n",
"grad(square_add_lax) = 4.0\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.6/dist-packages/jax/lib/xla_bridge.py:115: UserWarning: No GPU/TPU found, falling back to CPU.\n",
" warnings.warn('No GPU/TPU found, falling back to CPU.')\n"
]
}
],
"source": [
"from jax import lax\n",
"from jax._src import api\n",
"\n",
"def multiply_add_lax(x, y, z):\n",
" \"\"\"Implementation of multiply-add using the jax.lax primitives.\"\"\"\n",
" return lax.add(lax.mul(x, y), z)\n",
"\n",
"\n",
"def square_add_lax(a, b):\n",
" \"\"\"A square-add function using the newly defined multiply-add.\"\"\"\n",
" return multiply_add_lax(a, a, b)\n",
"\n",
"print(\"square_add_lax = \", square_add_lax(2., 10.))\n",
"# Differentiate w.r.t. the first argument\n",
"print(\"grad(square_add_lax) = \", api.grad(square_add_lax, argnums=0)(2.0, 10.))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Cgv60Wm3E_D5"
},
"source": [
"In order to understand how JAX is internally using the primitives,\n",
"we add some helpers for tracing function calls."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"cellView": "form",
"id": "mQRQGEGiE53K"
},
"outputs": [],
"source": [
"#@title Helper functions (execute this cell)\n",
"import functools\n",
"import traceback\n",
"\n",
"_indentation = 0\n",
"def _trace(msg=None):\n",
" \"\"\"Print a message at current indentation.\"\"\"\n",
" if msg is not None:\n",
" print(\" \" * _indentation + msg)\n",
"\n",
"def _trace_indent(msg=None):\n",
" \"\"\"Print a message and then indent the rest.\"\"\"\n",
" global _indentation\n",
" _trace(msg)\n",
" _indentation = 1 + _indentation\n",
"\n",
"def _trace_unindent(msg=None):\n",
" \"\"\"Unindent then print a message.\"\"\"\n",
" global _indentation\n",
" _indentation = _indentation - 1\n",
" _trace(msg)\n",
"\n",
"def trace(name):\n",
" \"\"\"A decorator for functions to trace arguments and results.\"\"\"\n",
"\n",
" def trace_func(func): # pylint: disable=missing-docstring\n",
" def pp(v):\n",
" \"\"\"Print certain values more succinctly\"\"\"\n",
" vtype = str(type(v))\n",
" if \"jax._src.lib.xla_bridge._JaxComputationBuilder\" in vtype:\n",
" return \"<JaxComputationBuilder>\"\n",
" elif \"jaxlib.xla_extension.XlaOp\" in vtype:\n",
" return \"<XlaOp at 0x{:x}>\".format(id(v))\n",
" elif (\"partial_eval.JaxprTracer\" in vtype or\n",
" \"batching.BatchTracer\" in vtype or\n",
" \"ad.JVPTracer\" in vtype):\n",
" return \"Traced<{}>\".format(v.aval)\n",
" elif isinstance(v, tuple):\n",
" return \"({})\".format(pp_values(v))\n",
" else:\n",
" return str(v)\n",
" def pp_values(args):\n",
" return \", \".join([pp(arg) for arg in args])\n",
" \n",
" @functools.wraps(func)\n",
" def func_wrapper(*args):\n",
" _trace_indent(\"call {}({})\".format(name, pp_values(args)))\n",
" res = func(*args)\n",
" _trace_unindent(\"|<- {} = {}\".format(name, pp(res)))\n",
" return res\n",
"\n",
" return func_wrapper\n",
"\n",
" return trace_func\n",
"\n",
"class expectNotImplementedError(object):\n",
" \"\"\"Context manager to check for NotImplementedError.\"\"\"\n",
" def __enter__(self): pass\n",
" def __exit__(self, type, value, tb):\n",
" global _indentation\n",
" _indentation = 0\n",
" if type is NotImplementedError:\n",
" print(\"\\nFound expected exception:\")\n",
" traceback.print_exc(limit=3)\n",
" return True\n",
" elif type is None: # No exception\n",
" assert False, \"Expected NotImplementedError\"\n",
" else:\n",
" return False"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Qf4eLrLCFYDl"
},
"source": [
"Instead of using `jax.lax` primitives directly, we can use other functions \n",
"that are already written in terms of those primitives, such as those in `jax.numpy`:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "QhKorz6cFRJb",
"outputId": "aba3cef3-6bcc-4eb3-c7b3-34e405f2f82a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Normal evaluation:\n",
"call square_add_numpy(2.0, 10.0)\n",
" call multiply_add_numpy(2.0, 2.0, 10.0)\n",
" |<- multiply_add_numpy = 14.0\n",
"|<- square_add_numpy = 14.0\n",
"square_add_numpy = 14.0\n",
"\n",
"Gradient evaluation:\n",
"call square_add_numpy(Traced<ConcreteArray(2.0)>, 10.0)\n",
" call multiply_add_numpy(Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(2.0)>, 10.0)\n",
" |<- multiply_add_numpy = Traced<ConcreteArray(14.0)>\n",
"|<- square_add_numpy = Traced<ConcreteArray(14.0)>\n",
"grad(square_add_numpy) = 4.0\n"
]
}
],
"source": [
"import jax.numpy as jnp\n",
"import numpy as np\n",
"\n",
"@trace(\"multiply_add_numpy\")\n",
"def multiply_add_numpy(x, y, z):\n",
" return jnp.add(jnp.multiply(x, y), z)\n",
"\n",
"@trace(\"square_add_numpy\")\n",
"def square_add_numpy(a, b):\n",
" return multiply_add_numpy(a, a, b)\n",
"\n",
"print(\"\\nNormal evaluation:\") \n",
"print(\"square_add_numpy = \", square_add_numpy(2., 10.))\n",
"print(\"\\nGradient evaluation:\")\n",
"print(\"grad(square_add_numpy) = \", api.grad(square_add_numpy)(2.0, 10.))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Sg-D8EdeFn4a"
},
"source": [
"Notice that in the process of computing `grad`, JAX invokes `square_add_numpy` and\n",
"`multiply_add_numpy` with special arguments `ConcreteArray(...)` (described further \n",
"below in this colab). \n",
"It is important to remember that a JAX-traceable function must be able to \n",
"operate not only on concrete arguments but also on special abstract arguments\n",
"that JAX may use to abstract the function execution.\n",
"\n",
"The JAX traceability property is satisfied as long as the function is written \n",
"in terms of JAX primitives."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WxrQO7-XGLcg"
},
"source": [
"## Defining new JAX primitives\n",
"\n",
"The right way to add support for multiply-add is in terms of existing\n",
"JAX primitives, as shown above. However, in order to demonstrate how JAX\n",
"primitives work let us pretend that we want to add a new primitive to \n",
"JAX for the multiply-add functionality."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"id": "cPqAH1XOGTN4"
},
"outputs": [],
"source": [
"from jax import core\n",
"multiply_add_p = core.Primitive(\"multiply_add\") # Create the primitive\n",
"\n",
"@trace(\"multiply_add_prim\")\n",
"def multiply_add_prim(x, y, z):\n",
" \"\"\"The JAX-traceable way to use the JAX primitive.\n",
" \n",
" Note that the traced arguments must be passed as positional arguments\n",
" to `bind`. \n",
" \"\"\"\n",
" return multiply_add_p.bind(x, y, z)\n",
"\n",
"@trace(\"square_add_prim\")\n",
"def square_add_prim(a, b):\n",
" \"\"\"A square-add function implemented using the new JAX-primitive.\"\"\"\n",
" return multiply_add_prim(a, a, b)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LMzs5PAKGr-4"
},
"source": [
"If we try to call the newly defined functions we get an error, because\n",
"we have not yet told JAX anything about the semantics of the new primitive."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "_X3PAYxhGpWd",
"outputId": "90ea2c6a-9ef3-40ea-e9a3-3ab1cfc59fc8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(2.0, 10.0)\n",
" call multiply_add_prim(2.0, 2.0, 10.0)\n",
"\n",
"Found expected exception:\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"<ipython-input-5-acee329b29d0>\", line 2, in <module>\n",
" square_add_prim(2., 10.)\n",
" File \"<ipython-input-2-0ffadd93fbdc>\", line 47, in func_wrapper\n",
" res = func(*args)\n",
" File \"<ipython-input-4-c5402c1795f0>\", line 16, in square_add_prim\n",
" return multiply_add_prim(a, a, b)\n",
"NotImplementedError: Evaluation rule for 'multiply_add' not implemented\n"
]
}
],
"source": [
"with expectNotImplementedError():\n",
" square_add_prim(2., 10.)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "elha0FdgHSEF"
},
"source": [
"### Primal evaluation rules"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "FT34FFAGHARU",
"outputId": "4c54f1c2-8a50-4788-90e1-06aee412c43b"
},
"outputs": [
{
"data": {
"text/plain": [
"<function __main__.multiply_add_impl>"
]
},
"execution_count": 6,
"metadata": {
"tags": []
},
"output_type": "execute_result"
}
],
"source": [
"@trace(\"multiply_add_impl\")\n",
"def multiply_add_impl(x, y, z):\n",
" \"\"\"Concrete implementation of the primitive.\n",
"\n",
" This function does not need to be JAX traceable.\n",
" Args:\n",
" x, y, z: the concrete arguments of the primitive. Will only be called with \n",
" concrete values.\n",
" Returns:\n",
" the concrete result of the primitive.\n",
" \"\"\"\n",
" # Note that we can use the original numpy, which is not JAX traceable\n",
" return np.add(np.multiply(x, y), z)\n",
"\n",
"# Now we register the primal implementation with JAX\n",
"multiply_add_p.def_impl(multiply_add_impl)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "G5bstKaeNAVV",
"outputId": "deb94d5b-dfea-4e6f-9ec2-70b416c996c5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(2.0, 10.0)\n",
" call multiply_add_prim(2.0, 2.0, 10.0)\n",
" call multiply_add_impl(2.0, 2.0, 10.0)\n",
" |<- multiply_add_impl = 14.0\n",
" |<- multiply_add_prim = 14.0\n",
"|<- square_add_prim = 14.0\n"
]
}
],
"source": [
"assert square_add_prim(2., 10.) == 14."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "upBf-uAuHhPJ"
},
"source": [
"### JIT\n",
"\n",
"If we now try to use `jit` we get a `NotImplementedError`:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "QG-LULjiHk4b",
"outputId": "d4ef4406-8dae-4c96-97ca-b662340474ee"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
"\n",
"Found expected exception:\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"<ipython-input-8-d4853f4fcae2>\", line 2, in <module>\n",
" api.jit(square_add_prim)(2., 10.)\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/api.py\", line 149, in f_jitted\n",
" out = xla.xla_call(flat_fun, *args_flat, device_assignment=device_assignment, backend=backend)\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/core.py\", line 569, in call_bind\n",
" outs = primitive.impl(f, *args, **params)\n",
"NotImplementedError: Abstract evaluation for 'multiply_add' not implemented\n"
]
}
],
"source": [
"with expectNotImplementedError():\n",
" api.jit(square_add_prim)(2., 10.)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rHS1bAGHH44E"
},
"source": [
"#### Abstract evaluation rules\n",
"In order to JIT the function, and for other transformations as well, \n",
"JAX first evaluates it abstractly using only the \n",
"shape and type of the arguments. This abstract evaluation serves multiple\n",
"purposes:\n",
"\n",
" * Gets the sequence of JAX primitives that are used in the computation. This \n",
" sequence will be compiled. \n",
" * Computes the shape and type of all vectors and operations used in the computation. \n",
"\n",
"\n",
"For example, the abstraction of a vector with 3 elements may be `ShapedArray(float32[3])`, or `ConcreteArray([1., 2., 3.])`. \n",
"In the latter case, JAX uses the actual concrete value wrapped as an abstract value."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"id": "ctQmEeckIbdo",
"outputId": "e751d0cc-460e-4ffd-df2e-fdabf9cffdc2"
},
"outputs": [
{
"data": {
"text/plain": [
"<function __main__.multiply_add_abstract_eval>"
]
},
"execution_count": 9,
"metadata": {
"tags": []
},
"output_type": "execute_result"
}
],
"source": [
"from jax._src import abstract_arrays\n",
"@trace(\"multiply_add_abstract_eval\")\n",
"def multiply_add_abstract_eval(xs, ys, zs):\n",
" \"\"\"Abstract evaluation of the primitive.\n",
"\n",
" This function does not need to be JAX traceable. It will be invoked with\n",
" abstractions of the actual arguments. \n",
" Args:\n",
" xs, ys, zs: abstractions of the arguments.\n",
" Result:\n",
" a ShapedArray for the result of the primitive.\n",
" \"\"\"\n",
" assert xs.shape == ys.shape\n",
" assert xs.shape == zs.shape\n",
" return abstract_arrays.ShapedArray(xs.shape, xs.dtype)\n",
"\n",
"# Now we register the abstract evaluation with JAX\n",
"multiply_add_p.def_abstract_eval(multiply_add_abstract_eval)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RPN88X6YI43A"
},
"source": [
"If we re-attempt to JIT, we see how the abstract evaluation proceeds, but\n",
"we get another error, about missing the actual XLA compilation rule:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"id": "eOcNR92SI2h-",
"outputId": "356ef229-3703-4696-cc3d-7c05de405fb0"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ShapedArray(float32[]), ShapedArray(float32[]))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
"|<- square_add_prim = Traced<ShapedArray(float32[])>\n",
"\n",
"Found expected exception:\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"<ipython-input-10-d4853f4fcae2>\", line 2, in <module>\n",
" api.jit(square_add_prim)(2., 10.)\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/api.py\", line 149, in f_jitted\n",
" out = xla.xla_call(flat_fun, *args_flat, device_assignment=device_assignment, backend=backend)\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/core.py\", line 569, in call_bind\n",
" outs = primitive.impl(f, *args, **params)\n",
"NotImplementedError: XLA translation rule for primitive 'multiply_add' not found\n"
]
}
],
"source": [
"with expectNotImplementedError():\n",
" api.jit(square_add_prim)(2., 10.)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9IOV1R-fJMHp"
},
"source": [
"#### XLA Compilation rules\n",
"\n",
"JAX compilation works by compiling each primitive into a graph of XLA operations.\n",
"\n",
"This is the biggest hurdle to adding new functionality to JAX, because the \n",
"set of XLA operations is limited, and JAX already has pre-defined primitives\n",
"for most of them. However, XLA includes a `CustomCall` operation that can be used to encapsulate arbitrary functionality defined using C++."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"id": "FYQWSSjKJaWP"
},
"outputs": [],
"source": [
"from jax._src.lib import xla_client\n",
"@trace(\"multiply_add_xla_translation\")\n",
"def multiply_add_xla_translation(ctx, avals_in, avals_out, xc, yc, zc):\n",
" \"\"\"The compilation to XLA of the primitive.\n",
"\n",
" Given an XlaBuilder and XlaOps for each argument, return the XlaOp for the\n",
" result of the function.\n",
"\n",
" Does not need to be a JAX-traceable function.\n",
" \"\"\"\n",
" return [xla_client.ops.Add(xla_client.ops.Mul(xc, yc), zc)]\n",
"\n",
"# Now we register the XLA compilation rule with JAX\n",
"# TODO: for GPU? and TPU?\n",
"from jax.interpreters import xla\n",
"xla.register_translation(multiply_add_p, multiply_add_xla_translation, platform='cpu')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "K98LX-VaJkFu"
},
"source": [
"Now we succeed to JIT. Notice below that JAX first evaluates the function\n",
"abstractly, which triggers the `multiply_add_abstract_eval` function, and \n",
"then compiles the set of primitives it has encountered, including `multiply_add`.\n",
"At this point JAX invokes `multiply_add_xla_translation`."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"id": "rj3TLsolJgEc",
"outputId": "e384bee4-1e9c-4344-f49c-d3b5ec08eb32"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ShapedArray(float32[]), ShapedArray(float32[]))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
"|<- square_add_prim = Traced<ShapedArray(float32[])>\n",
"call multiply_add_xla_translation(<JaxComputationBuilder>, <XlaOp at 0x7f44d8b2a228>, <XlaOp at 0x7f44d8b2a228>, <XlaOp at 0x7f44d8b2a0d8>)\n",
"|<- multiply_add_xla_translation = <XlaOp at 0x7f44d8b2a880>\n"
]
}
],
"source": [
"assert api.jit(lambda x, y: square_add_prim(x, y))(2., 10.) == 14."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Omrez-2_KFfo"
},
"source": [
"Below is another use of `jit` where we compile only\n",
"with respect to the first argument. Notice how the second argument to `square_add_prim` is concrete, which leads\n",
"in the third argument to `multiply_add_abstract_eval` being \n",
"`ConcreteArray`. We see that `multiply_add_abstract_eval` may be used with\n",
"both `ShapedArray` and `ConcreteArray`."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"id": "mPfTwIBoKOEK",
"outputId": "b293b9b6-a2f9-48f5-f7eb-d4f99c3d905b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ShapedArray(float32[])>, 10.0)\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, 10.0)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ShapedArray(float32[]), ConcreteArray(10.0))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
"|<- square_add_prim = Traced<ShapedArray(float32[])>\n",
"call multiply_add_xla_translation(<JaxComputationBuilder>, <XlaOp at 0x7f44d8e86df8>, <XlaOp at 0x7f44d8e86df8>, <XlaOp at 0x7f44d8e86c00>)\n",
"|<- multiply_add_xla_translation = <XlaOp at 0x7f44d8e867d8>\n"
]
}
],
"source": [
"assert api.jit(lambda x, y: square_add_prim(x, y), \n",
" static_argnums=1)(2., 10.) == 14."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_Ya3B5l4J1VA"
},
"source": [
"### Forward differentiation\n",
"\n",
"JAX implements forward differentiation in the form of\n",
"a Jacobian-vector product (see the [JAX autodiff cookbook](https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html#Jacobian-Matrix-and-Matrix-Jacobian-products)).\n",
"\n",
"If we attempt now to compute the `jvp` function we get an\n",
"error because we have not yet told JAX how to differentiate\n",
"the `multiply_add` primitive."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"id": "OxDx6NQnKwMI",
"outputId": "ce659ef3-c03c-4856-f252-49ec4b6eb964"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(10.0)>)\n",
" call multiply_add_prim(Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(10.0)>)\n",
"\n",
"Found expected exception:\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/interpreters/ad.py\", line 217, in process_primitive\n",
" jvp = primitive_jvps[primitive]\n",
"KeyError: multiply_add\n",
"\n",
"During handling of the above exception, another exception occurred:\n",
"\n",
"Traceback (most recent call last):\n",
" File \"<ipython-input-14-7e56904baba2>\", line 2, in <module>\n",
" api.jvp(square_add_prim, (2., 10.), (1., 1.))\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/api.py\", line 978, in jvp\n",
" out_primals, out_tangents = ad.jvp(flat_fun).call_wrapped(ps_flat, ts_flat)\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/linear_util.py\", line 165, in call_wrapped\n",
" ans = self.f(*args, **dict(self.params, **kwargs))\n",
"NotImplementedError: Forward-mode differentiation rule for 'multiply_add' not implemented\n"
]
}
],
"source": [
"# The second argument `(2., 10.)` are the argument values\n",
"# where we evaluate the Jacobian, and the third `(1., 1.)`\n",
"# are the values of the tangents for the arguments.\n",
"with expectNotImplementedError():\n",
" api.jvp(square_add_prim, (2., 10.), (1., 1.))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"id": "zxG24C1JMIMM"
},
"outputs": [],
"source": [
"from jax.interpreters import ad\n",
"\n",
"\n",
"@trace(\"multiply_add_value_and_jvp\")\n",
"def multiply_add_value_and_jvp(arg_values, arg_tangents):\n",
" \"\"\"Evaluates the primal output and the tangents (Jacobian-vector product).\n",
"\n",
" Given values of the arguments and perturbation of the arguments (tangents), \n",
" compute the output of the primitive and the perturbation of the output.\n",
"\n",
" This method must be JAX-traceable. JAX may invoke it with abstract values \n",
" for the arguments and tangents.\n",
"\n",
" Args:\n",
" arg_values: a tuple of arguments\n",
" arg_tangents: a tuple with the tangents of the arguments. The tuple has \n",
" the same length as the arg_values. Some of the tangents may also be the \n",
" special value ad.Zero to specify a zero tangent.\n",
" Returns:\n",
" a pair of the primal output and the tangent.\n",
" \"\"\"\n",
" x, y, z = arg_values\n",
" xt, yt, zt = arg_tangents\n",
" _trace(\"Primal evaluation:\")\n",
" # Now we have a JAX-traceable computation of the output. \n",
" # Normally, we can use the ma primtive itself to compute the primal output. \n",
" primal_out = multiply_add_prim(x, y, z)\n",
" \n",
" _trace(\"Tangent evaluation:\")\n",
" # We must use a JAX-traceable way to compute the tangent. It turns out that \n",
" # the output tangent can be computed as (xt * y + x * yt + zt),\n",
" # which we can implement in a JAX-traceable way using the same \"multiply_add_prim\" primitive.\n",
" \n",
" # We do need to deal specially with Zero. Here we just turn it into a \n",
" # proper tensor of 0s (of the same shape as 'x'). \n",
" # An alternative would be to check for Zero and perform algebraic \n",
" # simplification of the output tangent computation.\n",
" def make_zero(tan):\n",
" return lax.zeros_like_array(x) if type(tan) is ad.Zero else tan \n",
" \n",
" output_tangent = multiply_add_prim(make_zero(xt), y, multiply_add_prim(x, make_zero(yt), make_zero(zt)))\n",
" return (primal_out, output_tangent)\n",
"\n",
"# Register the forward differentiation rule with JAX \n",
"ad.primitive_jvps[multiply_add_p] = multiply_add_value_and_jvp"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"id": "ma3KBkiAMfW1",
"outputId": "f34cbbc6-20d9-48ca-9a9a-b5d91a972cdd"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(10.0)>)\n",
" call multiply_add_prim(Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(10.0)>)\n",
" call multiply_add_value_and_jvp((2.0, 2.0, 10.0), (1.0, 1.0, 1.0))\n",
" Primal evaluation:\n",
" call multiply_add_prim(2.0, 2.0, 10.0)\n",
" call multiply_add_impl(2.0, 2.0, 10.0)\n",
" |<- multiply_add_impl = 14.0\n",
" |<- multiply_add_prim = 14.0\n",
" Tangent evaluation:\n",
" call multiply_add_prim(2.0, 1.0, 1.0)\n",
" call multiply_add_impl(2.0, 1.0, 1.0)\n",
" |<- multiply_add_impl = 3.0\n",
" |<- multiply_add_prim = 3.0\n",
" call multiply_add_prim(1.0, 2.0, 3.0)\n",
" call multiply_add_impl(1.0, 2.0, 3.0)\n",
" |<- multiply_add_impl = 5.0\n",
" |<- multiply_add_prim = 5.0\n",
" |<- multiply_add_value_and_jvp = (14.0, 5.0)\n",
" |<- multiply_add_prim = Traced<ConcreteArray(14.0)>\n",
"|<- square_add_prim = Traced<ConcreteArray(14.0)>\n"
]
}
],
"source": [
"# Tangent is: xt*y + x*yt + zt = 1.*2. + 2.*1. + 1. = 5.\n",
"assert api.jvp(square_add_prim, (2., 10.), (1., 1.)) == (14., 5.)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "69QsEcu-lP4u"
},
"source": [
"TO EXPLAIN: \n",
"\n",
" * Why is JAX using ConcreteArray in square_add_prim? There is no abstract evaluation going on here.\n",
" * Not sure how to explain that multiply_add_prim is invoked with ConcreteValue, yet\n",
" we do not call the multiply_add_abstract_eval.\n",
" * I think it would be useful to show the jaxpr here"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Sb6e3ZAHOPHv"
},
"source": [
"#### JIT of forward differentiation\n",
"\n",
"We can apply JIT to the forward differentiation function:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"id": "hg-hzVu-N-hv",
"outputId": "38d32067-e152-4046-ad80-7f95a31ba628"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_value_and_jvp((Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>), (Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>))\n",
" Primal evaluation:\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ShapedArray(float32[]), ShapedArray(float32[]))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
" Tangent evaluation:\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ShapedArray(float32[]), ShapedArray(float32[]))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ShapedArray(float32[]), ShapedArray(float32[]))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
" |<- multiply_add_value_and_jvp = (Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
"|<- square_add_prim = Traced<ShapedArray(float32[])>\n",
"call multiply_add_xla_translation(<JaxComputationBuilder>, <XlaOp at 0x7f44cff26ae8>, <XlaOp at 0x7f44cff26ae8>, <XlaOp at 0x7f44cff268b8>)\n",
"|<- multiply_add_xla_translation = <XlaOp at 0x7f44cff268f0>\n",
"call multiply_add_xla_translation(<JaxComputationBuilder>, <XlaOp at 0x7f44cff26ae8>, <XlaOp at 0x7f44cff26a08>, <XlaOp at 0x7f44cff26a40>)\n",
"|<- multiply_add_xla_translation = <XlaOp at 0x7f44cff26a78>\n",
"call multiply_add_xla_translation(<JaxComputationBuilder>, <XlaOp at 0x7f44cff26a08>, <XlaOp at 0x7f44cff26ae8>, <XlaOp at 0x7f44cff26a78>)\n",
"|<- multiply_add_xla_translation = <XlaOp at 0x7f44cff269d0>\n"
]
}
],
"source": [
"assert api.jit(lambda arg_values, arg_tangents: \n",
" api.jvp(square_add_prim, arg_values, arg_tangents))(\n",
" (2., 10.), (1., 1.)) == (14., 5.)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jlZt1_v2mU88"
},
"source": [
"Notice that first we evaluate `multiply_add_value_and_jvp` abstractly, which in turn\n",
"evaluates abstractly both the primal and the tangent evaluation (a total of \n",
"3 invocations of the `ma` primitive). Then we compile the 3 occurrences\n",
"of the primitive."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "555yt6ZIOePB"
},
"source": [
"### Reverse differentiation\n",
"\n",
"If we attempt now to use reverse differentiation we\n",
"see that JAX starts by using the `multiply_add_value_and_jvp` to \n",
"compute the forward differentiation for abstract values, but then runs\n",
"into a `NotImplementedError`. \n",
"\n",
"When computing the reverse differentiation JAX first does abstract evaluation\n",
"of the forward differentiation code `multiply_add_value_and_jvp` to obtain a \n",
"trace of primitives that compute the output tangent. \n",
"Observe that JAX performs this abstract evaluation with concrete values\n",
"for the differentiation point, and abstract values for the tangents. \n",
"Observe also that JAX uses the special abstract tangent value `Zero` for\n",
"the tangent corresponding to the 3rd argument of `ma`. This reflects the \n",
"fact that we do not differentiate w.r.t. the 2nd argument to `square_add_prim`,\n",
"which flows to the 3rd argument to `multiply_add_prim`.\n",
"\n",
"Observe also that during the abstract evaluation of the tangent we pass the \n",
"value 0.0 as the tangent for the 3rd argument. This is due to the use\n",
"of the `make_zero` function in the definition of `multiply_add_value_and_jvp`."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"id": "8eAVnexaOjBn",
"outputId": "e4ee89cf-ab4a-4505-9817-fa978a2865ab"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ConcreteArray(2.0)>, 10.0)\n",
" call multiply_add_prim(Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(2.0)>, 10.0)\n",
" call multiply_add_value_and_jvp((Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(2.0)>, 10.0), (Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Zero))\n",
" Primal evaluation:\n",
" call multiply_add_prim(Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(2.0)>, 10.0)\n",
" call multiply_add_impl(2.0, 2.0, 10.0)\n",
" |<- multiply_add_impl = 14.0\n",
" |<- multiply_add_prim = 14.0\n",
" Tangent evaluation:\n",
" call multiply_add_prim(Traced<ConcreteArray(2.0)>, Traced<ShapedArray(float32[])>, 0.0)\n",
" call multiply_add_abstract_eval(ConcreteArray(2.0), ShapedArray(float32[]), ConcreteArray(0.0))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ConcreteArray(2.0)>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ConcreteArray(2.0), ShapedArray(float32[]))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
" |<- multiply_add_value_and_jvp = (14.0, Traced<ShapedArray(float32[])>)\n",
" |<- multiply_add_prim = Traced<ConcreteArray(14.0)>\n",
"|<- square_add_prim = Traced<ConcreteArray(14.0)>\n",
"\n",
"Found expected exception:\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/interpreters/ad.py\", line 198, in get_primitive_transpose\n",
" return primitive_transposes[p]\n",
"KeyError: multiply_add\n",
"\n",
"During handling of the above exception, another exception occurred:\n",
"\n",
"Traceback (most recent call last):\n",
" File \"<ipython-input-18-48ff33d55c45>\", line 2, in <module>\n",
" api.grad(square_add_prim)(2., 10.)\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/api.py\", line 340, in grad_f\n",
" _, g = value_and_grad_f(*args, **kwargs)\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/api.py\", line 398, in value_and_grad_f\n",
" g = vjp_py(np.ones((), dtype=dtype))\n",
"NotImplementedError: Reverse-mode differentiation rule for 'multiply_add' not implemented\n"
]
}
],
"source": [
"# This is reverse differentiation w.r.t. the first argument of square_add_prim\n",
"with expectNotImplementedError():\n",
" api.grad(square_add_prim)(2., 10.)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fSHLUMDN26AY"
},
"source": [
"The above error is because there is a missing piece for JAX to be able\n",
"to use the forward differentiation code to compute reverse differentiation."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3ibDbGF-PjK9"
},
"source": [
"#### Transposition\n",
"\n",
"\n",
"As explained above, when computing reverse differentiation JAX obtains\n",
"a trace of primitives that compute the tangent using forward differentiation.\n",
"Then, **JAX interprets this trace abstractly backwards** and for each \n",
"primitive it applies a **transposition** rule.\n",
"\n",
"To understand what is going on, consider for now a simpler example of the function \"f(x, y) = x * y + y\". Assume we need to differentiate at the point `(2., 4.)`. JAX will produce the following JVP tangent calculation of `ft` from the tangents of the input `xt` and `yt`:\n",
"```\n",
" a = xt * 4.\n",
" b = 2. * yt\n",
" c = a + b\n",
" ft = c + yt\n",
"```\n",
"\n",
"By construction, the tangent calculation is always linear in the input tangents. \n",
"The only non-linear operator that may arise in the tangent calculation is multiplication,\n",
"but then one of the operands is constant.\n",
"\n",
"JAX will produce the reverse differentiation computation by processing the\n",
"JVP computation backwards. For each operation in the tangent computation,\n",
"it accumulates the cotangents\n",
"of the variables used by the operation, using the cotangent of the result\n",
"of the operation:\n",
"```\n",
" # Initialize cotangents of inputs and intermediate vars\n",
" xct = yct = act = bct = cct = 0.\n",
" # Initialize cotangent of the output\n",
" fct = 1.\n",
" # Process \"ft = c + yt\"\n",
" cct += fct\n",
" yct += fct\n",
" # Process \"c = a + b\"\n",
" act += cct\n",
" bct += cct\n",
" # Process \"b = 2. * yt\"\n",
" yct += 2. * bct\n",
" # Process \"a = xt * 4.\"\n",
" xct += act * 4.\n",
"```\n",
"\n",
"One can verify that this computation produces `xct = 4.` and `yct = 3.`, which \n",
"are the partial derivatives of the function `f`. \n",
"\n",
"JAX knows for each primitive that may appear in a JVP calculation how to transpose it. Conceptually, if the primitive `p(x, y, z)` is linear in the arguments `y` and `z` for a constant value of `x`, e.g., `p(x, y, z) = y*cy + z*cz`, then the transposition of the primitive is:\n",
"```\n",
"p_transpose(out_ct, x, _, _) = (None, out_ct*cy, out_ct*cz)\n",
"```\n",
"\n",
"Notice that `p_transpose` takes the cotangent of the output of the primitive and a value corresponding to each argument of the primitive. For the linear arguments, the transposition gets an undefined `_` value, and for the other\n",
"arguments it gets the actual constants. The transposition returns a cotangent value for each argument of the primitive, with the value `None` returned \n",
"for the constant arguments.\n",
"\n",
"In particular, \n",
"```\n",
" add_transpose(out_ct, _, _) = (out_ct, out_ct)\n",
" mult_transpose(out_ct, x, _) = (None, x * out_ct)\n",
" mult_transpose(out_ct, _, y) = (out_ct * y, None)\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"id": "JaHxFdkRO42r"
},
"outputs": [],
"source": [
"@trace(\"multiply_add_transpose\")\n",
"def multiply_add_transpose(ct, x, y, z):\n",
" \"\"\"Evaluates the transpose of a linear primitive.\n",
"\n",
" This method is only used when computing the backward gradient following \n",
" value_and_jvp, and is only needed for primitives that are used in the JVP \n",
" calculation for some other primitive. We need transposition for multiply_add_prim, \n",
" because we have used multiply_add_prim in the computation of the output_tangent in \n",
" multiply_add_value_and_jvp.\n",
"\n",
" In our case, multiply_add is not a linear primitive. However, it is used linearly \n",
" w.r.t. tangents in multiply_add_value_and_jvp:\n",
" output_tangent(xt, yt, zt) = multiply_add_prim(xt, y, multiply_add_prim(x, yt, zt))\n",
" \n",
" Always one of the first two multiplicative arguments is a constant.\n",
"\n",
" Args:\n",
" ct: the cotangent of the output of the primitive.\n",
" x, y, z: values of the arguments. The arguments that are used linearly\n",
" get an ad.UndefinedPrimal value. The other arguments get a constant\n",
" value.\n",
" Returns:\n",
" a tuple with the cotangent of the inputs, with the value None\n",
" corresponding to the constant arguments.\n",
" \"\"\"\n",
" if not ad.is_undefined_primal(x):\n",
" # This use of multiply_add is with a constant \"x\"\n",
" assert ad.is_undefined_primal(y)\n",
" ct_y = ad.Zero(y.aval) if type(ct) is ad.Zero else multiply_add_prim(x, ct, lax.zeros_like_array(x))\n",
" res = None, ct_y, ct\n",
" else:\n",
" # This use of multiply_add is with a constant \"y\"\n",
" assert ad.is_undefined_primal(x)\n",
" ct_x = ad.Zero(x.aval) if type(ct) is ad.Zero else multiply_add_prim(ct, y, lax.zeros_like_array(y))\n",
" res = ct_x, None, ct\n",
" return res\n",
"\n",
"\n",
"ad.primitive_transposes[multiply_add_p] = multiply_add_transpose"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PpChox-Jp7wb"
},
"source": [
"Now we can complete the run of the `grad`:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"id": "PogPKS4MPevd",
"outputId": "d33328d4-3e87-45b5-9b31-21ad624b67af"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ConcreteArray(2.0)>, 10.0)\n",
" call multiply_add_prim(Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(2.0)>, 10.0)\n",
" call multiply_add_value_and_jvp((Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(2.0)>, 10.0), (Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Zero))\n",
" Primal evaluation:\n",
" call multiply_add_prim(Traced<ConcreteArray(2.0)>, Traced<ConcreteArray(2.0)>, 10.0)\n",
" call multiply_add_impl(2.0, 2.0, 10.0)\n",
" |<- multiply_add_impl = 14.0\n",
" |<- multiply_add_prim = 14.0\n",
" Tangent evaluation:\n",
" call multiply_add_prim(Traced<ConcreteArray(2.0)>, Traced<ShapedArray(float32[])>, 0.0)\n",
" call multiply_add_abstract_eval(ConcreteArray(2.0), ShapedArray(float32[]), ConcreteArray(0.0))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ConcreteArray(2.0)>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ConcreteArray(2.0), ShapedArray(float32[]))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
" |<- multiply_add_value_and_jvp = (14.0, Traced<ShapedArray(float32[])>)\n",
" |<- multiply_add_prim = Traced<ConcreteArray(14.0)>\n",
"|<- square_add_prim = Traced<ConcreteArray(14.0)>\n",
"call multiply_add_transpose(1.0, _, 2.0, _)\n",
" call multiply_add_prim(1.0, 2.0, 0.0)\n",
" call multiply_add_impl(1.0, 2.0, 0.0)\n",
" |<- multiply_add_impl = 2.0\n",
" |<- multiply_add_prim = 2.0\n",
"|<- multiply_add_transpose = (2.0, None, 1.0)\n",
"call multiply_add_transpose(1.0, 2.0, _, 0.0)\n",
" call multiply_add_prim(2.0, 1.0, 0.0)\n",
" call multiply_add_impl(2.0, 1.0, 0.0)\n",
" |<- multiply_add_impl = 2.0\n",
" |<- multiply_add_prim = 2.0\n",
"|<- multiply_add_transpose = (None, 2.0, 1.0)\n"
]
}
],
"source": [
"assert api.grad(square_add_prim)(2., 10.) == 4."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8M1xLCXW4fK7"
},
"source": [
"Notice the two calls to `multiply_add_transpose`. They correspond to the two\n",
"uses of `multiply_add_prim` in the computation of the `output_tangent` in `multiply_add_value_and_jvp`. The first call to transpose corresponds to the \n",
"last use of `multiply_add_prim`: `multiply_add_prim(xt, y, ...)` where `y` is the constant 2.0."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EIJs6FYmPg6c"
},
"source": [
"#### JIT of reverse differentiation \n",
"\n",
"Notice that the abstract evaluation of the `multiply_add_value_and_jvp` is using only\n",
"abstract values, while in the absence of JIT we used `ConcreteArray`."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"id": "FZ-JGbWZPq2-",
"outputId": "e42b5222-9c3e-4853-e13a-874f6605d178"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_value_and_jvp((Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>), (Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Zero))\n",
" Primal evaluation:\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ShapedArray(float32[]), ShapedArray(float32[]))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
" Tangent evaluation:\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ConcreteArray(0.0)>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ShapedArray(float32[]), ConcreteArray(0.0))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ShapedArray(float32[]), ShapedArray(float32[]))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
" |<- multiply_add_value_and_jvp = (Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
"|<- square_add_prim = Traced<ShapedArray(float32[])>\n",
"call multiply_add_transpose(1.0, _, Traced<ShapedArray(float32[])>, _)\n",
" call multiply_add_prim(1.0, Traced<ShapedArray(float32[])>, Traced<ConcreteArray(0.0)>)\n",
" call multiply_add_abstract_eval(ConcreteArray(1.0), ShapedArray(float32[]), ConcreteArray(0.0))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
"|<- multiply_add_transpose = (Traced<ShapedArray(float32[])>, None, 1.0)\n",
"call multiply_add_transpose(1.0, Traced<ShapedArray(float32[])>, _, Traced<ConcreteArray(0.0)>)\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, 1.0, Traced<ConcreteArray(0.0)>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[]), ConcreteArray(1.0), ConcreteArray(0.0))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
"|<- multiply_add_transpose = (None, Traced<ShapedArray(float32[])>, 1.0)\n",
"call multiply_add_xla_translation(<JaxComputationBuilder>, <XlaOp at 0x7f44cfec1b20>, <XlaOp at 0x7f44cfec13e8>, <XlaOp at 0x7f44cfec1880>)\n",
"|<- multiply_add_xla_translation = <XlaOp at 0x7f44cfec1420>\n",
"call multiply_add_xla_translation(<JaxComputationBuilder>, <XlaOp at 0x7f44cfec13e8>, <XlaOp at 0x7f44cfec1308>, <XlaOp at 0x7f44cfec1ae8>)\n",
"|<- multiply_add_xla_translation = <XlaOp at 0x7f44cfec1490>\n"
]
}
],
"source": [
"assert api.jit(api.grad(square_add_prim))(2., 10.) == 4."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-3lqPkdQPvl5"
},
"source": [
"### Batching\n",
"\n",
"The batching transformation takes a point-wise computation and turns it\n",
"into a computation on vectors. If we try it right now, we get a `NotImplementedError`:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"id": "hFvBR3I9Pzh3",
"outputId": "434608bc-281f-4d3b-83bd-eaaf3b51b1cd"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
"\n",
"Found expected exception:\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/interpreters/batching.py\", line 163, in get_primitive_batcher\n",
" return primitive_batchers[p]\n",
"KeyError: multiply_add\n",
"\n",
"During handling of the above exception, another exception occurred:\n",
"\n",
"Traceback (most recent call last):\n",
" File \"<ipython-input-22-70154d0e2ab6>\", line 3, in <module>\n",
" np.array([10., 20.]))\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/api.py\", line 611, in batched_fun\n",
" lambda: _flatten_axes(out_tree(), out_axes))\n",
" File \"/usr/local/lib/python3.6/dist-packages/jax/interpreters/batching.py\", line 41, in batch\n",
" out_vals, out_dims = batch2(fun, in_vals, in_dims)\n",
"NotImplementedError: Batching rule for 'multiply_add' not implemented\n"
]
}
],
"source": [
"# The arguments are two vectors instead of two scalars\n",
"with expectNotImplementedError():\n",
" api.vmap(square_add_prim, in_axes=0, out_axes=0)(np.array([2., 3.]),\n",
" np.array([10., 20.]))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gILasMiP6elR"
},
"source": [
"We need to tell JAX how to evaluate the batched version of the primitive. In this particular case, the `multiply_add_prim` already operates pointwise for any dimension of input vectors. So the batched version can use the same `multiply_add_prim` implementation."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"id": "KQfeqRIrP7zg"
},
"outputs": [],
"source": [
"from jax.interpreters import batching\n",
"\n",
"\n",
"@trace(\"multiply_add_batch\")\n",
"def multiply_add_batch(vector_arg_values, batch_axes):\n",
" \"\"\"Computes the batched version of the primitive.\n",
" \n",
" This must be a JAX-traceable function.\n",
" \n",
" Since the multiply_add primitive already operates pointwise on arbitrary\n",
" dimension tensors, to batch it we can use the primitive itself. This works as\n",
" long as both the inputs have the same dimensions and are batched along the\n",
" same axes. The result is batched along the axis that the inputs are batched.\n",
" \n",
" Args:\n",
" vector_arg_values: a tuple of two arguments, each being a tensor of matching\n",
" shape.\n",
" batch_axes: the axes that are being batched. See vmap documentation.\n",
" Returns:\n",
" a tuple of the result, and the result axis that was batched. \n",
" \"\"\"\n",
" assert batch_axes[0] == batch_axes[1]\n",
" assert batch_axes[0] == batch_axes[2]\n",
" _trace(\"Using multiply_add to compute the batch:\")\n",
" res = multiply_add_prim(*vector_arg_values)\n",
" return res, batch_axes[0]\n",
"\n",
"\n",
"batching.primitive_batchers[multiply_add_p] = multiply_add_batch"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"id": "VwxNk869P_YG",
"outputId": "9d22c921-5803-4d33-9e88-b6e439ba9738"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_batch(([2. 3.], [2. 3.], [10. 20.]), (0, 0, 0))\n",
" Using multiply_add to compute the batch:\n",
" call multiply_add_prim([2. 3.], [2. 3.], [10. 20.])\n",
" call multiply_add_impl([2. 3.], [2. 3.], [10. 20.])\n",
" |<- multiply_add_impl = [14. 29.]\n",
" |<- multiply_add_prim = [14. 29.]\n",
" |<- multiply_add_batch = ([14. 29.], 0)\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
"|<- square_add_prim = Traced<ShapedArray(float32[])>\n"
]
}
],
"source": [
"assert np.allclose(api.vmap(square_add_prim, in_axes=0, out_axes=0)(\n",
" np.array([2., 3.]),\n",
" np.array([10., 20.])),\n",
" [14., 29.])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NmqLlV1TQDCC"
},
"source": [
"#### JIT of batching"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"id": "xqEdXVUgQCTt",
"outputId": "9c22fd9c-919c-491d-bbeb-32c241b808fa"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"call square_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_prim(Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>, Traced<ShapedArray(float32[])>)\n",
" call multiply_add_batch((Traced<ShapedArray(float32[2])>, Traced<ShapedArray(float32[2])>, Traced<ShapedArray(float32[2])>), (0, 0, 0))\n",
" Using multiply_add to compute the batch:\n",
" call multiply_add_prim(Traced<ShapedArray(float32[2])>, Traced<ShapedArray(float32[2])>, Traced<ShapedArray(float32[2])>)\n",
" call multiply_add_abstract_eval(ShapedArray(float32[2]), ShapedArray(float32[2]), ShapedArray(float32[2]))\n",
" |<- multiply_add_abstract_eval = ShapedArray(float32[2])\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[2])>\n",
" |<- multiply_add_batch = (Traced<ShapedArray(float32[2])>, 0)\n",
" |<- multiply_add_prim = Traced<ShapedArray(float32[])>\n",
"|<- square_add_prim = Traced<ShapedArray(float32[])>\n",
"call multiply_add_xla_translation(<JaxComputationBuilder>, <XlaOp at 0x7f44cfecb9d0>, <XlaOp at 0x7f44cfecb9d0>, <XlaOp at 0x7f44cfecba40>)\n",
"|<- multiply_add_xla_translation = <XlaOp at 0x7f44cfec1340>\n"
]
}
],
"source": [
"assert np.allclose(api.jit(api.vmap(square_add_prim, in_axes=0, out_axes=0))\n",
" (np.array([2., 3.]),\n",
" np.array([10., 20.])),\n",
" [14., 29.])"
]
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
"name": "How JAX primitives work.ipynb",
"provenance": [],
"toc_visible": true
},
"jupytext": {
"formats": "ipynb,md:myst"
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}