mirror of
https://github.com/ROCm/jax.git
synced 2025-04-18 21:06:06 +00:00
155 lines
4.4 KiB
Python
155 lines
4.4 KiB
Python
# Copyright 2018 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
|
|
import numpy as onp
|
|
|
|
from . import core
|
|
from . import ad_util
|
|
from .lib import xla_bridge
|
|
|
|
|
|
def concretization_err_msg(fun):
|
|
fname = getattr(fun, "__name__", fun)
|
|
return ("Abstract value passed to function {} that requires a concrete value. "
|
|
"Possibly tracing Python control flow using abstract values. "
|
|
"If so, try using lax.cond or lax.while instead.").format(fname)
|
|
|
|
def concretization_function_error(fun):
|
|
def error(self, *args):
|
|
raise TypeError(concretization_err_msg(fun))
|
|
return error
|
|
|
|
|
|
class UnshapedArray(core.AbstractValue):
|
|
__slots__ = ['dtype']
|
|
array_abstraction_level = 3
|
|
|
|
def __init__(self, dtype):
|
|
self.dtype = dtype
|
|
|
|
def __eq__(self, other):
|
|
return type(self) is type(other) and self.dtype == other.dtype
|
|
|
|
def __hash__(self):
|
|
return hash(str(self.dtype))
|
|
|
|
def __repr__(self):
|
|
return '{}({})'.format(self.__class__.__name__, self.str_short())
|
|
|
|
_bool = _nonzero = concretization_function_error(bool)
|
|
_float = concretization_function_error(float)
|
|
_int = concretization_function_error(int)
|
|
_long = concretization_function_error(long)
|
|
_complex = concretization_function_error(complex)
|
|
_hex = concretization_function_error(hex)
|
|
_oct = concretization_function_error(oct)
|
|
|
|
def at_least_vspace(self):
|
|
return self
|
|
|
|
def join(self, other):
|
|
return self
|
|
|
|
def str_short(self):
|
|
return onp.dtype(self.dtype).name
|
|
|
|
|
|
class ShapedArray(UnshapedArray):
|
|
__slots__ = ['shape']
|
|
array_abstraction_level = 2
|
|
|
|
def __init__(self, shape, dtype):
|
|
self.dtype = onp.dtype(xla_bridge.canonicalize_dtype(dtype))
|
|
self.shape = shape
|
|
|
|
ndim = property(lambda self: len(self.shape))
|
|
size = property(lambda self: int(onp.prod(self.shape)))
|
|
|
|
def __eq__(self, other):
|
|
return (type(self) is type(other)
|
|
and self.dtype == other.dtype and self.shape == other.shape)
|
|
|
|
def __hash__(self):
|
|
return hash((self.shape, str(self.dtype)))
|
|
|
|
def at_least_vspace(self):
|
|
return self
|
|
|
|
def join(self, other):
|
|
if self.shape == other.shape and self.dtype == other.dtype:
|
|
return self
|
|
elif self.dtype == other.dtype:
|
|
return UnshapedArray(self.dtype)
|
|
else:
|
|
raise TypeError, other
|
|
|
|
def str_short(self):
|
|
dtypestr = onp.dtype(self.dtype).name
|
|
shapestr = ','.join(map(str, self.shape))
|
|
return '{}[{}]'.format(dtypestr, shapestr)
|
|
|
|
def __len__(self):
|
|
try:
|
|
return self.shape[0]
|
|
except IndexError:
|
|
raise TypeError("len() of unsized object") # same as numpy error
|
|
|
|
|
|
class ConcreteArray(ShapedArray):
|
|
__slots__ = ['val']
|
|
array_abstraction_level = 0
|
|
|
|
def __init__(self, val):
|
|
self.val = val
|
|
self.shape = onp.shape(val)
|
|
# canonicalized self.dtype doesn't necessarily match self.val
|
|
self.dtype = onp.dtype(xla_bridge.canonicalize_dtype(onp.result_type(val)))
|
|
assert self.dtype != onp.dtype('O')
|
|
|
|
def __eq__(self, other):
|
|
return (type(self) is type(other) and self.dtype == other.dtype
|
|
and self.shape == other.shape and onp.all(self.val == other.val))
|
|
|
|
def __hash__(self):
|
|
return id(self.val)
|
|
|
|
def at_least_vspace(self):
|
|
return ShapedArray(self.shape, self.dtype)
|
|
|
|
def join(self, other):
|
|
if self == other:
|
|
return self
|
|
elif self.shape == other.shape and self.dtype == other.dtype:
|
|
return ShapedArray(self.shape, self.dtype)
|
|
elif self.dtype == other.dtype:
|
|
return UnshapedArray(self.dtype)
|
|
else:
|
|
raise TypeError, other
|
|
|
|
def str_short(self):
|
|
return str(self.val)
|
|
|
|
|
|
def make_shaped_array(x):
|
|
dtype = xla_bridge.canonicalize_dtype(onp.result_type(x))
|
|
return ShapedArray(onp.shape(x), dtype)
|
|
|
|
array_types = [onp.ndarray, onp.float64, onp.float32, onp.int64, onp.int32,
|
|
onp.bool_, onp.uint64, onp.uint32, float, int, bool]
|
|
|
|
for t in array_types:
|
|
core.pytype_aval_mappings[t] = ConcreteArray
|