mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 10:56:06 +00:00
54 lines
2.1 KiB
Python
54 lines
2.1 KiB
Python
# Copyright 2018 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import scipy.stats as osp_stats
|
|
|
|
from jax import lax
|
|
from jax import numpy as jnp
|
|
from jax.numpy import where, inf, logical_or
|
|
from jax._src.typing import Array, ArrayLike
|
|
from jax._src.numpy.util import _wraps, promote_args_inexact
|
|
|
|
|
|
@_wraps(osp_stats.uniform.logpdf, update_doc=False)
|
|
def logpdf(x: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array:
|
|
x, loc, scale = promote_args_inexact("uniform.logpdf", x, loc, scale)
|
|
log_probs = lax.neg(lax.log(scale))
|
|
return where(logical_or(lax.gt(x, lax.add(loc, scale)),
|
|
lax.lt(x, loc)),
|
|
-inf, log_probs)
|
|
|
|
@_wraps(osp_stats.uniform.pdf, update_doc=False)
|
|
def pdf(x: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array:
|
|
return lax.exp(logpdf(x, loc, scale))
|
|
|
|
@_wraps(osp_stats.uniform.cdf, update_doc=False)
|
|
def cdf(x: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array:
|
|
x, loc, scale = promote_args_inexact("uniform.cdf", x, loc, scale)
|
|
zero, one = jnp.array(0, x.dtype), jnp.array(1, x.dtype)
|
|
conds = [lax.lt(x, loc), lax.gt(x, lax.add(loc, scale)), lax.ge(x, loc) & lax.le(x, lax.add(loc, scale))]
|
|
vals = [zero, one, lax.div(lax.sub(x, loc), scale)]
|
|
|
|
return jnp.select(conds, vals)
|
|
|
|
@_wraps(osp_stats.uniform.ppf, update_doc=False)
|
|
def ppf(q: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array:
|
|
q, loc, scale = promote_args_inexact("uniform.ppf", q, loc, scale)
|
|
return where(
|
|
jnp.isnan(q) | (q < 0) | (q > 1),
|
|
jnp.nan,
|
|
lax.add(loc, lax.mul(scale, q))
|
|
)
|