rocm_jax/jax/random.py
Peter Hawkins 0b1d2fc3d1
Avoid accidental type promotion in gamma sampler gradient. (#2150)
Reformat gamma sampler to use 2 space indent, consistent with the rest of JAX.
2020-02-03 12:44:46 -05:00

1114 lines
41 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""JAX pseudo-random number generators (PRNGs).
The JAX PRNG system is based on "Parallel random numbers: as easy as 1, 2, 3"
(Salmon et al. 2011). For details on the design and its motivation, see:
https://github.com/google/jax/blob/master/design_notes/prng.md
"""
from functools import partial
import itertools
import numpy as onp
from . import lax
from . import numpy as np
from . import tree_util
from . import dtypes
from .api import custom_transforms, defjvp, jit, vmap
from .numpy.lax_numpy import _constant_like, asarray, stack
from jax.lib import xla_bridge
from jax.lib import cuda_prng
from jax import core
from jax import abstract_arrays
from jax.numpy.linalg import cholesky
from jax.scipy.special import logit
from jax.interpreters import ad
from jax.interpreters import batching
from jax.interpreters import partial_eval as pe
from jax.interpreters import xla
from jax.util import prod
def PRNGKey(seed):
"""Create a pseudo-random number generator (PRNG) key given an integer seed.
Args:
seed: a 64- or 32-bit integer used as the value of the key.
Returns:
A PRNG key, which is modeled as an array of shape (2,) and dtype uint32. The
key is constructed from a 64-bit seed by effectively bit-casting to a pair
of uint32 values (or from a 32-bit seed by first padding out with zeros).
"""
if onp.shape(seed):
raise TypeError("PRNGKey seed must be a scalar.")
convert = lambda k: lax.reshape(lax.convert_element_type(k, onp.uint32), [1])
if isinstance(seed, (int, onp.ndarray)):
# Special handling of raw integer values, which may have be 64bit even
# when jax_enable_x64=False and we don't want to drop the top 32 bits
k1 = convert(onp.bitwise_and(onp.right_shift(seed, 32), 0xFFFFFFFF))
else:
k1 = convert(lax.shift_right_logical(seed, lax._const(seed, 32)))
k2 = convert(np.bitwise_and(seed, 0xFFFFFFFF))
return lax.concatenate([k1, k2], 0)
def _is_prng_key(key):
try:
return key.shape == (2,) and key.dtype == onp.uint32
except AttributeError:
return False
### utilities
def _make_rotate_left(dtype):
if not np.issubdtype(dtype, onp.integer):
raise TypeError("_rotate_left only accepts integer dtypes.")
nbits = onp.array(np.iinfo(dtype).bits, dtype)
def _rotate_left(x, d):
if lax.dtype(d) != lax.dtype(x):
d = lax.convert_element_type(d, x.dtype)
return lax.shift_left(x, d) | lax.shift_right_logical(x, nbits - d)
return _rotate_left
def _bit_stats(bits):
"""This is a debugging function to compute the statistics of bit fields."""
return onp.array([list(map(int, onp.binary_repr(x, 64))) for x in bits]).mean(0)
### hash function and split
def _threefry2x32_abstract_eval(*args):
if any(a.dtype != np.uint32 for a in args):
raise TypeError("Arguments to threefry2x32 must have uint32 type, got {}"
.format(args))
if all(isinstance(arg, abstract_arrays.ShapedArray) for arg in args):
shape = lax._broadcasting_shape_rule(*args)
aval = abstract_arrays.ShapedArray(shape, np.dtype(np.uint32))
else:
aval = abstract_arrays.UnshapedArray(np.dtype(np.uint32))
return (aval,) * 2
def _threefry2x32_lowering(key1, key2, x1, x2, use_rolled_loops=True):
"""Apply the Threefry 2x32 hash.
Args:
keypair: a pair of 32bit unsigned integers used for the key.
count: an array of dtype uint32 used for the counts.
Returns:
An array of dtype uint32 with the same shape as `count`.
"""
x = [x1, x2]
rotate_left = _make_rotate_left(onp.uint32)
def apply_round(v, rot):
v = v[:]
v[0] = v[0] + v[1]
v[1] = rotate_left(v[1], rot)
v[1] = v[0] ^ v[1]
return v
rotations = [onp.array([13, 15, 26, 6], dtype=onp.uint32),
onp.array([17, 29, 16, 24], dtype=onp.uint32)]
ks = [key1, key2, key1 ^ key2 ^ onp.uint32(0x1BD11BDA)]
x[0] = x[0] + ks[0]
x[1] = x[1] + ks[1]
if use_rolled_loops:
def rotate_list(xs): return xs[1:] + xs[:1]
def step(i, state):
x, ks, rotations = state
for r in rotations[0]:
x = apply_round(x, r)
new_x = [x[0] + ks[0], x[1] + ks[1] + asarray(i + 1, dtype=onp.uint32)]
return new_x, rotate_list(ks), rotate_list(rotations)
x, _, _ = lax.fori_loop(0, 5, step, (x, rotate_list(ks), rotations))
else:
for r in rotations[0]:
x = apply_round(x, r)
x[0] = x[0] + ks[1]
x[1] = x[1] + ks[2] + onp.uint32(1)
for r in rotations[1]:
x = apply_round(x, r)
x[0] = x[0] + ks[2]
x[1] = x[1] + ks[0] + onp.uint32(2)
for r in rotations[0]:
x = apply_round(x, r)
x[0] = x[0] + ks[0]
x[1] = x[1] + ks[1] + onp.uint32(3)
for r in rotations[1]:
x = apply_round(x, r)
x[0] = x[0] + ks[1]
x[1] = x[1] + ks[2] + onp.uint32(4)
for r in rotations[0]:
x = apply_round(x, r)
x[0] = x[0] + ks[2]
x[1] = x[1] + ks[0] + onp.uint32(5)
return tuple(x)
def _threefry2x32_gpu_translation_rule(c, k1, k2, x1, x2):
shape = lax.broadcast_shapes(
c.GetShape(k1).dimensions(), c.GetShape(k2).dimensions(),
c.GetShape(x1).dimensions(), c.GetShape(x2).dimensions())
rank = len(shape)
def _broadcast(x):
ndims = c.GetShape(x).rank()
return c.BroadcastInDim(x, shape, tuple(range(rank - ndims, rank)))
return cuda_prng.threefry2x32(
c, (_broadcast(k1), _broadcast(k2)), (_broadcast(x1), _broadcast(x2)))
threefry2x32_p = core.Primitive("threefry2x32")
threefry2x32_p.multiple_results = True
threefry2x32_p.def_impl(partial(xla.apply_primitive, threefry2x32_p))
threefry2x32_p.def_abstract_eval(_threefry2x32_abstract_eval)
batching.defbroadcasting(threefry2x32_p)
xla.translations[threefry2x32_p] = xla.lower_fun(
partial(_threefry2x32_lowering, use_rolled_loops=False), instantiate=True)
xla.backend_specific_translations['cpu'][threefry2x32_p] = xla.lower_fun(
partial(_threefry2x32_lowering, use_rolled_loops=True), instantiate=True)
if cuda_prng:
xla.backend_specific_translations['gpu'][threefry2x32_p] = \
_threefry2x32_gpu_translation_rule
@jit
def threefry_2x32(keypair, count):
"""Apply the Threefry 2x32 hash.
Args:
keypair: a pair of 32bit unsigned integers used for the key.
count: an array of dtype uint32 used for the counts.
Returns:
An array of dtype uint32 with the same shape as `count`.
"""
key1, key2 = keypair
if not lax.dtype(key1) == lax.dtype(key2) == lax.dtype(count) == onp.uint32:
msg = "threefry_2x32 requires uint32 arguments, got {}"
raise TypeError(msg.format([lax.dtype(x) for x in [key1, key2, count]]))
odd_size = count.size % 2
if odd_size:
x = list(np.split(np.concatenate([count.ravel(), onp.uint32([0])]), 2))
else:
x = list(np.split(count.ravel(), 2))
x = threefry2x32_p.bind(key1, key2, x[0], x[1])
out = np.concatenate(x)
assert out.dtype == onp.uint32
return lax.reshape(out[:-1] if odd_size else out, count.shape)
def split(key, num=2):
"""Splits a PRNG key into `num` new keys by adding a leading axis.
Args:
key: a PRNGKey (an array with shape (2,) and dtype uint32).
num: optional, a positive integer indicating the number of keys to produce
(default 2).
Returns:
An array with shape (num, 2) and dtype uint32 representing `num` new keys.
"""
return _split(key, num)
@partial(jit, static_argnums=(1,))
def _split(key, num):
counts = lax.tie_in(key, lax.iota(onp.uint32, num * 2))
return lax.reshape(threefry_2x32(key, counts), (num, 2))
def fold_in(key, data):
"""Folds in data to a PRNG key to form a new PRNG key.
Args:
key: a PRNGKey (an array with shape (2,) and dtype uint32).
data: a 32bit integer representing data to be folded in to the key.
Returns:
A new PRNGKey that is a deterministic function of the inputs and is
statistically safe for producing a stream of new pseudo-random values.
"""
return _fold_in(key, data)
@jit
def _fold_in(key, data):
key2 = lax.tie_in(key, PRNGKey(data))
return threefry_2x32(key, key2)
def _random_bits(key, bit_width, shape):
"""Sample uniform random bits of given width and shape using PRNG key."""
if not _is_prng_key(key):
raise TypeError("_random_bits got invalid prng key.")
if bit_width not in (32, 64):
raise TypeError("requires 32- or 64-bit field width.")
max_count = (bit_width // 32) * onp.prod(shape)
if max_count >= np.iinfo(onp.uint32).max:
# TODO(mattjj): just split the key here
raise TypeError("requesting more random bits than a single call provides.")
counts = lax.tie_in(key, lax.iota(onp.uint32, max_count))
bits = threefry_2x32(key, counts)
if bit_width == 64:
bits = [lax.convert_element_type(x, onp.uint64) for x in np.split(bits, 2)]
bits = lax.shift_left(bits[0], onp.uint64(32)) | bits[1]
return lax.reshape(bits, shape)
### random samplers
def _check_shape(name, shape, *param_shapes):
try:
shape = tuple(map(int, shape))
except TypeError:
msg = "{} requires a concrete tuple of integers as shape argument, got {}."
raise ValueError(msg.format(name, shape))
if param_shapes:
shape_ = lax.broadcast_shapes(shape, *param_shapes)
if shape != shape_:
msg = ("{} parameter shapes must be broadcast-compatible with shape "
"argument, and the result of broadcasting the shapes must equal "
"the shape argument, but got result {} for shape argument {}.")
raise ValueError(msg.format(name, shape_, shape))
def uniform(key, shape=(), dtype=onp.float64, minval=0., maxval=1.):
"""Sample uniform random values in [minval, maxval) with given shape/dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
minval: optional, a minimum (inclusive) value for the range (default 0).
maxval: optional, a maximum (exclusive) value for the range (default 1).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _uniform(key, shape, dtype, minval, maxval)
@partial(jit, static_argnums=(1, 2))
def _uniform(key, shape, dtype, minval, maxval):
_check_shape("uniform", shape)
if not np.issubdtype(dtype, onp.floating):
raise TypeError("uniform only accepts floating point dtypes.")
minval = lax.convert_element_type(minval, dtype)
maxval = lax.convert_element_type(maxval, dtype)
finfo = np.finfo(dtype)
nbits, nmant = finfo.bits, finfo.nmant
if nbits not in (32, 64):
raise TypeError("uniform only accepts 32- or 64-bit dtypes.")
bits = _random_bits(key, nbits, shape)
# The strategy here is to randomize only the mantissa bits with an exponent of
# 1 (after applying the bias), then shift and scale to the desired range. The
# bit-level transformation we use relies on Numpy and XLA having bit-for-bit
# equivalent float representations, which might not be true on all platforms.
float_bits = lax.bitwise_or(
lax.shift_right_logical(bits, onp.array(nbits - nmant, lax.dtype(bits))),
onp.array(1., dtype).view(onp.uint32 if nbits == 32 else onp.uint64))
floats = lax.bitcast_convert_type(float_bits, dtype) - onp.array(1., dtype)
return lax.max(
minval,
lax.reshape(floats * (maxval - minval) + minval, shape))
def randint(key, shape, minval, maxval, dtype=onp.int64):
"""Sample uniform random values in [minval, maxval) with given shape/dtype.
Args:
key: a PRNGKey used as the random key.
shape: a tuple of nonnegative integers representing the shape.
minval: int or array of ints broadcast-compatible with ``shape``, a minimum
(inclusive) value for the range.
maxval: int or array of ints broadcast-compatible with ``shape``, a maximum
(exclusive) value for the range.
dtype: optional, an int dtype for the returned values (default int64 if
jax_enable_x64 is true, otherwise int32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _randint(key, shape, minval, maxval, dtype)
@partial(jit, static_argnums=(1, 4))
def _randint(key, shape, minval, maxval, dtype):
_check_shape("randint", shape, onp.shape(minval), onp.shape(maxval))
if not np.issubdtype(dtype, onp.integer):
raise TypeError("randint only accepts integer dtypes.")
minval = lax.convert_element_type(minval, dtype)
maxval = lax.convert_element_type(maxval, dtype)
nbits = np.iinfo(dtype).bits
if nbits not in (32, 64):
raise TypeError("randint only accepts 32- or 64-bit dtypes.")
# if we don't have minval < maxval, just always return minval
# https://github.com/google/jax/issues/222
maxval = lax.max(lax.add(minval, onp.array(1, dtype)), maxval)
# This algorithm is biased whenever (maxval - minval) is not a power of 2.
# We generate double the number of random bits required by the dtype so as to
# reduce that bias.
k1, k2 = split(key)
rbits = lambda key: _random_bits(key, nbits, shape)
higher_bits, lower_bits = rbits(k1), rbits(k2)
unsigned_dtype = onp.uint32 if nbits == 32 else onp.uint64
span = lax.convert_element_type(maxval - minval, unsigned_dtype)
# To compute a remainder operation on an integer that might have twice as many
# bits as we can represent in the native unsigned dtype, we compute a
# multiplier equal to 2**nbits % span (using that nbits is 32 or 64).
multiplier = lax.rem(onp.array(2**16, unsigned_dtype), span)
multiplier = lax.rem(lax.mul(multiplier, multiplier), span)
if nbits == 64:
multiplier = lax.rem(lax.mul(multiplier, multiplier), span)
random_offset = lax.add(lax.mul(lax.rem(higher_bits, span), multiplier),
lax.rem(lower_bits, span))
random_offset = lax.rem(random_offset, span)
return lax.add(minval, lax.convert_element_type(random_offset, dtype))
def shuffle(key, x, axis=0):
"""Shuffle the elements of an array uniformly at random along an axis.
Args:
key: a PRNGKey used as the random key.
x: the array to be shuffled.
axis: optional, an int axis along which to shuffle (default 0).
Returns:
A shuffled version of x.
"""
return _shuffle(key, x, axis)
@partial(jit, static_argnums=(2,))
def _shuffle(key, x, axis):
# On parallel architectures, Fisher-Yates is more expensive than doing
# multiple sorts. This algorithm is based on one developed and analyzed by
# tjablin@. We sort according to randomly-generated 32bit keys, but those keys
# may have collisions. If we repeat the process, using fresh 32bit keys for
# each sort, then whenever all pairs of elements have been assigned distinct
# keys at some iteration (or equivalently when the strings formed by
# concatenating the successive keys for each element are all distinct) then we
# are guaranteed to have a perfect sample (assuming that either the sort is
# stable or that any bias is not value-dependent). Since checking uniqueness
# at runtime may be expensive, we use a heuristic static stop criterion
# developed by tjablin@. See tensorflow/compiler/tf2xla/random_ops.cc for more
# info, and for the original implementation of this algorithm. See also
# Section 2 of http://people.csail.mit.edu/costis/6896sp11/lec5s.pdf for
# another analysis (where the keys are generated one bit at a time).
exponent = 3 # see tjablin@'s analysis for explanation of this parameter
uint32max = np.iinfo(onp.uint32).max
num_rounds = int(onp.ceil(exponent * onp.log(x.size) / onp.log(uint32max)))
for _ in range(num_rounds):
key, subkey = split(key)
sort_keys = _random_bits(subkey, 32, x.shape)
_, x = lax.sort_key_val(sort_keys, x, axis)
return x
def normal(key, shape=(), dtype=onp.float64):
"""Sample standard normal random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _normal(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _normal(key, shape, dtype):
_check_shape("normal", shape)
lo = onp.nextafter(onp.array(-1., dtype), 0., dtype=dtype)
hi = onp.array(1., dtype)
u = uniform(key, shape, dtype, lo, hi)
return onp.array(onp.sqrt(2), dtype) * lax.erf_inv(u)
def multivariate_normal(key, mean, cov, shape=None, dtype=onp.float64):
"""Sample multivariate normal random values with given mean and covariance.
Args:
key: a PRNGKey used as the random key.
mean: a mean vector of shape ``(..., n)``.
cov: a positive definite covariance matrix of shape ``(..., n, n)``. The
batch shape ``...`` must be broadcast-compatible with that of ``mean``.
shape: optional, a tuple of nonnegative integers specifying the result
batch shape; that is, the prefix of the result shape excluding the last
axis. Must be broadcast-compatible with ``mean.shape[:-1]`` and
``cov.shape[:-2]``. The default (None) produces a result batch shape by
broadcasting together the batch shapes of ``mean`` and ``cov``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and shape given by
``shape + mean.shape[-1:]`` if ``shape`` is not None, or else
``broadcast_shapes(mean.shape[:-1], cov.shape[:-2]) + mean.shape[-1:]``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _multivariate_normal(key, mean, cov, shape, dtype)
@partial(jit, static_argnums=(3, 4))
def _multivariate_normal(key, mean, cov, shape, dtype):
if not onp.ndim(mean) >= 1:
msg = "multivariate_normal requires mean.ndim >= 1, got mean.ndim == {}"
raise ValueError(msg.format(onp.ndim(mean)))
if not onp.ndim(cov) >= 2:
msg = "multivariate_normal requires cov.ndim >= 2, got cov.ndim == {}"
raise ValueError(msg.format(onp.ndim(cov)))
n = mean.shape[-1]
if onp.shape(cov)[-2:] != (n, n):
msg = ("multivariate_normal requires cov.shape == (..., n, n) for n={n}, "
"but got cov.shape == {shape}.")
raise ValueError(msg.format(n=n, shape=onp.shape(cov)))
if shape is None:
shape = lax.broadcast_shapes(mean.shape[:-1], cov.shape[:-2])
else:
_check_shape("normal", shape, mean.shape[:-1], mean.shape[:-2])
chol_factor = cholesky(cov)
normal_samples = normal(key, shape + mean.shape[-1:], dtype)
return mean + np.tensordot(normal_samples, chol_factor, [-1, 1])
def truncated_normal(key, lower, upper, shape=None, dtype=onp.float64):
"""Sample truncated standard normal random values with given shape and dtype.
Args:
key: a PRNGKey used as the random key.
lower: a float or array of floats representing the lower bound for
truncation. Must be broadcast-compatible with ``upper``.
upper: a float or array of floats representing the upper bound for
truncation. Must be broadcast-compatible with ``lower``.
shape: optional, a tuple of nonnegative integers specifying the result
shape. Must be broadcast-compatible with ``lower`` and ``upper``. The
default (None) produces a result shape by broadcasting ``lower`` and
``upper``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and shape given by ``shape`` if
``shape`` is not None, or else by broadcasting ``lower`` and ``upper``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _truncated_normal(key, lower, upper, shape, dtype)
@partial(jit, static_argnums=(3, 4))
def _truncated_normal(key, lower, upper, shape, dtype):
if shape is None:
shape = lax.broadcast_shapes(onp.shape(lower), onp.shape(upper))
else:
_check_shape("truncated_normal", shape, onp.shape(lower), onp.shape(upper))
sqrt2 = onp.array(onp.sqrt(2), dtype)
a = lax.erf(lax.convert_element_type(lower, dtype) / sqrt2)
b = lax.erf(lax.convert_element_type(upper, dtype) / sqrt2)
if not np.issubdtype(dtype, onp.floating):
raise TypeError("truncated_normal only accepts floating point dtypes.")
u = uniform(key, shape, dtype, minval=np.finfo(dtype).tiny)
return sqrt2 * lax.erf_inv(a + u * (b - a))
def bernoulli(key, p=onp.float32(0.5), shape=None):
"""Sample Bernoulli random values with given shape and mean.
Args:
key: a PRNGKey used as the random key.
p: optional, a float or array of floats for the mean of the random
variables. Must be broadcast-compatible with ``shape``. Default 0.5.
shape: optional, a tuple of nonnegative integers representing the result
shape. Must be broadcast-compatible with ``p.shape``. The default (None)
produces a result shape equal to ``p.shape``.
Returns:
A random array with boolean dtype and shape given by ``shape`` if ``shape``
is not None, or else ``p.shape``.
"""
dtype = dtypes.canonicalize_dtype(lax.dtype(p))
if not np.issubdtype(dtype, onp.floating):
msg = "bernoulli probability `p` must have a floating dtype, got {}."
raise TypeError(msg.format(dtype))
p = lax.convert_element_type(p, dtype)
return _bernoulli(key, p, shape)
@partial(jit, static_argnums=(2,))
def _bernoulli(key, p, shape):
if shape is None:
shape = onp.shape(p)
else:
_check_shape("bernoulli", shape, onp.shape(p))
return uniform(key, shape, lax.dtype(p)) < p
def beta(key, a, b, shape=None, dtype=onp.float64):
"""Sample Bernoulli random values with given shape and mean.
Args:
key: a PRNGKey used as the random key.
a: a float or array of floats broadcast-compatible with ``shape``
representing the first parameter "alpha".
b: a float or array of floats broadcast-compatible with ``shape``
representing the second parameter "beta".
shape: optional, a tuple of nonnegative integers specifying the result
shape. Must be broadcast-compatible with ``a`` and ``b``. The default
(None) produces a result shape by broadcasting ``a`` and ``b``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and shape given by ``shape`` if
``shape`` is not None, or else by broadcasting ``a`` and ``b``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _beta(key, a, b, shape, dtype)
def _beta(key, a, b, shape, dtype):
if shape is None:
shape = lax.broadcast_shapes(onp.shape(a), onp.shape(b))
else:
_check_shape("beta", shape, onp.shape(a), onp.shape(b))
a = lax.convert_element_type(a, dtype)
b = lax.convert_element_type(b, dtype)
key_a, key_b = split(key)
a = np.broadcast_to(a, shape)
b = np.broadcast_to(b, shape)
gamma_a = gamma(key_a, a, shape, dtype)
gamma_b = gamma(key_b, b, shape, dtype)
return gamma_a / (gamma_a + gamma_b)
def cauchy(key, shape=(), dtype=onp.float64):
"""Sample Cauchy random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _cauchy(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _cauchy(key, shape, dtype):
_check_shape("cauchy", shape)
u = uniform(key, shape, dtype, minval=np.finfo(dtype).eps, maxval=1.)
pi = _constant_like(u, onp.pi)
return lax.tan(lax.mul(pi, lax.sub(u, _constant_like(u, 0.5))))
def dirichlet(key, alpha, shape=None, dtype=onp.float64):
"""Sample Cauchy random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
alpha: an array of shape ``(..., n)`` used as the concentration
parameter of the random variables.
shape: optional, a tuple of nonnegative integers specifying the result
batch shape; that is, the prefix of the result shape excluding the last
element of value ``n``. Must be broadcast-compatible with
``alpha.shape[:-1]``. The default (None) produces a result shape equal to
``alpha.shape``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and shape given by
``shape + (alpha.shape[-1],)`` if ``shape`` is not None, or else
``alpha.shape``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _dirichlet(key, alpha, shape, dtype)
@partial(jit, static_argnums=(2, 3))
def _dirichlet(key, alpha, shape, dtype):
if not onp.ndim(alpha) >= 1:
msg = "dirichlet requires alpha.ndim >= 1, got alpha.ndim == {}"
raise ValueError(msg.format(onp.ndim(alpha)))
if shape is None:
shape = onp.shape(alpha)[:-1]
else:
_check_shape("dirichlet", shape, onp.shape(alpha)[:-1])
alpha = lax.convert_element_type(alpha, dtype)
gamma_samples = gamma(key, alpha, shape + onp.shape(alpha)[-1:], dtype)
return gamma_samples / np.sum(gamma_samples, axis=-1, keepdims=True)
def exponential(key, shape=(), dtype=onp.float64):
"""Sample Exponential random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _exponential(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _exponential(key, shape, dtype):
_check_shape("exponential", shape)
u = uniform(key, shape, dtype)
# taking 1 - u to move the domain of log to (0, 1] instead of [0, 1)
return lax.neg(lax.log1p(lax.neg(u)))
def _gamma_one(key, alpha):
# Ref: A simple method for generating gamma variables, George Marsaglia and Wai Wan Tsang
# The algorithm can also be founded in:
# https://en.wikipedia.org/wiki/Gamma_distribution#Generating_gamma-distributed_random_variables
zero = _constant_like(alpha, 0)
one = _constant_like(alpha, 1)
minus_one = _constant_like(alpha, -1)
one_over_two = _constant_like(alpha, 0.5)
one_over_three = _constant_like(alpha, 1. / 3.)
squeeze_const = _constant_like(alpha, 0.0331)
dtype = lax.dtype(alpha)
key, subkey = split(key)
# for alpha < 1, we boost alpha to alpha + 1 and get a sample according to
# Gamma(alpha) ~ Gamma(alpha+1) * Uniform()^(1 / alpha)
boost = lax.select(lax.ge(alpha, one),
one,
lax.pow(uniform(subkey, (), dtype=dtype), lax.div(one, alpha)))
alpha = lax.select(lax.ge(alpha, one), alpha, lax.add(alpha, one))
d = lax.sub(alpha, one_over_three)
c = lax.div(one_over_three, lax.pow(d, one_over_two))
def _cond_fn(kXVU):
_, X, V, U = kXVU
# TODO: use lax.cond when its batching rule is supported
# The reason is to avoid evaluating second condition which involves log+log
# if the first condition is satisfied
cond = lax.bitwise_and(lax.ge(U, lax.sub(one, lax.mul(squeeze_const, lax.mul(X, X)))),
lax.ge(lax.log(U), lax.add(lax.mul(X, one_over_two),
lax.mul(d, lax.add(lax.sub(one, V),
lax.log(V))))))
return cond
def _body_fn(kXVU):
def _next_kxv(kxv):
key = kxv[0]
key, subkey = split(key)
x = normal(subkey, (), dtype=dtype)
v = lax.add(one, lax.mul(x, c))
return key, x, v
key = kXVU[0]
key, x_key, U_key = split(key, 3)
_, x, v = lax.while_loop(lambda kxv: lax.le(kxv[2], zero), _next_kxv, (x_key, zero, minus_one))
X = lax.mul(x, x)
V = lax.mul(lax.mul(v, v), v)
U = uniform(U_key, (), dtype=dtype)
return key, X, V, U
# initial state is chosen such that _cond_fn will return True
_, _, V, _ = lax.while_loop(_cond_fn, _body_fn, (key, zero, one, _constant_like(alpha, 2)))
z = lax.mul(lax.mul(d, V), boost)
return lax.select(lax.eq(z, zero), np.finfo(z.dtype).tiny, z)
_bivariate_coef = [[0.16009398, -0.094634816, 0.025146379, -0.0030648348,
1, 0.3266811, 0.10406087, 0.0014179033],
[0.53487893, 0.12980707, 0.06573594, -0.0015649787,
0.16639465, 0.020070098, -0.0035938937, -0.00058392601],
[0.040121005, -0.0065914079, -0.002628604, -0.0013441777,
0.017050642, -0.0021309345, 0.00085092385, -1.5248239e-07]]
def _gamma_grad_one(z, alpha):
# Ref 1: Pathwise Derivatives Beyond the Reparameterization Trick, Martin & Fritz
# Ref 2: Case 4 follows https://github.com/fritzo/notebooks/blob/master/gamma-reparameterized.ipynb
# TODO: use lax.cond instead of lax.while_loop when its batching rule is available
# See https://github.com/google/jax/issues/490
def _case1(zagf):
z, alpha, _, flag = zagf
# dz = - dCDF(z; a) / pdf(z; a)
# pdf = z^(a-1) * e^(-z) / Gamma(a)
# CDF(z; a) = IncompleteGamma(a, z) / Gamma(a)
# dCDF(z; a) = (dIncompleteGamma - IncompleteGamma * Digamma(a)) / Gamma(a)
# =: unnormalized_dCDF / Gamma(a)
# IncompleteGamma ~ z^a [ 1/a - z/(a+1) + z^2/2!(a+2) - z^3/3!(a+3) + z^4/4!(a+4) - z^5/5!(a+5) ]
# =: z^a * term1
# dIncompleteGamma ~ z^a * log(z) * term1 - z^a [1/a^2 - z/(a+1)^2 + z^2/2!(a+2)^2
# - z^3/3!(a+3)^2 + z^4/4!(a+4)^2 - z^5/5!(a+5)^2 ]
# =: z^a * log(z) * term1 - z^a * term2
# unnormalized_dCDF = z^a { [log(z) - Digamma(a)] * term1 - term2 }
zi = 1.0
update = zi / alpha
term1 = update
term2 = update / alpha
for i in range(1, 6):
zi = -zi * z / i
update = zi / (alpha + i)
term1 = term1 + update
term2 = term2 + update / (alpha + i)
unnormalized_cdf_dot = np.power(z, alpha) * ((np.log(z) - lax.digamma(alpha)) * term1 - term2)
unnormalized_pdf = np.power(z, alpha - 1) * np.exp(-z)
grad = -unnormalized_cdf_dot / unnormalized_pdf
return z, alpha, grad, ~flag
def _cond2(zagf):
z, alpha, _, flag = zagf
return (~flag) & (alpha > 8.0) & ((z < 0.9 * alpha) | (z > 1.1 * alpha))
def _case2(zagf):
z, alpha, _, flag = zagf
# Formula 58 of [1]
sqrt_8a = np.sqrt(8 * alpha)
z_minus_a = z - alpha
log_z_div_a = np.log(z / alpha)
sign = np.where(z < alpha, lax._const(z, 1.0), lax._const(z, -1.0))
term1 = 4 * (z + alpha) / (sqrt_8a * z_minus_a * z_minus_a)
term2 = log_z_div_a * (sqrt_8a / z_minus_a + sign * np.power(z_minus_a - alpha * log_z_div_a, -1.5))
term3 = z * (1.0 + 1.0 / (12 * alpha) + 1.0 / (288 * alpha * alpha)) / sqrt_8a
grad = (term1 + term2) * term3
return z, alpha, grad, ~flag
def _cond3(zagf):
z, alpha, _, flag = zagf
return (~flag) & (alpha > 8.0) & (z >= 0.9 * alpha) & (z <= 1.1 * alpha)
def _case3(zagf):
z, alpha, _, flag = zagf
# Formula 59 of [1]
z_div_a = np.divide(z, alpha)
aa = alpha * alpha
term1 = 1440 * alpha + 6 * z_div_a * (53 - 120 * z) - 65 * z_div_a * z_div_a + 3600 * z + 107
term2 = 1244160 * alpha * aa
term3 = 1 + 24 * alpha + 288 * aa
grad = term1 * term3 / term2
return z, alpha, grad, ~flag
def _case4(zagf):
z, alpha, _, flag = zagf
# Ref [2]
u = np.log(z / alpha)
v = np.log(alpha)
c = []
for i in range(8):
c.append(_bivariate_coef[0][i] + u * (_bivariate_coef[1][i] + u * _bivariate_coef[2][i]))
p = c[0] + v * (c[1] + v * (c[2] + v * c[3]))
q = c[4] + v * (c[5] + v * (c[6] + v * c[7]))
grad = np.exp(p / np.maximum(q, 0.01))
return z, alpha, grad, ~flag
_, _, grad, flag = lax.while_loop(lambda zagf: (~zagf[3]) & (zagf[0] < 0.8),
_case1,
(z, alpha, lax._const(alpha, 0.0), False))
_, _, grad, flag = lax.while_loop(_cond2, _case2, (z, alpha, grad, flag))
_, _, grad, flag = lax.while_loop(_cond3, _case3, (z, alpha, grad, flag))
_, _, grad, flag = lax.while_loop(lambda zagf: ~zagf[3], _case4, (z, alpha, grad, flag))
return grad
def _gamma_grad(sample, a):
samples = np.reshape(sample, -1)
alphas = np.reshape(a, -1)
if xla_bridge.get_backend().platform == 'cpu':
grads = lax.map(lambda args: _gamma_grad_one(*args), (samples, alphas))
else:
grads = vmap(_gamma_grad_one)(samples, alphas)
return grads.reshape(onp.shape(a))
def _gamma_impl(key, a):
a_shape = np.shape(a)
# split key to match the shape of a
key_ndim = np.ndim(key) - 1
key = np.reshape(key, (-1, 2))
key = vmap(split, in_axes=(0, None))(key, prod(a_shape[key_ndim:]))
keys = np.reshape(key, (-1, 2))
alphas = np.reshape(a, -1)
if xla_bridge.get_backend().platform == 'cpu':
samples = lax.map(lambda args: _gamma_one(*args), (keys, alphas))
else:
samples = vmap(_gamma_one)(keys, alphas)
return np.reshape(samples, a_shape),
def _gamma_batching_rule(batched_args, batch_dims):
k, a = batched_args
bk, ba = batch_dims
size = next(t.shape[i] for t, i in zip(batched_args, batch_dims) if i is not None)
k = batching.bdim_at_front(k, bk, size)
a = batching.bdim_at_front(a, ba, size)
return random_gamma_p.bind(k, a), (0,)
random_gamma_p = core.Primitive('random_gamma')
random_gamma_p.multiple_results = True
random_gamma_p.def_impl(_gamma_impl)
random_gamma_p.def_abstract_eval(lambda key, a: (abstract_arrays.raise_to_shaped(a),))
ad.defjvp2(random_gamma_p, None, lambda tangent, ans, key, a: (tangent * _gamma_grad(ans[0], a),))
xla.translations[random_gamma_p] = xla.lower_fun(_gamma_impl, instantiate=True)
batching.primitive_batchers[random_gamma_p] = _gamma_batching_rule
def gamma(key, a, shape=None, dtype=onp.float64):
"""Sample Gamma random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
a: a float or array of floats broadcast-compatible with ``shape``
representing the parameter of the distribution.
shape: optional, a tuple of nonnegative integers specifying the result
shape. Must be broadcast-compatible with ``a``. The default (None)
produces a result shape equal to ``a.shape``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and with shape given by ``shape`` if
``shape`` is not None, or else by ``a.shape``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _gamma(key, a, shape, dtype)
@partial(jit, static_argnums=(2, 3))
def _gamma(key, a, shape, dtype):
if shape is None:
shape = onp.shape(a)
else:
_check_shape("gamma", shape, onp.shape(a))
a = lax.convert_element_type(a, dtype)
if onp.shape(a) != shape:
a = np.broadcast_to(a, shape)
return random_gamma_p.bind(key, a)[0]
def gumbel(key, shape=(), dtype=onp.float64):
"""Sample Gumbel random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _gumbel(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _gumbel(key, shape, dtype):
_check_shape("gumbel", shape)
return -np.log(-np.log(
uniform(key, shape, dtype, minval=np.finfo(dtype).eps, maxval=1.)))
def categorical(key, logits, axis=-1, shape=None):
"""Sample random values from categorical distributions.
Args:
key: a PRNGKey used as the random key.
logits: Unnormalized log probabilities of the categorical distribution(s) to sample from,
so that `softmax(logits, axis)` gives the corresponding probabilities.
axis: Axis along which logits belong to the same categorical distribution.
shape: Optional, a tuple of nonnegative integers representing the result shape.
Must be broadcast-compatible with ``onp.delete(logits.shape, axis)``.
The default (None) produces a result shape equal to ``onp.delete(logits.shape, axis)``.
Returns:
A random array with int dtype and shape given by ``shape`` if ``shape``
is not None, or else ``onp.delete(logits.shape, axis)``.
"""
if axis >= 0:
axis -= len(logits.shape)
batch_shape = tuple(onp.delete(logits.shape, axis))
if shape is None:
shape = batch_shape
else:
_check_shape("categorical", shape, batch_shape)
sample_shape = shape[:len(shape)-len(batch_shape)]
return np.argmax(gumbel(key, sample_shape + logits.shape, logits.dtype) + logits, axis=axis)
def laplace(key, shape=(), dtype=onp.float64):
"""Sample Laplace random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _laplace(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _laplace(key, shape, dtype):
_check_shape("laplace", shape)
u = uniform(
key, shape, dtype, minval=-1. + np.finfo(dtype).epsneg, maxval=1.)
return lax.mul(lax.sign(u), lax.log1p(lax.neg(lax.abs(u))))
def logistic(key, shape=(), dtype=onp.float64):
"""Sample logistic random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
shape: optional, a tuple of nonnegative integers representing the result
shape. Default ().
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified shape and dtype.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _logistic(key, shape, dtype)
@partial(jit, static_argnums=(1, 2))
def _logistic(key, shape, dtype):
_check_shape("logistic", shape)
return logit(uniform(key, shape, dtype))
def pareto(key, b, shape=None, dtype=onp.float64):
"""Sample Pareto random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
a: a float or array of floats broadcast-compatible with ``shape``
representing the parameter of the distribution.
shape: optional, a tuple of nonnegative integers specifying the result
shape. Must be broadcast-compatible with ``b``. The default (None)
produces a result shape equal to ``b.shape``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and with shape given by ``shape`` if
``shape`` is not None, or else by ``b.shape``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _pareto(key, b, shape, dtype)
@partial(jit, static_argnums=(2, 3))
def _pareto(key, b, shape, dtype):
if shape is None:
shape = onp.shape(b)
else:
_check_shape("pareto", shape)
b = lax.convert_element_type(b, dtype)
e = exponential(key, shape, dtype)
return lax.exp(e / b)
def t(key, df, shape=(), dtype=onp.float64):
"""Sample Student's t random values with given shape and float dtype.
Args:
key: a PRNGKey used as the random key.
df: a float or array of floats broadcast-compatible with ``shape``
representing the parameter of the distribution.
shape: optional, a tuple of nonnegative integers specifying the result
shape. Must be broadcast-compatible with ``df``. The default (None)
produces a result shape equal to ``df.shape``.
dtype: optional, a float dtype for the returned values (default float64 if
jax_enable_x64 is true, otherwise float32).
Returns:
A random array with the specified dtype and with shape given by ``shape`` if
``shape`` is not None, or else by ``df.shape``.
"""
dtype = dtypes.canonicalize_dtype(dtype)
return _t(key, df, shape, dtype)
@partial(jit, static_argnums=(2, 3))
def _t(key, df, shape, dtype):
if shape is None:
shape = onp.shape(df)
else:
_check_shape("t", shape, onp.shape(df))
df = lax.convert_element_type(df, dtype)
key_n, key_g = split(key)
n = normal(key_n, shape, dtype)
two = _constant_like(n, 2)
half_df = lax.div(df, two)
g = gamma(key_n, half_df, shape, dtype)
return n * np.sqrt(half_df / g)