mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 03:46:06 +00:00
1491 lines
57 KiB
Python
1491 lines
57 KiB
Python
# Copyright 2018 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from collections import defaultdict, deque
|
|
import itertools as it
|
|
import operator as op
|
|
from typing import (Any, Callable, Dict, List, Optional, Sequence, Set, Type,
|
|
Tuple, Union, NamedTuple)
|
|
from warnings import warn
|
|
import weakref
|
|
|
|
from absl import logging
|
|
import numpy as np
|
|
|
|
from ..config import config
|
|
from .. import core
|
|
from jax._src import ad_util
|
|
from jax._src import dtypes
|
|
from .. import linear_util as lu
|
|
from jax._src import source_info_util
|
|
from jax._src.abstract_arrays import (make_shaped_array, array_types)
|
|
from ..core import (ConcreteArray, ShapedArray, AbstractToken,
|
|
Literal, pp_eqn_compact, raise_to_shaped, abstract_token)
|
|
from jax._src.pprint_util import pp
|
|
from .._src.util import (partial, partialmethod, cache, prod, unzip2,
|
|
extend_name_stack, wrap_name, safe_zip, safe_map)
|
|
from ..lib import xla_bridge as xb
|
|
from ..lib import xla_client as xc
|
|
from . import partial_eval as pe
|
|
from . import ad
|
|
from . import masking
|
|
|
|
map, unsafe_map = safe_map, map
|
|
zip, unsafe_zip = safe_zip, zip
|
|
|
|
xe = xc._xla
|
|
xops = xc._xla.ops
|
|
|
|
# Types
|
|
Backend = Any # xc.LocalBackend (why does mypy not like this?)
|
|
Device = Any # xc.Device
|
|
PyLocalBuffer = Any
|
|
|
|
XlaOp = Any # xla_extension.XlaOp
|
|
XlaShape = Any # xla_client.Shape
|
|
XlaComputationBuilder = Any # xla_bridge._JaxComputationBuilder
|
|
XlaExecutable = Any # xla_extension.LocalExecutable
|
|
|
|
# This flag is set on exit; no logging should be attempted
|
|
_on_exit = False
|
|
|
|
def identity(x): return x
|
|
|
|
_scalar_types = dtypes.python_scalar_dtypes.keys()
|
|
|
|
# unit representation
|
|
def _make_unit_constant(c): return xb.constant_general(c, np.zeros((), dtype=np.dtype('bool')))
|
|
def _make_unit_shape(_): return (xc.Shape.array_shape(np.dtype('bool'), ()),)
|
|
def _device_put_unit(_, device):
|
|
backend = xb.get_device_backend(device)
|
|
return (backend.buffer_from_pyval(np.zeros((), dtype=np.dtype('bool')),
|
|
device),)
|
|
def _make_array_shape(a):
|
|
if a.dtype is dtypes.float0:
|
|
return (xc.Shape.array_shape(np.dtype('bool'), a.shape),)
|
|
else:
|
|
return (xc.Shape.array_shape(a.dtype, a.shape),)
|
|
|
|
tracebacks = {}
|
|
def make_op_metadata(primitive: core.Primitive,
|
|
params: Dict, *,
|
|
name_stack: str = "",
|
|
source_info: Optional[source_info_util.Traceback] = None
|
|
) -> xc.OpMetadata:
|
|
tracebacks[str(pp(name_stack) >> pp_eqn_compact(primitive.name, params))] = source_info
|
|
frame = source_info_util.user_frame(source_info) if source_info else None
|
|
return xc.OpMetadata(
|
|
op_type=primitive.name,
|
|
op_name=str(pp(name_stack) >> pp_eqn_compact(primitive.name, params)),
|
|
source_file=frame.file_name if frame else None,
|
|
source_line=frame.line_num if frame else None)
|
|
|
|
### handlers
|
|
|
|
xb.register_constant_handler(core.Unit, lambda c, *_: _make_unit_constant(c))
|
|
|
|
def aval_to_xla_shapes(aval):
|
|
try:
|
|
return xla_shape_handlers[type(aval)](aval)
|
|
except KeyError as err:
|
|
raise TypeError(f"No xla_shape_handler for type: {type(aval)}") from err
|
|
|
|
xla_shape_handlers: Dict[Type[core.AbstractValue], Callable] = {
|
|
core.AbstractUnit: _make_unit_shape,
|
|
ShapedArray: _make_array_shape,
|
|
ConcreteArray: _make_array_shape,
|
|
}
|
|
|
|
def aval_to_result_handler(device: Optional[Device], aval: core.AbstractValue) -> Callable:
|
|
try:
|
|
return xla_result_handlers[type(aval)](device, aval)
|
|
except KeyError as err:
|
|
raise TypeError(f"No xla_result_handler for type: {type(aval)}") from err
|
|
|
|
def array_result_handler(device: Optional[Device], aval: core.ShapedArray):
|
|
if aval.dtype is dtypes.float0:
|
|
return lambda _: np.zeros(aval.shape, dtypes.float0)
|
|
return partial(make_device_array, raise_to_shaped(aval), device)
|
|
|
|
|
|
xla_result_handlers: Dict[Type[core.AbstractValue], Callable[..., Callable]] = {
|
|
core.AbstractUnit: lambda _, __: lambda _: core.unit,
|
|
ShapedArray: array_result_handler,
|
|
ConcreteArray: array_result_handler,
|
|
}
|
|
|
|
def device_put(x, device: Optional[Device] = None) -> Tuple[Any]:
|
|
x = canonicalize_dtype(x)
|
|
try:
|
|
return device_put_handlers[type(x)](x, device)
|
|
except KeyError as err:
|
|
raise TypeError(f"No device_put handler for type: {type(x)}") from err
|
|
|
|
def _device_put_array(x, device: Optional[Device]):
|
|
backend = xb.get_device_backend(device)
|
|
if x.dtype is dtypes.float0:
|
|
x = np.zeros(x.shape, dtype=np.dtype(bool))
|
|
return (backend.buffer_from_pyval(x, device),)
|
|
|
|
def _device_put_scalar(x, device):
|
|
return _device_put_array(dtypes.coerce_to_array(x), device)
|
|
|
|
device_put_handlers: Dict[Any, Callable[[Any, Optional[Device]], Tuple[Any]]] = {
|
|
core.Unit: _device_put_unit
|
|
}
|
|
device_put_handlers.update((t, _device_put_array) for t in array_types)
|
|
device_put_handlers.update((t, _device_put_scalar) for t in _scalar_types)
|
|
|
|
# TODO(mattjj): try to remove this canonicalize_dtype stuff
|
|
def canonicalize_dtype(x):
|
|
typ = type(x)
|
|
handler = canonicalize_dtype_handlers.get(typ)
|
|
if handler: return handler(x)
|
|
for typ in typ.mro():
|
|
handler = canonicalize_dtype_handlers.get(typ)
|
|
if handler: return handler(x)
|
|
if hasattr(x, '__jax_array__'):
|
|
return canonicalize_dtype(x.__jax_array__())
|
|
raise TypeError(f"No canonicalize_dtype handler for type: {type(x)}")
|
|
|
|
def _canonicalize_ndarray_dtype(x):
|
|
return np.asarray(x, dtypes.canonicalize_dtype(dtypes.result_type(x)))
|
|
|
|
def _canonicalize_python_scalar_dtype(typ, x):
|
|
return np.asarray(
|
|
x, dtypes.canonicalize_dtype(dtypes._scalar_type_to_dtype(typ, x)))
|
|
|
|
canonicalize_dtype_handlers: Dict[Any, Callable] = {core.Unit: identity}
|
|
canonicalize_dtype_handlers.update(
|
|
(t, _canonicalize_ndarray_dtype) for t in array_types)
|
|
canonicalize_dtype_handlers.update(
|
|
(t, partial(_canonicalize_python_scalar_dtype, t)) for t in _scalar_types)
|
|
|
|
def abstractify(x) -> core.AbstractValue:
|
|
typ = type(x)
|
|
aval_fn = pytype_aval_mappings.get(typ)
|
|
if aval_fn: return aval_fn(x)
|
|
for typ in typ.mro():
|
|
aval_fn = pytype_aval_mappings.get(typ)
|
|
if aval_fn: return aval_fn(x)
|
|
if hasattr(x, '__jax_array__'):
|
|
return abstractify(x.__jax_array__())
|
|
raise TypeError(f"Argument '{x}' of type '{type(x)}' is not a valid JAX type")
|
|
|
|
def _make_abstract_python_scalar(typ, val):
|
|
return ShapedArray((), dtypes._scalar_type_to_dtype(typ, val), weak_type=True)
|
|
|
|
pytype_aval_mappings: Dict[Any, Callable[[Any], core.AbstractValue]] = {
|
|
core.Unit: lambda _: core.abstract_unit,
|
|
}
|
|
pytype_aval_mappings.update((t, make_shaped_array) for t in array_types)
|
|
pytype_aval_mappings.update(
|
|
(t, partial(_make_abstract_python_scalar, t)) for t in _scalar_types)
|
|
|
|
# We can optionally set a Jaxpr rewriter that can be applied just before
|
|
# compilation. This mechanism is used for compiling id_tap, we can
|
|
# remove it once we bring the id_tap implementation into the core.
|
|
outfeed_rewriter: Optional[Callable[[core.Jaxpr], core.Jaxpr]] = None
|
|
def apply_outfeed_rewriter(jaxpr: core.Jaxpr) -> core.Jaxpr:
|
|
if outfeed_rewriter is not None:
|
|
return outfeed_rewriter(jaxpr)
|
|
else:
|
|
return jaxpr
|
|
|
|
outfeed_primitives: Set[core.Primitive] = set()
|
|
def jaxpr_uses_outfeed(jaxpr: core.Jaxpr) -> bool:
|
|
"""Finds if there are outfeed primitives anywhere inside a Jaxpr."""
|
|
return any(primitive_uses_outfeed(eqn.primitive, eqn.params)
|
|
for eqn in jaxpr.eqns)
|
|
|
|
def _param_uses_outfeed(param):
|
|
if type(param) is core.Jaxpr:
|
|
if jaxpr_uses_outfeed(param):
|
|
return True
|
|
elif type(param) is core.ClosedJaxpr:
|
|
if jaxpr_uses_outfeed(param.jaxpr):
|
|
return True
|
|
return False
|
|
|
|
def primitive_uses_outfeed(prim: core.Primitive, params: Dict) -> bool:
|
|
if prim in outfeed_primitives:
|
|
return True
|
|
for param in params.values():
|
|
if isinstance(param, tuple):
|
|
if any(unsafe_map(_param_uses_outfeed, param)):
|
|
return True
|
|
elif _param_uses_outfeed(param):
|
|
return True
|
|
return False
|
|
|
|
### op-by-op execution
|
|
|
|
|
|
ArgSpec = Tuple[core.AbstractValue, Optional[Device]]
|
|
|
|
def arg_spec(x: Any) -> ArgSpec:
|
|
aval = abstractify(x)
|
|
try:
|
|
return aval, x._device
|
|
except:
|
|
return aval, None
|
|
|
|
def apply_primitive(prim, *args, **params):
|
|
"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""
|
|
compiled_fun = xla_primitive_callable(prim, *unsafe_map(arg_spec, args), **params)
|
|
return compiled_fun(*args)
|
|
|
|
|
|
def _partition_outputs(avals, outs):
|
|
nouts = [aval._num_buffers for aval in avals]
|
|
if config.jax_enable_checks:
|
|
assert sum(nouts) == len(outs), f"Internal error: sum(nouts)={sum(nouts)} should equal len(outs)={len(outs)}."
|
|
outs = iter(outs)
|
|
return [[next(outs) for _ in range(nout)] for nout in nouts]
|
|
|
|
|
|
@cache()
|
|
def xla_primitive_callable(prim, *arg_specs: ArgSpec, **params):
|
|
avals, arg_devices = unzip2(arg_specs)
|
|
donated_invars = (False,) * len(arg_specs)
|
|
device = _device_from_arg_devices(arg_devices)
|
|
backend = xb.get_device_backend(device)
|
|
if primitive_uses_outfeed(prim, params):
|
|
# We use the _xla_callable path, where we pre-process the primitives
|
|
def prim_fun(*args):
|
|
return prim.bind(*args, **params)
|
|
return _xla_callable(lu.wrap_init(prim_fun), device, None, "prim", donated_invars,
|
|
*arg_specs)
|
|
aval_out = prim.abstract_eval(*avals, **params)
|
|
if not prim.multiple_results:
|
|
handle_result = aval_to_result_handler(device, aval_out)
|
|
else:
|
|
handlers = map(partial(aval_to_result_handler, device), aval_out)
|
|
handle_result = lambda *bufs:\
|
|
tuple(handler(*bs) for handler, bs in zip(handlers, _partition_outputs(aval_out, bufs)))
|
|
tuple_args = len(avals) > 100
|
|
if prim in initial_style_translations:
|
|
nreps = initial_style_primitive_replicas(params)
|
|
else:
|
|
nreps = 1
|
|
|
|
if nreps > xb.device_count(backend):
|
|
raise ValueError(
|
|
f"compiling a primitive computation `{prim}` that requires {nreps} "
|
|
f"replicas, but only {xb.device_count(backend)} XLA devices are "
|
|
f"available on backend {backend.platform}.")
|
|
built_c = primitive_computation(prim, AxisEnv(nreps, (), ()), backend,
|
|
tuple_args, *avals, **params)
|
|
options = xb.get_compile_options(
|
|
num_replicas=nreps,
|
|
num_partitions=1,
|
|
device_assignment=device and (device.id,))
|
|
options.parameter_is_tupled_arguments = tuple_args
|
|
compiled = backend_compile(backend, built_c, options)
|
|
if nreps == 1:
|
|
return partial(_execute_compiled_primitive, prim, compiled, handle_result)
|
|
else:
|
|
return partial(_execute_replicated_primitive, prim, compiled, handle_result)
|
|
|
|
def _device_from_arg_devices(devices: Sequence[Optional[Device]]) -> Optional[Device]:
|
|
"""Given devices of inputs, determine where to perform a computation.
|
|
|
|
Args:
|
|
devices: list where each element is a either a `Device` instance or `None`.
|
|
Returns:
|
|
A `Device` instance or None.
|
|
Raises:
|
|
ValueError if input devices are inconsistent.
|
|
"""
|
|
try:
|
|
device, = {d for d in devices if d is not None} or (None,)
|
|
return device
|
|
except ValueError as err:
|
|
msg = "primitive arguments must be colocated on the same device, got {}"
|
|
raise ValueError(msg.format(", ".join(map(str, devices)))) from err
|
|
|
|
@cache()
|
|
def primitive_computation(prim, axis_env, backend, tuple_args, *avals, **params):
|
|
c = xb.make_computation_builder(f"primitive_computation_{prim.name}")
|
|
op_metadata = make_op_metadata(prim, params)
|
|
c.set_op_metadata(op_metadata)
|
|
platform = xb.get_backend(backend).platform
|
|
xla_args, _ = _xla_callable_args(c, avals, tuple_args)
|
|
# return val always set as a side-effect on c
|
|
if prim in backend_specific_translations[platform]:
|
|
rule = backend_specific_translations[platform][prim]
|
|
ans = rule(c, *xla_args, **params)
|
|
elif prim in translations:
|
|
rule = translations[prim]
|
|
ans = rule(c, *xla_args, **params)
|
|
elif prim in translations_with_avals:
|
|
rule = translations_with_avals[prim]
|
|
ans = rule(c, avals, xla_args, params)
|
|
elif prim in initial_style_translations:
|
|
rule = initial_style_translations[prim]
|
|
ans = rule(c, axis_env, extend_name_stack(prim.name), avals, backend,
|
|
*xla_args, **params)
|
|
else:
|
|
raise NotImplementedError(f"XLA translation rule for {prim!r} on platform {platform!r} not found")
|
|
assert isinstance(ans, xe.XlaOp)
|
|
c.clear_op_metadata()
|
|
try:
|
|
return c.build(ans)
|
|
except RuntimeError as e:
|
|
msg = (" ".join(map(str, e.args)) + "\n"
|
|
"This is a bug in JAX's shape-checking rules; please report it!\n"
|
|
"https://github.com/google/jax/issues\n")
|
|
raise RuntimeError(msg) from e
|
|
|
|
def primitive_subcomputation(prim, *avals, **params):
|
|
axis_env = AxisEnv(1, (), ())
|
|
return primitive_computation(prim, axis_env, None, False, *avals, **params)
|
|
|
|
def backend_compile(backend, built_c, options):
|
|
# we use a separate function call to ensure that XLA compilation appears
|
|
# separately in Python profiling results
|
|
return backend.compile(built_c, compile_options=options)
|
|
|
|
def _execute_compiled_primitive(prim, compiled, result_handler, *args):
|
|
device, = compiled.local_devices()
|
|
input_bufs = list(it.chain.from_iterable(device_put(x, device) for x in args if x is not token))
|
|
out_bufs = compiled.execute(input_bufs)
|
|
check_special(prim.name, out_bufs)
|
|
return result_handler(*out_bufs)
|
|
|
|
def _execute_replicated_primitive(prim, compiled, result_handler, *args):
|
|
input_bufs = [
|
|
list(it.chain.from_iterable(device_put(x, device) for x in args if x is not token))
|
|
for device in compiled.local_devices()]
|
|
out_bufs = [
|
|
buf[0] for buf in compiled.execute_sharded_on_local_devices(
|
|
list(zip(*input_bufs)))
|
|
]
|
|
return result_handler(*out_bufs)
|
|
|
|
def needs_check_special():
|
|
return config.jax_debug_infs or config.jax_debug_nans
|
|
|
|
def check_special(name, bufs):
|
|
if needs_check_special():
|
|
for buf in bufs:
|
|
_check_special(name, buf.xla_shape(), buf)
|
|
|
|
def _check_special(name, xla_shape, buf):
|
|
assert not xla_shape.is_tuple()
|
|
if dtypes.issubdtype(xla_shape.element_type(), np.inexact):
|
|
if config.jax_debug_nans and np.any(np.isnan(buf.to_py())):
|
|
raise FloatingPointError(f"invalid value (nan) encountered in {name}")
|
|
if config.jax_debug_infs and np.any(np.isinf(buf.to_py())):
|
|
raise FloatingPointError(f"invalid value (inf) encountered in {name}")
|
|
|
|
### compiling jaxprs
|
|
|
|
def prefetch(x):
|
|
if isinstance(x, DeviceArray):
|
|
x.copy_to_host_async()
|
|
return x
|
|
|
|
def jaxpr_literals(jaxpr):
|
|
"""Generates all the literals inside a jaxpr, including nested subjaxprs."""
|
|
for eqn in jaxpr.eqns:
|
|
for v in eqn.invars:
|
|
if type(v) is core.Literal:
|
|
yield v.val
|
|
for subjaxpr in core.subjaxprs(jaxpr):
|
|
yield from jaxpr_literals(subjaxpr)
|
|
|
|
|
|
def _flatmap(func: Callable, vars: Sequence):
|
|
return list(it.chain.from_iterable(map(func, vars)))
|
|
|
|
def _partitionmap(func: Callable, vars: Sequence, nodes: Sequence):
|
|
return map(func, vars, _partition_outputs([v.aval for v in vars], nodes))
|
|
|
|
def jaxpr_subcomp(c, jaxpr, backend, axis_env, consts, name_stack, *args):
|
|
if backend not in ('cpu', 'gpu', 'tpu'):
|
|
platform = xb.get_backend(backend).platform # canonicalize
|
|
else:
|
|
platform = backend
|
|
|
|
def read(v):
|
|
if type(v) is Literal:
|
|
return xb.constant_general(c, canonicalize_dtype(v.val))
|
|
else:
|
|
return env[v]
|
|
|
|
def aval(v):
|
|
if type(v) is Literal:
|
|
return abstractify(v.val)
|
|
else:
|
|
return v.aval
|
|
|
|
def write(v, node):
|
|
assert node is not None
|
|
env[v] = node
|
|
|
|
env = {}
|
|
_partitionmap(write, [core.unitvar], _make_unit_constant(c))
|
|
_partitionmap(write, jaxpr.constvars, consts)
|
|
_partitionmap(write, jaxpr.invars, args)
|
|
for eqn in jaxpr.eqns:
|
|
op_metadata = make_op_metadata(
|
|
eqn.primitive, eqn.params, name_stack=name_stack,
|
|
source_info=eqn.source_info)
|
|
c.set_op_metadata(op_metadata)
|
|
in_nodes = _flatmap(read, eqn.invars)
|
|
# TODO(jakevdp): migrate `translations` table to `translations_with_avals`
|
|
if eqn.primitive in backend_specific_translations[platform]:
|
|
rule = backend_specific_translations[platform][eqn.primitive]
|
|
ans = rule(c, *in_nodes, **eqn.params)
|
|
elif eqn.primitive in translations:
|
|
ans = translations[eqn.primitive](c, *in_nodes, **eqn.params)
|
|
elif eqn.primitive in translations_with_avals:
|
|
rule = translations_with_avals[eqn.primitive]
|
|
ans = rule(c, map(aval, eqn.invars), in_nodes, eqn.params)
|
|
elif eqn.primitive in initial_style_translations:
|
|
new_params = check_backend_params(eqn.params, backend)
|
|
rule = initial_style_translations[eqn.primitive]
|
|
ans = rule(c, axis_env, extend_name_stack(name_stack, eqn.primitive.name),
|
|
map(aval, eqn.invars), backend, *in_nodes, **new_params)
|
|
elif eqn.primitive in parallel_translations:
|
|
rule = parallel_translations[eqn.primitive]
|
|
ans = rule(c, *in_nodes, axis_env=axis_env, platform=platform, **eqn.params)
|
|
elif eqn.primitive in call_translations:
|
|
new_params = check_backend_params(eqn.params, backend)
|
|
rule = call_translations[eqn.primitive]
|
|
ans = rule(c, axis_env, in_nodes,
|
|
name_stack, backend=backend, **new_params)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"XLA translation rule for primitive '{eqn.primitive.name}' not found")
|
|
|
|
assert isinstance(ans, xe.XlaOp)
|
|
c.get_shape(ans) # force xla to do shape error checking
|
|
if eqn.primitive.multiple_results or any(v.aval._num_buffers > 1 for v in eqn.outvars):
|
|
out_nodes = xla_destructure(c, ans)
|
|
else:
|
|
out_nodes = [ans]
|
|
c.clear_op_metadata()
|
|
_partitionmap(write, eqn.outvars, out_nodes)
|
|
return _flatmap(read, jaxpr.outvars)
|
|
|
|
|
|
def xla_destructure(c, ans):
|
|
num_elements = len(c.get_shape(ans).tuple_shapes())
|
|
return [xops.GetTupleElement(ans, i) for i in range(num_elements)]
|
|
|
|
def check_backend_params(params, outer_backend):
|
|
# For nested calls, the outermost call sets the backend for all inner calls;
|
|
# it's an error if the inner call has a conflicting explicit backend spec.
|
|
inner_backend = params.get('backend', None)
|
|
if inner_backend and inner_backend != outer_backend:
|
|
raise ValueError(
|
|
f"Outer-jit backend specification {outer_backend} must match explicit "
|
|
f"inner-jit backend specification {inner_backend}.")
|
|
return {k: params[k] for k in params if k != 'backend'}
|
|
|
|
|
|
class AxisEnv(NamedTuple):
|
|
"""Represents a pmap mesh (only along the replica axes)."""
|
|
nreps: int
|
|
names: Tuple[Any, ...]
|
|
sizes: Tuple[int, ...]
|
|
|
|
def extend_axis_env(env: AxisEnv, name, size: int):
|
|
return AxisEnv(env.nreps, env.names + (name,), env.sizes + (size,))
|
|
|
|
def axis_read(axis_env, axis_name):
|
|
try:
|
|
return max(i for i, name in enumerate(axis_env.names) if name == axis_name)
|
|
except ValueError:
|
|
raise NameError("unbound axis name: {}".format(axis_name)) from None
|
|
|
|
def axis_groups(axis_env: AxisEnv, name):
|
|
if not isinstance(name, (list, tuple)):
|
|
name = (name,)
|
|
mesh_axes = tuple(unsafe_map(partial(axis_read, axis_env), name))
|
|
trailing_size, ragged = divmod(axis_env.nreps, prod(axis_env.sizes))
|
|
assert not ragged
|
|
mesh_spec = axis_env.sizes + (trailing_size,)
|
|
return _axis_groups(mesh_spec, mesh_axes)
|
|
|
|
def _axis_groups(mesh_spec, mesh_axes):
|
|
"""Computes replica group ids for a collective performed over a subset of the mesh.
|
|
|
|
Args:
|
|
mesh_spec: A sequence of integers representing the mesh shape.
|
|
mesh_axes: A sequence of integers between 0 and `len(mesh_spec)` (exclusive)
|
|
indicating over which axes the collective is performed.
|
|
Returns:
|
|
A tuple of replica groups (i.e. tuples containing replica ids).
|
|
"""
|
|
iota = np.arange(prod(mesh_spec)).reshape(mesh_spec)
|
|
groups = np.reshape(
|
|
np.moveaxis(iota, mesh_axes, np.arange(len(mesh_axes))),
|
|
(prod(np.take(mesh_spec, mesh_axes)), -1))
|
|
return tuple(unsafe_map(tuple, groups.T))
|
|
|
|
def jaxpr_replicas(jaxpr: core.Jaxpr) -> int:
|
|
"""The number of replicas needed for a jaxpr.
|
|
|
|
For a eqn, multiply the `axis_size` with the `jaxpr_replicas` of the
|
|
subjaxprs. For a list of eqns, take the maximum number of replicas.
|
|
"""
|
|
return max(unsafe_map(eqn_replicas, jaxpr.eqns), default=1)
|
|
|
|
# TODO(mattjj): this function assumes that only pmap has a parameter named
|
|
# axis_size, and that it corresponds to cross-replica mapping
|
|
def eqn_replicas(eqn):
|
|
call_jaxpr = eqn.params.get("call_jaxpr")
|
|
if call_jaxpr:
|
|
return eqn.params.get('axis_size', 1) * jaxpr_replicas(call_jaxpr)
|
|
elif eqn.primitive in initial_style_translations:
|
|
return initial_style_primitive_replicas(eqn.params)
|
|
else:
|
|
return 1
|
|
|
|
def initial_style_primitive_replicas(params):
|
|
return max(core.traverse_jaxpr_params(jaxpr_replicas, params), default=1)
|
|
|
|
# TODO(mattjj,skyewm): the functions here are utilities for checking if
|
|
# not-yet-supported features are used with multi-host programming
|
|
|
|
def jaxpr_has_pmap(jaxpr):
|
|
"""Whether there is an xla_pmap primitive anywhere inside a Jaxpr."""
|
|
for eqn in jaxpr.eqns:
|
|
if 'xla_pmap' in eqn.primitive.name:
|
|
return True
|
|
for subjaxpr in core.subjaxprs(jaxpr):
|
|
if jaxpr_has_pmap(subjaxpr):
|
|
return True
|
|
return False
|
|
|
|
|
|
def jaxpr_collectives(jaxpr):
|
|
"""Generates all the collective primitives anywhere inside a Jaxpr."""
|
|
for eqn in jaxpr.eqns:
|
|
if eqn.primitive in parallel_translations:
|
|
yield eqn.primitive
|
|
for subjaxpr in core.subjaxprs(jaxpr):
|
|
yield from jaxpr_collectives(subjaxpr)
|
|
|
|
|
|
### xla_call underlying jit
|
|
|
|
def _xla_call_impl(fun: lu.WrappedFun, *args, device, backend, name,
|
|
donated_invars, inline):
|
|
del inline # Only used at tracing time
|
|
compiled_fun = _xla_callable(fun, device, backend, name, donated_invars,
|
|
*unsafe_map(arg_spec, args))
|
|
try:
|
|
return compiled_fun(*args)
|
|
except FloatingPointError:
|
|
assert config.jax_debug_nans or config.jax_debug_infs # compiled_fun can only raise in this case
|
|
print("Invalid value encountered in the output of a jit function. "
|
|
"Calling the de-optimized version.")
|
|
# We want to run the wrapped function again (after _xla_callable already ran
|
|
# it), but linear_util.WrappedFun instances are meant to be run only once.
|
|
# In addition to re-executing the Python code, which is usually undesirable
|
|
# but which config.jax_debug_nans is meant to opt into, we'll be re-executing
|
|
# any linear_util.py-style side effects, i.e. re-populating Stores created
|
|
# by any transformation_with_aux's applied to fun. Since this is
|
|
# intentional here, to avoid "Store occupied" errors we reset the stores to
|
|
# be empty.
|
|
for store in fun.stores: store and store.reset()
|
|
with core.new_sublevel():
|
|
return fun.call_wrapped(*args) # probably won't return
|
|
|
|
def flatten_shape(s: XlaShape) -> Sequence[Tuple[Sequence[int], XlaShape]]:
|
|
"""Expands a given shape tree into a flat list of indices to arrays.
|
|
|
|
Given the following computation:
|
|
|
|
>>> c = xc.XlaBuilder("example")
|
|
>>> p0 = xb.parameter(c, 1, xc.shape_from_pyval(jnp.ones([1])))
|
|
>>> p1 = xb.parameter(c, 2, xc.shape_from_pyval(jnp.ones([2])))
|
|
>>> p2 = xb.parameter(c, 3, xc.shape_from_pyval(jnp.ones([3])))
|
|
>>> o = xops.Tuple(c, [p0, p1, p2])
|
|
|
|
We can query the arrays in the output tuple:
|
|
|
|
>>> flatten_shape(c.GetShape(o))
|
|
[((0,), f32[1]{0}), ((1,), f32[2]{0}), ((2,), f32[3]{0})]
|
|
|
|
Or the arrays in one of the parameters (which is itself an array):
|
|
|
|
>>> flatten_shape(c.GetShape(p0))
|
|
[((), f32[1]{0})]
|
|
|
|
Args
|
|
s: The input shape.
|
|
|
|
Returns:
|
|
An iterable of pairs of indices and shapes for each array within the shape
|
|
tree.
|
|
"""
|
|
results: List[Tuple[Tuple[int, ...], XlaShape]] = []
|
|
_flatten_shape(s, (), results)
|
|
return results
|
|
|
|
def _flatten_shape(s: XlaShape, index: Tuple[int, ...],
|
|
results: List[Tuple[Tuple[int, ...], XlaShape]]) -> None:
|
|
if s.is_array() or s.is_token():
|
|
results.append((index, s))
|
|
else:
|
|
assert s.is_tuple()
|
|
for i, sub in enumerate(s.tuple_shapes()):
|
|
_flatten_shape(sub, index + (i,), results)
|
|
|
|
|
|
def _xla_consts(c, consts):
|
|
unique_consts = {id(const): const for const in consts}
|
|
xla_consts = {
|
|
id_: xb.constant_general(c, const) for id_, const in unique_consts.items()}
|
|
return [c for const in consts for c in xla_consts[id(const)]]
|
|
|
|
@lu.cache
|
|
def _xla_callable(fun: lu.WrappedFun, device, backend, name, donated_invars, *arg_specs):
|
|
if device is not None and backend is not None:
|
|
raise ValueError("can't specify both a device and a backend for jit, "
|
|
"got device={} and backend={}".format(device, backend))
|
|
|
|
abstract_args, arg_devices = unzip2(arg_specs)
|
|
jaxpr, out_avals, consts = pe.trace_to_jaxpr_final(
|
|
fun, abstract_args, pe.debug_info_final(fun, "jit"))
|
|
if any(isinstance(c, core.Tracer) for c in consts):
|
|
raise core.UnexpectedTracerError("Encountered an unexpected tracer.")
|
|
jaxpr, kept_const_idx, kept_var_idx = _prune_unused_inputs(jaxpr)
|
|
consts = [c for i, c in enumerate(consts) if i in kept_const_idx]
|
|
pruned_arg_specs = (a for i, a in enumerate(arg_specs) if i in kept_var_idx)
|
|
abstract_args, arg_devices = unzip2(pruned_arg_specs)
|
|
donated_invars = [
|
|
x for i, x in enumerate(donated_invars) if i in kept_var_idx
|
|
]
|
|
map(prefetch, it.chain(consts, jaxpr_literals(jaxpr)))
|
|
jaxpr = apply_outfeed_rewriter(jaxpr)
|
|
|
|
nreps = jaxpr_replicas(jaxpr)
|
|
device = _xla_callable_device(nreps, backend, device, arg_devices)
|
|
backend = xb.get_device_backend(device) if device else (
|
|
xb.get_backend(backend) if backend is not None else None)
|
|
result_handlers = map(partial(aval_to_result_handler, device), out_avals)
|
|
|
|
# Computations that only produce constants and/or only rearrange their inputs,
|
|
# which are often produced from partial evaluation, don't need compilation,
|
|
# and don't need to evaluate their arguments.
|
|
if not jaxpr.eqns:
|
|
return partial(_execute_trivial, jaxpr, device, consts, out_avals,
|
|
result_handlers, kept_var_idx)
|
|
|
|
if not _on_exit:
|
|
log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
|
|
logging.log(log_priority, "Compiling %s (%s) for args %s.",
|
|
fun.__name__, id(fun), abstract_args)
|
|
|
|
if nreps > 1:
|
|
warn(f"The jitted function {fun.__name__} includes a pmap. Using "
|
|
"jit-of-pmap can lead to inefficient data movement, as the outer jit "
|
|
"does not preserve sharded data representations and instead collects "
|
|
"input and output arrays onto a single device. "
|
|
"Consider removing the outer jit unless you know what you're doing. "
|
|
"See https://github.com/google/jax/issues/2926.")
|
|
|
|
if nreps > xb.device_count(backend):
|
|
raise ValueError(
|
|
f"compiling computation that requires {nreps} replicas, but only "
|
|
f"{xb.device_count(backend)} XLA devices are available")
|
|
|
|
if xb.process_count() > 1 and (nreps > 1 or jaxpr_has_pmap(jaxpr)):
|
|
raise NotImplementedError(
|
|
"jit of multi-host pmap not implemented (and jit-of-pmap can cause "
|
|
"extra data movement anyway, so maybe you don't want it after all).")
|
|
|
|
tuple_args = len(abstract_args) > 100 # pass long arg lists as tuple for TPU
|
|
|
|
c = xb.make_computation_builder("jit_{}".format(fun.__name__))
|
|
xla_consts = _xla_consts(c, consts)
|
|
xla_args, donated_invars = _xla_callable_args(c, abstract_args, tuple_args,
|
|
donated_invars=donated_invars)
|
|
out_nodes = jaxpr_subcomp(
|
|
c, jaxpr, backend.platform if backend is not None else None,
|
|
AxisEnv(nreps, (), ()), xla_consts,
|
|
extend_name_stack(wrap_name(name, 'jit')), *xla_args)
|
|
backend = xb.get_backend(backend)
|
|
out_tuple = xops.Tuple(c, out_nodes)
|
|
if backend.platform in ("gpu", "tpu"):
|
|
donated_invars = set_up_aliases(c, xla_args, out_tuple, donated_invars, tuple_args)
|
|
if any(donated_invars):
|
|
# TODO(tomhennigan): At call time we should mark these buffers as deleted.
|
|
unused_donations = [str(c.GetShape(a))
|
|
for a, d in zip(xla_args, donated_invars) if d]
|
|
warn("Some donated buffers were not usable: {}".format(", ".join(unused_donations)))
|
|
built = c.build(out_tuple)
|
|
|
|
options = xb.get_compile_options(
|
|
num_replicas=nreps,
|
|
num_partitions=1,
|
|
device_assignment=(device.id,) if device else None)
|
|
options.parameter_is_tupled_arguments = tuple_args
|
|
compiled = backend_compile(backend, built, options)
|
|
if nreps == 1:
|
|
return partial(_execute_compiled, compiled, out_avals, result_handlers,
|
|
kept_var_idx)
|
|
else:
|
|
return partial(_execute_replicated, compiled, out_avals, result_handlers,
|
|
kept_var_idx)
|
|
|
|
|
|
def set_up_aliases(c, xla_args, out_tuple, donated_args, tuple_args):
|
|
"""Configures input/output "must" aliasing based on `donated_args`."""
|
|
# First for every input array add it to `donations` iff it is a member of
|
|
# `donated_args`.
|
|
donations = defaultdict(deque)
|
|
for arg_index, arg in enumerate(xla_args):
|
|
if donated_args[arg_index]:
|
|
for param_index, element in flatten_shape(c.GetShape(arg)):
|
|
key = (element.dimensions(), element.xla_element_type())
|
|
if tuple_args:
|
|
param_number = 0
|
|
param_index = (arg_index,) + tuple(param_index)
|
|
donations[key].append((param_number, param_index, arg_index))
|
|
else:
|
|
param_number = arg_index
|
|
donations[key].append((param_number, param_index, arg_index))
|
|
|
|
# Consume donations for outputs.
|
|
out_donated_args = list(donated_args)
|
|
for output_index, element in flatten_shape(c.GetShape(out_tuple)):
|
|
key = (element.dimensions(), element.xla_element_type())
|
|
if donations.get(key, ()):
|
|
param_number, param_index, arg_index = donations[key].popleft()
|
|
out_donated_args[arg_index] = False
|
|
c.setup_alias(output_index, param_number, param_index)
|
|
|
|
return tuple(out_donated_args)
|
|
|
|
|
|
def _prune_unused_inputs(
|
|
jaxpr: core.Jaxpr) -> Tuple[core.Jaxpr, Set[int], Set[int]]:
|
|
used = {v for v in jaxpr.outvars if isinstance(v, core.Var)}
|
|
# TODO(zhangqiaorjc): Improve the DCE algorithm by also pruning primitive
|
|
# applications that do not produce used outputs. Must handle side-effecting
|
|
# primitives and nested jaxpr.
|
|
used.update(
|
|
v for eqn in jaxpr.eqns for v in eqn.invars if isinstance(v, core.Var))
|
|
kept_const_idx, new_constvars = unzip2(
|
|
(i, v) for i, v in enumerate(jaxpr.constvars) if v in used)
|
|
kept_var_idx, new_invars = unzip2(
|
|
(i, v) for i, v in enumerate(jaxpr.invars) if v in used)
|
|
new_jaxpr = core.Jaxpr(new_constvars, new_invars, jaxpr.outvars, jaxpr.eqns)
|
|
return new_jaxpr, set(kept_const_idx), set(kept_var_idx)
|
|
|
|
|
|
def _xla_callable_device(nreps, backend, device, arg_devices):
|
|
if nreps > 1:
|
|
if device is not None or backend is not None:
|
|
raise ValueError(f"can't specify device or backend for jit-of-pmap, "
|
|
f"got device={device} and backend={backend}")
|
|
return None
|
|
else:
|
|
if device is None and backend is None:
|
|
return _device_from_arg_devices(arg_devices)
|
|
elif device is not None and backend is None:
|
|
return device
|
|
elif device is None and backend is not None:
|
|
return xb.get_backend(backend).get_default_device_assignment(1)[0]
|
|
else:
|
|
assert False # Unreachable given the error check in _xla_callable
|
|
|
|
# Used within _xla_callable_args and _xla_param to distinguish between None (no
|
|
# sharding annotation set) and replicated.
|
|
_replicated_param = object()
|
|
|
|
def _xla_callable_args(
|
|
c, avals, tuple_args, *,
|
|
replicated=None,
|
|
partitions=None,
|
|
partitions_proto: bool = False,
|
|
donated_invars=None):
|
|
assert partitions is None or len(partitions) == len(avals)
|
|
if not tuple_args:
|
|
if replicated is None:
|
|
replicated = [None] * len(avals)
|
|
if partitions is None:
|
|
parts: List[object] = [None] * len(avals)
|
|
elif partitions_proto:
|
|
parts = partitions
|
|
else:
|
|
parts = [_replicated_param if part is None else part
|
|
for part in partitions]
|
|
counts = it.count()
|
|
xla_args = [_xla_param(c, next(counts), xla_shape, r, p, partitions_proto)
|
|
if a is not abstract_token else xops.CreateToken(c)
|
|
for (a, r, p) in safe_zip(avals, replicated, parts)
|
|
for xla_shape in aval_to_xla_shapes(a)]
|
|
if donated_invars is not None:
|
|
donated_invars = [
|
|
d for (a, _, _, d) in zip(avals, replicated, parts, donated_invars)
|
|
for xla_shape in aval_to_xla_shapes(a)]
|
|
return xla_args, donated_invars
|
|
else:
|
|
if replicated is not None:
|
|
replicated = [r for a, r in zip(avals, replicated)
|
|
if a is not abstract_token]
|
|
if partitions is None:
|
|
tuple_parts = None
|
|
elif partitions_proto:
|
|
tuple_parts = xb.tuple_sharding_proto(partitions)
|
|
else:
|
|
tuple_parts = tuple(partitions)
|
|
tuple_shape = xc.Shape.tuple_shape(
|
|
[shape for a in avals for shape in aval_to_xla_shapes(a) if a is not abstract_token])
|
|
tuple_param = _xla_param(c, 0, tuple_shape, replicated, tuple_parts, partitions_proto)
|
|
xla_inputs = iter(xla_destructure(c, tuple_param))
|
|
xla_args = [next(xla_inputs) if a is not abstract_token else
|
|
xops.CreateToken(c) for a in avals]
|
|
assert next(xla_inputs, None) is None
|
|
return xla_args, donated_invars
|
|
|
|
def _xla_param(builder, param_num, xla_shape, replicated, partitions, parts_proto):
|
|
make_param = partial(xb.parameter, builder, param_num, xla_shape,
|
|
replicated=replicated)
|
|
with_sharding = xb.with_sharding_proto if parts_proto else xb.with_sharding
|
|
if partitions is None:
|
|
return make_param()
|
|
elif partitions is _replicated_param:
|
|
return with_sharding(builder, None, make_param)
|
|
else:
|
|
return with_sharding(builder, partitions, make_param)
|
|
|
|
|
|
def _execute_compiled(compiled: XlaExecutable, avals, handlers, kept_var_idx,
|
|
*args):
|
|
device, = compiled.local_devices()
|
|
input_bufs = list(
|
|
it.chain.from_iterable(
|
|
device_put(x, device)
|
|
for i, x in enumerate(args)
|
|
if x is not token and i in kept_var_idx))
|
|
out_bufs = compiled.execute(input_bufs)
|
|
check_special(xla_call_p.name, out_bufs)
|
|
return [handler(*bs) for handler, bs in zip(handlers, _partition_outputs(avals, out_bufs))]
|
|
|
|
|
|
def _execute_replicated(compiled: XlaExecutable, avals, handlers, kept_var_idx,
|
|
*args):
|
|
input_bufs = [
|
|
list(
|
|
it.chain.from_iterable(
|
|
device_put(x, device)
|
|
for i, x in enumerate(args)
|
|
if x is not token and i in kept_var_idx))
|
|
for device in compiled.local_devices()
|
|
]
|
|
out_bufs = [
|
|
buf[0] for buf in compiled.execute_sharded_on_local_devices(
|
|
list(zip(*input_bufs)))
|
|
]
|
|
check_special(xla_call_p.name, out_bufs)
|
|
return [handler(*bs) for handler, bs in zip(handlers, _partition_outputs(avals, out_bufs))]
|
|
|
|
|
|
def _execute_trivial(jaxpr, device: Optional[Device], consts, avals, handlers,
|
|
kept_var_idx, *args):
|
|
env = {core.unitvar: core.unit}
|
|
pruned_args = (x for i, x in enumerate(args) if i in kept_var_idx)
|
|
map(env.setdefault, jaxpr.invars, pruned_args)
|
|
map(env.setdefault, jaxpr.constvars, consts)
|
|
outs = [canonicalize_dtype(v.val) if type(v) is Literal else env[v]
|
|
for v in jaxpr.outvars]
|
|
return [_copy_device_array_to_device(x, device) if type_is_device_array(x)
|
|
else h(*device_put(x, device)) for h, x in zip(handlers, outs)]
|
|
|
|
xla_call_p: core.CallPrimitive = core.CallPrimitive('xla_call')
|
|
xla_call = xla_call_p.bind
|
|
xla_call_p.def_impl(_xla_call_impl)
|
|
|
|
def _xla_call_partial_eval_update_params(params, in_unknowns):
|
|
call_jaxpr = params['call_jaxpr']
|
|
donated_invars = params['donated_invars']
|
|
if not in_unknowns and donated_invars:
|
|
# JaxprTrace.post_process_call creates a call with no input tracers
|
|
new_donated_invars = (False,) * len(call_jaxpr.invars)
|
|
else:
|
|
# JaxprTrace.process_call drops known input tracers
|
|
donated_invars = [d for d, uk in zip(donated_invars, in_unknowns) if uk]
|
|
new_donated_invars = ((False,) * (len(call_jaxpr.invars) - len(donated_invars))
|
|
+ tuple(donated_invars))
|
|
return dict(params, donated_invars=new_donated_invars)
|
|
pe.call_param_updaters[xla_call_p] = _xla_call_partial_eval_update_params
|
|
|
|
def _xla_call_jvp_update_params(params, nz_tangents, nz_tangents_out_thunk):
|
|
donated_invars = params['donated_invars']
|
|
donated_tangents = [d for d, nz in zip(donated_invars, nz_tangents) if nz]
|
|
new_donated_invars = (*donated_invars, *donated_tangents)
|
|
return dict(params, donated_invars=new_donated_invars)
|
|
ad.call_param_updaters[xla_call_p] = _xla_call_jvp_update_params
|
|
|
|
def _xla_call_transpose_update_params(params, undef_primals, nonzero_cts):
|
|
donated_invars = params['donated_invars']
|
|
donated_primals = [d for d, u in zip(donated_invars, undef_primals) if not u]
|
|
donated_cotangents = [False for nz in nonzero_cts if nz]
|
|
return dict(params, donated_invars=(*donated_primals, *donated_cotangents))
|
|
ad.call_transpose_param_updaters[xla_call_p] = _xla_call_transpose_update_params
|
|
|
|
|
|
def _xla_call_translation_rule(c, axis_env, in_nodes, name_stack, backend, name,
|
|
call_jaxpr, donated_invars, inline=None, device=None):
|
|
del device, donated_invars, inline # Ignored.
|
|
subc = xb.make_computation_builder(f"jit_{name}")
|
|
args = [xb.parameter(subc, i, c.get_shape(n)) for i, n in enumerate(in_nodes)]
|
|
out_nodes = jaxpr_subcomp(subc, call_jaxpr, backend, axis_env, (),
|
|
extend_name_stack(name_stack, wrap_name(name, 'jit')), *args)
|
|
subc = subc.build(xops.Tuple(subc, out_nodes))
|
|
return xops.Call(c, subc, list(in_nodes))
|
|
ad.primitive_transposes[xla_call_p] = partial(ad.call_transpose, xla_call_p)
|
|
|
|
|
|
### translation tables
|
|
|
|
translations: Dict[core.Primitive, Callable] = {}
|
|
translations_with_avals: Dict[core.Primitive, Callable] = {}
|
|
parallel_translations: Dict[core.Primitive, Callable] = {}
|
|
initial_style_translations: Dict[core.Primitive, Callable] = {}
|
|
call_translations: Dict[core.Primitive, Callable] = {}
|
|
backend_specific_translations: Dict[str, Dict[core.Primitive, Callable]] = defaultdict(dict)
|
|
|
|
call_translations[xla_call_p] = _xla_call_translation_rule
|
|
|
|
def zeros_like_translation_rule(c, x):
|
|
shape = c.get_shape(x)
|
|
assert not shape.is_tuple()
|
|
zero = xb.constant(c, np.array(0, shape.element_type()))
|
|
return xops.Broadcast(zero, shape.dimensions())
|
|
translations[ad_util.zeros_like_p] = zeros_like_translation_rule
|
|
|
|
def add_jaxvals_translation_rule(c, x, y):
|
|
shape = c.get_shape(x)
|
|
assert not shape.is_tuple()
|
|
return xops.Add(x, y)
|
|
translations[ad_util.add_jaxvals_p] = add_jaxvals_translation_rule
|
|
|
|
translations[ad_util.stop_gradient_p] = lambda c, x: x
|
|
|
|
|
|
@lu.transformation
|
|
def _tuple_output(*args, **kwargs):
|
|
ans = yield args, kwargs
|
|
yield (ans,)
|
|
|
|
def lower_fun(fun, multiple_results, parallel=False, with_avals=False, backend=None):
|
|
# TODO(jakevdp): migrate dependent code & always use the with_avals=True.
|
|
def f(c, *xla_args, **params):
|
|
avals = [_array_aval_from_xla_shape(c.get_shape(x)) for x in xla_args]
|
|
return f_with_avals(c, avals, xla_args, params)
|
|
|
|
def f_with_avals(c, avals, xla_args, params):
|
|
if parallel:
|
|
axis_env = params.pop('axis_env')
|
|
del params['platform']
|
|
else:
|
|
axis_env = AxisEnv(1, (), ())
|
|
wrapped_fun = lu.wrap_init(fun, params)
|
|
if not multiple_results:
|
|
wrapped_fun = _tuple_output(wrapped_fun)
|
|
jaxpr, _, consts = pe.trace_to_jaxpr_dynamic(wrapped_fun, avals)
|
|
outs = jaxpr_subcomp(c, jaxpr, backend, axis_env, _xla_consts(c, consts), '',
|
|
*xla_args)
|
|
if multiple_results or any(v.aval._num_buffers > 1 for v in jaxpr.outvars):
|
|
return xops.Tuple(c, outs)
|
|
else:
|
|
assert len(outs) == 1, outs
|
|
return outs[0]
|
|
|
|
return f_with_avals if with_avals else f
|
|
|
|
def _array_aval_from_xla_shape(xla_shape):
|
|
# This function instantiates the assumption that we can map fro XLA array
|
|
# types to JAX array types.
|
|
# TODO(mattjj): remove assumption can map XLA array types to JAX array types
|
|
assert not xla_shape.is_tuple()
|
|
return ShapedArray(xla_shape.dimensions(), xla_shape.numpy_dtype())
|
|
|
|
def lower_fun_initial_style(fun):
|
|
def f(c, axis_env, name_stack, avals, backend, *xla_args, **params):
|
|
jaxpr, _, consts = pe.trace_to_jaxpr_dynamic(lu.wrap_init(fun, params), avals)
|
|
outs = jaxpr_subcomp(c, jaxpr, backend, axis_env, _xla_consts(c, consts),
|
|
name_stack, *xla_args)
|
|
return xops.Tuple(c, outs)
|
|
return f
|
|
|
|
|
|
### device-persistent data
|
|
|
|
class Token(object): pass
|
|
token = Token()
|
|
|
|
pytype_aval_mappings[Token] = lambda _: abstract_token
|
|
core.pytype_aval_mappings[Token] = lambda _: abstract_token
|
|
xla_shape_handlers[AbstractToken] = lambda _: (xc.Shape.token_shape(),)
|
|
xla_result_handlers[AbstractToken] = lambda _, __: lambda _: token
|
|
canonicalize_dtype_handlers[Token] = identity
|
|
device_put_handlers[Token] = lambda x, _: (x,)
|
|
|
|
|
|
def _forward_method(attrname, self, fun, *args):
|
|
return fun(getattr(self, attrname), *args)
|
|
_forward_to_value = partial(_forward_method, "_value")
|
|
|
|
|
|
# The following is used for the type _CppDeviceArray or _DeviceArray.
|
|
DeviceArrayProtocol = Any
|
|
DeviceArray = xc.DeviceArrayBase
|
|
|
|
_CppDeviceArray: DeviceArrayProtocol = xc.Buffer
|
|
|
|
def make_device_array(
|
|
aval: core.ShapedArray,
|
|
device: Optional[Device],
|
|
device_buffer: PyLocalBuffer,
|
|
) -> Union[PyLocalBuffer, "_DeviceArray"]:
|
|
"""Returns a DeviceArray implementation based on arguments.
|
|
|
|
This is to be used only within JAX. It will return either a PythonDeviceArray
|
|
or a C++ equivalent implementation.
|
|
"""
|
|
if (isinstance(device_buffer, _CppDeviceArray)):
|
|
|
|
if device_buffer.aval == aval and device_buffer._device == device:
|
|
return device_buffer
|
|
device_buffer = device_buffer.clone()
|
|
device_buffer._device = device
|
|
device_buffer.aval = aval
|
|
device_buffer.weak_type = aval.weak_type
|
|
return device_buffer
|
|
|
|
return _DeviceArray(aval, device, device_buffer)
|
|
|
|
|
|
def type_is_device_array(x):
|
|
"""Returns `True` if `x` is a non-sharded DeviceArray.
|
|
|
|
Use this function instead of `type(x) is Devicearray`.
|
|
"""
|
|
type_x = type(x)
|
|
return type_x is _DeviceArray or type_x is _CppDeviceArray
|
|
|
|
|
|
def device_array_supports_weakrefs():
|
|
try:
|
|
weakref.ref(DeviceArray())
|
|
return True
|
|
except TypeError:
|
|
return False
|
|
|
|
|
|
class _DeviceArray(DeviceArray): # type: ignore
|
|
"""A DeviceArray is an ndarray backed by a single device memory buffer."""
|
|
# We don't subclass ndarray because that would open up a host of issues,
|
|
# but lax_numpy.py overrides isinstance behavior and attaches ndarray methods.
|
|
__slots__ = [
|
|
"aval", "device_buffer", "_npy_value", "_device", "__weakref__"
|
|
]
|
|
__array_priority__ = 100
|
|
|
|
# DeviceArray has methods that are dynamically populated in lax_numpy.py,
|
|
# and this annotation is needed to make pytype happy.
|
|
_HAS_DYNAMIC_ATTRIBUTES = True
|
|
|
|
def __init__(self, aval: core.ShapedArray, device: Optional[Device],
|
|
device_buffer: PyLocalBuffer):
|
|
"""Initializer.
|
|
|
|
Args:
|
|
aval: The abstract value associated to this array (shape+dtype+weak_type).
|
|
device: The optional sticky device. See
|
|
https://jax.readthedocs.io/en/latest/faq.html#controlling-data-and-computation-placement-on-devices
|
|
device_buffer: The underlying buffer owning the on-device data.
|
|
"""
|
|
DeviceArray.__init__(self)
|
|
self.aval = aval
|
|
self.device_buffer = device_buffer
|
|
self._device = device
|
|
|
|
self._npy_value = None
|
|
if config.jax_enable_checks:
|
|
assert type(aval) is ShapedArray
|
|
npy_value = self._value
|
|
assert npy_value.dtype == aval.dtype and npy_value.shape == aval.shape
|
|
assert (device is None) or device is device_buffer.device()
|
|
|
|
def _check_if_deleted(self):
|
|
if self.device_buffer is deleted_buffer:
|
|
raise RuntimeError("DeviceArray has been deleted.")
|
|
|
|
def block_until_ready(self):
|
|
"""Blocks the caller until the buffer's value has been computed on device.
|
|
|
|
This method is mostly useful for timing microbenchmarks that wish to
|
|
time how long a computation takes, without transferring the result back
|
|
to the host.
|
|
|
|
Returns the buffer object (`self`).
|
|
"""
|
|
self._check_if_deleted()
|
|
self.device_buffer.block_host_until_ready() # pytype: disable=attribute-error
|
|
return self
|
|
|
|
@property
|
|
def _value(self):
|
|
self._check_if_deleted()
|
|
if self._npy_value is None:
|
|
self._npy_value = self.device_buffer.to_py()
|
|
self._npy_value.flags.writeable = False
|
|
return self._npy_value
|
|
|
|
@property
|
|
def shape(self):
|
|
return self.aval.shape
|
|
|
|
@property
|
|
def dtype(self):
|
|
return self.aval.dtype
|
|
|
|
@property
|
|
def size(self):
|
|
return prod(self.aval.shape)
|
|
|
|
@property
|
|
def ndim(self):
|
|
return len(self.aval.shape)
|
|
|
|
def copy_to_host_async(self):
|
|
"""Requests a copy of the buffer to the host."""
|
|
self._check_if_deleted()
|
|
if self._npy_value is None:
|
|
self.device_buffer.copy_to_host_async() # pytype: disable=attribute-error
|
|
|
|
def delete(self):
|
|
"""Deletes the device array and any cached copy on the host.
|
|
|
|
It is an error to access the contents of a `DeviceArray` after it has
|
|
been deleted.
|
|
|
|
Use of this method is optional; device buffers will be reclaimed
|
|
automatically by Python when a DeviceArray object is garbage collected.
|
|
However, it is sometimes useful to have more explicit control over the
|
|
time of deletion.
|
|
"""
|
|
self.device_buffer.delete() # pytype: disable=attribute-error
|
|
self.device_buffer = deleted_buffer
|
|
self._npy_value = None
|
|
|
|
@property
|
|
def __cuda_array_interface__(self):
|
|
return self.device_buffer.__cuda_array_interface__
|
|
|
|
|
|
# Adding methods dynamically to both _DeviceArray and _CppDeviceArray
|
|
# pylint: disable=protected-access
|
|
for device_array in [DeviceArray]:
|
|
|
|
|
|
def copy(self):
|
|
"""Returns an ndarray (backed by host memory, not device memory)."""
|
|
return np.asarray(self)
|
|
setattr(device_array, "copy", copy)
|
|
|
|
def __repr__(self):
|
|
line_width = np.get_printoptions()["linewidth"]
|
|
prefix = '{}('.format(self.__class__.__name__.lstrip('_'))
|
|
s = np.array2string(self._value, prefix=prefix, suffix=',',
|
|
separator=', ', max_line_width=line_width)
|
|
dtype_str = 'dtype={})'.format(self.dtype.name)
|
|
last_line_len = len(s) - s.rfind('\n') + 1
|
|
sep = ' '
|
|
if last_line_len + len(dtype_str) + 1 > line_width:
|
|
sep = ' ' * len(prefix)
|
|
return "{}{},{}{}".format(prefix, s, sep, dtype_str)
|
|
|
|
setattr(device_array, "__repr__", __repr__)
|
|
|
|
def item(self):
|
|
if dtypes.issubdtype(self.dtype, np.complexfloating):
|
|
return complex(self)
|
|
elif dtypes.issubdtype(self.dtype, np.floating):
|
|
return float(self)
|
|
elif dtypes.issubdtype(self.dtype, np.integer):
|
|
return int(self)
|
|
elif dtypes.issubdtype(self.dtype, np.bool_):
|
|
return bool(self)
|
|
else:
|
|
raise TypeError(self.dtype)
|
|
|
|
setattr(device_array, "item", item)
|
|
|
|
def __len__(self):
|
|
try:
|
|
return self.aval.shape[0]
|
|
except IndexError as err:
|
|
raise TypeError("len() of unsized object") from err # same as numpy error
|
|
|
|
setattr(device_array, "__len__", __len__)
|
|
|
|
def __iter__(self):
|
|
if self.ndim == 0:
|
|
raise TypeError("iteration over a 0-d array") # same as numpy error
|
|
else:
|
|
return self._value.__iter__()
|
|
|
|
setattr(device_array, "__iter__", __iter__)
|
|
|
|
def __reversed__(self):
|
|
if self.ndim == 0:
|
|
raise TypeError("iteration over a 0-d array")
|
|
else:
|
|
return reversed(self._value)
|
|
|
|
setattr(device_array, "__reversed__", __reversed__)
|
|
|
|
def __format__(self, format_spec):
|
|
# Simulates behavior of https://github.com/numpy/numpy/pull/9883
|
|
if self.ndim == 0:
|
|
return format(self._value[()], format_spec)
|
|
else:
|
|
return format(self._value, format_spec)
|
|
|
|
setattr(device_array, "__format__", __format__)
|
|
|
|
def __array__(self, dtype=None, context=None):
|
|
return np.asarray(self._value, dtype=dtype)
|
|
|
|
setattr(device_array, "__array__", __array__)
|
|
|
|
setattr(device_array, "__str__", partialmethod(_forward_to_value, str))
|
|
setattr(device_array, "__bool__", partialmethod(_forward_to_value, bool))
|
|
setattr(device_array, "__nonzero__", partialmethod(_forward_to_value, bool))
|
|
setattr(device_array, "__float__", lambda self: self._value.__float__())
|
|
setattr(device_array, "__int__", lambda self: self._value.__int__())
|
|
setattr(device_array, "__complex__", lambda self: self._value.__complex__())
|
|
setattr(device_array, "__hex__", partialmethod(_forward_to_value, hex))
|
|
setattr(device_array, "__oct__", partialmethod(_forward_to_value, oct))
|
|
setattr(device_array, "__index__", partialmethod(_forward_to_value, op.index))
|
|
to_bytes = lambda self, order="C": self._value.tobytes(order)
|
|
setattr(device_array, "tobytes", to_bytes)
|
|
del to_bytes
|
|
setattr(device_array, "tolist", lambda self: self._value.tolist())
|
|
|
|
# pickle saves and loads just like an ndarray
|
|
setattr(device_array, "__reduce__",
|
|
partialmethod(_forward_to_value, op.methodcaller("__reduce__")))
|
|
|
|
# clobbered when jax.numpy is imported, but useful in tests
|
|
setattr(device_array, "__eq__", lambda self, other: self._value == other)
|
|
|
|
def __hash__(self):
|
|
raise TypeError("JAX DeviceArray, like numpy.ndarray, is not hashable.")
|
|
|
|
setattr(device_array, "__hash__", __hash__)
|
|
|
|
# The following methods are dynamically overridden in lax_numpy.py.
|
|
def raise_not_implemented():
|
|
raise NotImplementedError
|
|
|
|
setattr(device_array, "__getitem__", lambda self, i: raise_not_implemented())
|
|
# pylint: enable=protected-access
|
|
|
|
|
|
class DeletedBuffer(object): pass
|
|
deleted_buffer = DeletedBuffer()
|
|
|
|
for device_array in [_CppDeviceArray, _DeviceArray]:
|
|
core.literalable_types.add(device_array)
|
|
core.pytype_aval_mappings[device_array] = ConcreteArray
|
|
pytype_aval_mappings[device_array] = op.attrgetter('aval')
|
|
canonicalize_dtype_handlers[device_array] = identity
|
|
|
|
def _device_array_constant_handler(c, val, canonicalize_types=True):
|
|
return xb.constant_general(c, val.device_buffer.to_py())
|
|
xb.register_constant_handler(_DeviceArray, _device_array_constant_handler)
|
|
xb.register_constant_handler(_CppDeviceArray, _device_array_constant_handler)
|
|
|
|
def _device_put_device_array(x: Union[DeviceArrayProtocol, _DeviceArray], device: Optional[Device]):
|
|
x = _copy_device_array_to_device(x, device)
|
|
return (x.device_buffer,)
|
|
device_put_handlers[_CppDeviceArray] = _device_put_device_array
|
|
device_put_handlers[_DeviceArray] = _device_put_device_array
|
|
|
|
def _copy_device_array_to_device(x: Union[DeviceArrayProtocol, _DeviceArray], device: Optional[xc.Device]) -> Union[DeviceArrayProtocol, _DeviceArray]:
|
|
if device is None:
|
|
# no copying to be done because there's no target specified
|
|
return x
|
|
elif xb.get_device_backend(device).platform == x.device_buffer.platform():
|
|
# source and target platforms are the same
|
|
if x.device_buffer.device() == device:
|
|
# no copying to be done because source equals target
|
|
if x._device == device:
|
|
return x
|
|
else:
|
|
moved_buf = x.device_buffer # We need to change stickyness
|
|
else:
|
|
# move the buffer with a device-to-device copy
|
|
moved_buf = x.device_buffer.copy_to_device(device)
|
|
else:
|
|
# buffers from different XLA backends are passed through the host.
|
|
backend = xb.get_device_backend(device)
|
|
moved_buf = backend.buffer_from_pyval(x.device_buffer.to_py(), device)
|
|
return make_device_array(x.aval, device, moved_buf)
|
|
|
|
|
|
def _device_put_impl(x, device: Optional[Device] = None):
|
|
if type_is_device_array(x):
|
|
return _copy_device_array_to_device(x, device)
|
|
|
|
try:
|
|
a = abstractify(x)
|
|
except TypeError as err:
|
|
raise TypeError(
|
|
f"Argument '{x}' of type {type(x)} is not a valid JAX type") from err
|
|
return aval_to_result_handler(device, a)(*device_put(x, device))
|
|
|
|
device_put_p = core.Primitive('device_put')
|
|
device_put_p.def_impl(_device_put_impl)
|
|
device_put_p.def_abstract_eval(lambda x, device=None: x)
|
|
translations[device_put_p] = lambda c, x, device=None: x
|
|
ad.deflinear2(device_put_p, lambda cotangent, _, **kwargs: [cotangent])
|
|
masking.defvectorized(device_put_p)
|
|
|
|
|
|
def _zeros(c, xla_shape):
|
|
if xla_shape.is_array():
|
|
shape, dtype = xla_shape.dimensions(), xla_shape.numpy_dtype()
|
|
zero = xb.constant(c, np.array(0, dtype=dtype))
|
|
return xops.Broadcast(zero, shape)
|
|
else:
|
|
# It is a token
|
|
return xops.CreateToken(c)
|
|
|
|
|
|
def _remat_using_cond(
|
|
c, axis_env, in_nodes, name_stack, backend, name, call_jaxpr):
|
|
"""Lower remat to a Conditional which always returns true. This:
|
|
1. Circumvents common subexpression elimination.
|
|
2. In common case of `jax.grad(jax.remat(f))`, ensures the remat blocks
|
|
occur after the primal blocks, because cotangent is an input to the
|
|
Conditional."""
|
|
# Fake condition which always selects True branch.
|
|
rng = xops.RngUniform(xb.constant(c, np.array(0, dtype=np.float32)),
|
|
xb.constant(c, np.array(1, dtype=np.float32)),
|
|
xc.Shape.array_shape(xc.PrimitiveType.F32, []))
|
|
pred = xops.Lt(rng, xb.constant(c, np.array(2, dtype=np.float32)))
|
|
|
|
true_op = xops.Tuple(c, in_nodes)
|
|
remat_subc = xb.make_computation_builder("remat_call_subcomputation")
|
|
input_op = xb.parameter(remat_subc, 0, c.get_shape(true_op), replicated=[])
|
|
args = xla_destructure(remat_subc, input_op)
|
|
out_nodes = jaxpr_subcomp(remat_subc, call_jaxpr, backend, axis_env, (),
|
|
extend_name_stack(name_stack, wrap_name(name, 'remat')),
|
|
*args)
|
|
out_node_shapes = [remat_subc.get_shape(o) for o in out_nodes]
|
|
remat_subc = remat_subc.build(xops.Tuple(remat_subc, out_nodes))
|
|
|
|
false_op = true_op
|
|
dummy_subc = xb.make_computation_builder("remat_call_dummy_subcomputation")
|
|
xb.parameter(dummy_subc, 0, c.get_shape(false_op), replicated=[])
|
|
out_nodes = [_zeros(dummy_subc, s) for s in out_node_shapes]
|
|
dummy_subc = dummy_subc.build(xops.Tuple(dummy_subc, out_nodes))
|
|
|
|
return xops.Conditional(pred, true_op, remat_subc, false_op, dummy_subc)
|
|
|
|
|
|
def _remat_using_while(
|
|
c, axis_env, in_nodes, name_stack, backend, name, call_jaxpr):
|
|
"""Lower remat to a single iteration while loop."""
|
|
# Dummy subc for getting subcomp shapes.
|
|
dummy_inputs = xops.Tuple(c, in_nodes)
|
|
dummy_subc = xb.make_computation_builder("remat_dummy_subcomputation")
|
|
dummy_input_op = xb.parameter(dummy_subc, 0, c.get_shape(dummy_inputs), replicated=[])
|
|
dummy_args = xla_destructure(dummy_subc, dummy_input_op)
|
|
dummy_subcomp_outs = jaxpr_subcomp(
|
|
dummy_subc, call_jaxpr, backend, axis_env, (),
|
|
extend_name_stack(name_stack, wrap_name(name, "remat")), *dummy_args)
|
|
out_node_shapes = [dummy_subc.get_shape(o) for o in dummy_subcomp_outs]
|
|
|
|
i_init = xb.constant(c, np.array(0, dtype=np.int32))
|
|
zeros_like_outs = [_zeros(c, s) for s in out_node_shapes]
|
|
inputs = xops.Tuple(c, [i_init] + in_nodes + zeros_like_outs)
|
|
|
|
cond_subc = xb.make_computation_builder("remat_cond_subcomputation")
|
|
input_op = xb.parameter(cond_subc, 0, c.get_shape(inputs), replicated=[])
|
|
i = xops.GetTupleElement(input_op, 0)
|
|
rng = xops.RngUniform(xb.constant(cond_subc, np.array(1, dtype=np.int32)),
|
|
xb.constant(cond_subc, np.array(2, dtype=np.int32)),
|
|
xc.Shape.array_shape(xc.PrimitiveType.S32, []))
|
|
cond_subc = cond_subc.build(xops.Lt(i, rng))
|
|
|
|
body_subc = xb.make_computation_builder("remat_body_subcomputation")
|
|
input_op = xb.parameter(body_subc, 0, c.get_shape(inputs), replicated=[])
|
|
i, *args = xla_destructure(body_subc, input_op)[:len(in_nodes)+1]
|
|
i_next = xops.Add(i, xb.constant(body_subc, np.array(1, dtype=np.int32)))
|
|
subcomp_outs = jaxpr_subcomp(
|
|
body_subc, call_jaxpr, backend, axis_env, (),
|
|
extend_name_stack(name_stack, wrap_name(name, "remat")), *args)
|
|
out_nodes = [i_next] + args + subcomp_outs
|
|
body_subc = body_subc.build(xops.Tuple(body_subc, out_nodes))
|
|
outs = xops.While(cond_subc, body_subc, inputs)
|
|
return xops.Tuple(c, xla_destructure(c, outs)[len(in_nodes)+1:])
|
|
|
|
|
|
def _remat_translation_rule(c, axis_env, in_nodes,
|
|
name_stack, backend, name, call_jaxpr,
|
|
prevent_cse, differentiated, concrete, device=None):
|
|
del device, concrete # Unused.
|
|
if differentiated and prevent_cse:
|
|
if backend == "gpu":
|
|
return _remat_using_while(
|
|
c, axis_env, in_nodes, name_stack, backend, name, call_jaxpr)
|
|
else:
|
|
return _remat_using_cond(
|
|
c, axis_env, in_nodes, name_stack, backend, name, call_jaxpr)
|
|
else:
|
|
outs = jaxpr_subcomp(c, call_jaxpr, backend, axis_env, (), "", *in_nodes)
|
|
return xops.Tuple(c, outs)
|
|
|
|
call_translations[pe.remat_call_p] = _remat_translation_rule # type: ignore
|
|
|
|
|
|
ad.primitive_transposes[core.named_call_p] = partial(ad.call_transpose,
|
|
core.named_call_p)
|
|
|
|
|
|
def _named_call_translation_rule(c, axis_env, in_nodes, name_stack, *,
|
|
name="core_call", backend, call_jaxpr):
|
|
subc = xb.make_computation_builder(name)
|
|
args = [xb.parameter(subc, i, c.GetShape(n)) for i, n in enumerate(in_nodes)]
|
|
out_nodes = jaxpr_subcomp(subc, call_jaxpr, backend, axis_env, (),
|
|
extend_name_stack(name_stack, name), *args)
|
|
subc = subc.Build(xops.Tuple(subc, out_nodes))
|
|
return xops.Call(c, subc, list(in_nodes))
|
|
call_translations[core.named_call_p] = _named_call_translation_rule
|
|
|
|
|
|
def _call_translation_rule(c, axis_env, in_nodes, name_stack, *, backend,
|
|
call_jaxpr):
|
|
return _named_call_translation_rule(
|
|
c, axis_env, in_nodes, name_stack, name="core_call",
|
|
backend=backend, call_jaxpr=call_jaxpr)
|
|
call_translations[core.call_p] = _call_translation_rule
|