rocm_jax/jax/numpy/linalg.py
Matthew Johnson 4236eb2b59
omnistaging, under a flag and disabled by default (#3370)
This change, when enabled, stages out all primitive calls in the dynamic
scope of a jitted, pmapped, or control flow function, rather than only
staging out based on data dependence. One improvement is that jitted
functions can consume less memory, by avoiding instantiating large
constants at trace time, and cause less memory fragmentation as well. It
also simplifies several internals.

See https://github.com/google/jax/pull/3370 fo more information.
2020-07-30 12:59:36 -07:00

540 lines
19 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import numpy as np
import textwrap
import operator
from typing import Tuple, Union, cast
from jax import jit, vmap, custom_jvp
from .. import lax
from .. import ops
from .. import lax_linalg
from .. import dtypes
from .lax_numpy import _not_implemented
from ._util import _wraps
from .vectorize import vectorize
from . import lax_numpy as jnp
from ..util import get_module_functions
from ..third_party.numpy.linalg import cond, multi_dot, tensorinv, tensorsolve # noqa: F401
_T = lambda x: jnp.swapaxes(x, -1, -2)
_H = lambda x: jnp.conj(jnp.swapaxes(x, -1, -2))
def _promote_arg_dtypes(*args):
"""Promotes `args` to a common inexact type."""
def _to_inexact_type(type):
return type if jnp.issubdtype(type, jnp.inexact) else jnp.float_
inexact_types = [_to_inexact_type(jnp._dtype(arg)) for arg in args]
dtype = dtypes.canonicalize_dtype(jnp.result_type(*inexact_types))
args = [lax.convert_element_type(arg, dtype) for arg in args]
if len(args) == 1:
return args[0]
else:
return args
@_wraps(np.linalg.cholesky)
def cholesky(a):
a = _promote_arg_dtypes(jnp.asarray(a))
return lax_linalg.cholesky(a)
@_wraps(np.linalg.svd)
def svd(a, full_matrices=True, compute_uv=True):
a = _promote_arg_dtypes(jnp.asarray(a))
return lax_linalg.svd(a, full_matrices, compute_uv)
@_wraps(np.linalg.matrix_power)
def matrix_power(a, n):
a = _promote_arg_dtypes(jnp.asarray(a))
if a.ndim < 2:
raise TypeError("{}-dimensional array given. Array must be at least "
"two-dimensional".format(a.ndim))
if a.shape[-2] != a.shape[-1]:
raise TypeError("Last 2 dimensions of the array must be square")
try:
n = operator.index(n)
except TypeError:
raise TypeError("exponent must be an integer, got {}".format(n))
if n == 0:
return jnp.broadcast_to(jnp.eye(a.shape[-2], dtype=a.dtype), a.shape)
elif n < 0:
a = inv(a)
n = np.abs(n)
if n == 1:
return a
elif n == 2:
return a @ a
elif n == 3:
return (a @ a) @ a
z = result = None
while n > 0:
z = a if z is None else (z @ z)
n, bit = divmod(n, 2)
if bit:
result = z if result is None else (result @ z)
return result
@_wraps(np.linalg.matrix_rank)
def matrix_rank(M, tol=None):
M = _promote_arg_dtypes(jnp.asarray(M))
if M.ndim > 2:
raise TypeError("array should have 2 or fewer dimensions")
if M.ndim < 2:
return jnp.any(M != 0).astype(jnp.int32)
S = svd(M, full_matrices=False, compute_uv=False)
if tol is None:
tol = S.max() * np.max(M.shape) * jnp.finfo(S.dtype).eps
return jnp.sum(S > tol)
@custom_jvp
@_wraps(np.linalg.slogdet)
@jit
def slogdet(a):
a = _promote_arg_dtypes(jnp.asarray(a))
dtype = lax.dtype(a)
a_shape = jnp.shape(a)
if len(a_shape) < 2 or a_shape[-1] != a_shape[-2]:
msg = "Argument to slogdet() must have shape [..., n, n], got {}"
raise ValueError(msg.format(a_shape))
lu, pivot = lax_linalg.lu(a)
diag = jnp.diagonal(lu, axis1=-2, axis2=-1)
is_zero = jnp.any(diag == jnp.array(0, dtype=dtype), axis=-1)
parity = jnp.count_nonzero(pivot != jnp.arange(a_shape[-1]), axis=-1)
if jnp.iscomplexobj(a):
sign = jnp.prod(diag / jnp.abs(diag), axis=-1)
else:
sign = jnp.array(1, dtype=dtype)
parity = parity + jnp.count_nonzero(diag < 0, axis=-1)
sign = jnp.where(is_zero,
jnp.array(0, dtype=dtype),
sign * jnp.array(-2 * (parity % 2) + 1, dtype=dtype))
logdet = jnp.where(
is_zero, jnp.array(-jnp.inf, dtype=dtype),
jnp.sum(jnp.log(jnp.abs(diag)), axis=-1))
return sign, jnp.real(logdet)
@slogdet.defjvp
def _slogdet_jvp(primals, tangents):
x, = primals
g, = tangents
if jnp.issubdtype(jnp._dtype(x), jnp.complexfloating):
raise NotImplementedError # TODO(pfau): make this work for complex types
sign, ans = slogdet(x)
sign_dot, ans_dot = jnp.zeros_like(sign), jnp.trace(solve(x, g), axis1=-1, axis2=-2)
return (sign, ans), (sign_dot, ans_dot)
def _cofactor_solve(a, b):
"""Equivalent to det(a)*solve(a, b) for nonsingular mat.
Intermediate function used for jvp and vjp of det.
This function borrows heavily from jax.numpy.linalg.solve and
jax.numpy.linalg.slogdet to compute the gradient of the determinant
in a way that is well defined even for low rank matrices.
This function handles two different cases:
* rank(a) == n or n-1
* rank(a) < n-1
For rank n-1 matrices, the gradient of the determinant is a rank 1 matrix.
Rather than computing det(a)*solve(a, b), which would return NaN, we work
directly with the LU decomposition. If a = p @ l @ u, then
det(a)*solve(a, b) =
prod(diag(u)) * u^-1 @ l^-1 @ p^-1 b =
prod(diag(u)) * triangular_solve(u, solve(p @ l, b))
If a is rank n-1, then the lower right corner of u will be zero and the
triangular_solve will fail.
Let x = solve(p @ l, b) and y = det(a)*solve(a, b).
Then y_{n}
x_{n} / u_{nn} * prod_{i=1...n}(u_{ii}) =
x_{n} * prod_{i=1...n-1}(u_{ii})
So by replacing the lower-right corner of u with prod_{i=1...n-1}(u_{ii})^-1
we can avoid the triangular_solve failing.
To correctly compute the rest of y_{i} for i != n, we simply multiply
x_{i} by det(a) for all i != n, which will be zero if rank(a) = n-1.
For the second case, a check is done on the matrix to see if `solve`
returns NaN or Inf, and gives a matrix of zeros as a result, as the
gradient of the determinant of a matrix with rank less than n-1 is 0.
This will still return the correct value for rank n-1 matrices, as the check
is applied *after* the lower right corner of u has been updated.
Args:
a: A square matrix or batch of matrices, possibly singular.
b: A matrix, or batch of matrices of the same dimension as a.
Returns:
det(a) and cofactor(a)^T*b, aka adjugate(a)*b
"""
a = _promote_arg_dtypes(jnp.asarray(a))
b = _promote_arg_dtypes(jnp.asarray(b))
a_shape = jnp.shape(a)
b_shape = jnp.shape(b)
a_ndims = len(a_shape)
if not (a_ndims >= 2 and a_shape[-1] == a_shape[-2]
and b_shape[-2:] == a_shape[-2:]):
msg = ("The arguments to _cofactor_solve must have shapes "
"a=[..., m, m] and b=[..., m, m]; got a={} and b={}")
raise ValueError(msg.format(a_shape, b_shape))
if a_shape[-1] == 1:
return a[0, 0], b
# lu contains u in the upper triangular matrix and l in the strict lower
# triangular matrix.
# The diagonal of l is set to ones without loss of generality.
lu, pivots = lax_linalg.lu(a)
dtype = lax.dtype(a)
batch_dims = lax.broadcast_shapes(lu.shape[:-2], b.shape[:-2])
x = jnp.broadcast_to(b, batch_dims + b.shape[-2:])
lu = jnp.broadcast_to(lu, batch_dims + lu.shape[-2:])
# Compute (partial) determinant, ignoring last diagonal of LU
diag = jnp.diagonal(lu, axis1=-2, axis2=-1)
parity = jnp.count_nonzero(pivots != jnp.arange(a_shape[-1]), axis=-1)
sign = jnp.array(-2 * (parity % 2) + 1, dtype=dtype)
# partial_det[:, -1] contains the full determinant and
# partial_det[:, -2] contains det(u) / u_{nn}.
partial_det = jnp.cumprod(diag, axis=-1) * sign[..., None]
lu = ops.index_update(lu, ops.index[..., -1, -1], 1.0 / partial_det[..., -2])
permutation = lax_linalg.lu_pivots_to_permutation(pivots, a_shape[-1])
permutation = jnp.broadcast_to(permutation, batch_dims + (a_shape[-1],))
iotas = jnp.ix_(*(lax.iota(jnp.int32, b) for b in batch_dims + (1,)))
# filter out any matrices that are not full rank
d = jnp.ones(x.shape[:-1], x.dtype)
d = lax_linalg.triangular_solve(lu, d, left_side=True, lower=False)
d = jnp.any(jnp.logical_or(jnp.isnan(d), jnp.isinf(d)), axis=-1)
d = jnp.tile(d[..., None, None], d.ndim*(1,) + x.shape[-2:])
x = jnp.where(d, jnp.zeros_like(x), x) # first filter
x = x[iotas[:-1] + (permutation, slice(None))]
x = lax_linalg.triangular_solve(lu, x, left_side=True, lower=True,
unit_diagonal=True)
x = jnp.concatenate((x[..., :-1, :] * partial_det[..., -1, None, None],
x[..., -1:, :]), axis=-2)
x = lax_linalg.triangular_solve(lu, x, left_side=True, lower=False)
x = jnp.where(d, jnp.zeros_like(x), x) # second filter
return partial_det[..., -1], x
@custom_jvp
@_wraps(np.linalg.det)
def det(a):
sign, logdet = slogdet(a)
return sign * jnp.exp(logdet)
@det.defjvp
def _det_jvp(primals, tangents):
x, = primals
g, = tangents
y, z = _cofactor_solve(x, g)
return y, jnp.trace(z, axis1=-1, axis2=-2)
@_wraps(np.linalg.eig)
def eig(a):
a = _promote_arg_dtypes(jnp.asarray(a))
w, vl, vr = lax_linalg.eig(a)
return w, vr
@_wraps(np.linalg.eigvals)
def eigvals(a):
w, _ = eig(a)
return w
@_wraps(np.linalg.eigh)
def eigh(a, UPLO=None, symmetrize_input=True):
if UPLO is None or UPLO == "L":
lower = True
elif UPLO == "U":
lower = False
else:
msg = "UPLO must be one of None, 'L', or 'U', got {}".format(UPLO)
raise ValueError(msg)
a = _promote_arg_dtypes(jnp.asarray(a))
v, w = lax_linalg.eigh(a, lower=lower, symmetrize_input=symmetrize_input)
return w, v
@_wraps(np.linalg.eigvalsh)
def eigvalsh(a, UPLO='L'):
w, _ = eigh(a, UPLO)
return w
@partial(custom_jvp, nondiff_argnums=(1,))
@_wraps(np.linalg.pinv, lax_description=textwrap.dedent("""\
It differs only in default value of `rcond`. In `numpy.linalg.pinv`, the
default `rcond` is `1e-15`. Here the default is
`10. * max(num_rows, num_cols) * jnp.finfo(dtype).eps`.
"""))
def pinv(a, rcond=None):
# Uses same algorithm as
# https://github.com/numpy/numpy/blob/v1.17.0/numpy/linalg/linalg.py#L1890-L1979
a = jnp.conj(a)
if rcond is None:
max_rows_cols = max(a.shape[-2:])
rcond = 10. * max_rows_cols * jnp.finfo(a.dtype).eps
rcond = jnp.asarray(rcond)
u, s, v = svd(a, full_matrices=False)
# Singular values less than or equal to ``rcond * largest_singular_value``
# are set to zero.
cutoff = rcond[..., jnp.newaxis] * jnp.amax(s, axis=-1, keepdims=True)
s = jnp.where(s > cutoff, s, jnp.inf)
res = jnp.matmul(_T(v), jnp.divide(_T(u), s[..., jnp.newaxis]))
return lax.convert_element_type(res, a.dtype)
@pinv.defjvp
def _pinv_jvp(rcond, primals, tangents):
# The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems
# Whose Variables Separate. Author(s): G. H. Golub and V. Pereyra. SIAM
# Journal on Numerical Analysis, Vol. 10, No. 2 (Apr., 1973), pp. 413-432.
# (via https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#Derivative)
a, = primals
a_dot, = tangents
p = pinv(a, rcond=rcond)
m, n = a.shape[-2:]
# TODO(phawkins): on TPU, we would need to opt into high precision here.
# TODO(phawkins): consider if this can be simplified in the Hermitian case.
p_dot = -p @ a_dot @ p
p_dot = p_dot + p @ _H(p) @ _H(a_dot) @ (jnp.eye(m, dtype=a.dtype) - a @ p)
p_dot = p_dot + (jnp.eye(n, dtype=a.dtype) - p @ a) @ _H(a_dot) @ _H(p) @ p
return p, p_dot
@_wraps(np.linalg.inv)
def inv(a):
if jnp.ndim(a) < 2 or a.shape[-1] != a.shape[-2]:
raise ValueError("Argument to inv must have shape [..., n, n], got {}."
.format(jnp.shape(a)))
return solve(
a, lax.broadcast(jnp.eye(a.shape[-1], dtype=lax.dtype(a)), a.shape[:-2]))
@partial(jit, static_argnums=(1, 2, 3))
def _norm(x, ord, axis: Union[None, Tuple[int, ...], int], keepdims):
x = _promote_arg_dtypes(jnp.asarray(x))
x_shape = jnp.shape(x)
ndim = len(x_shape)
if axis is None:
# NumPy has an undocumented behavior that admits arbitrary rank inputs if
# `ord` is None: https://github.com/numpy/numpy/issues/14215
if ord is None:
return jnp.sqrt(jnp.sum(jnp.real(x * jnp.conj(x)), keepdims=keepdims))
axis = tuple(range(ndim))
elif isinstance(axis, tuple):
axis = tuple(jnp._canonicalize_axis(x, ndim) for x in axis)
else:
axis = (jnp._canonicalize_axis(axis, ndim),)
num_axes = len(axis)
if num_axes == 1:
if ord is None or ord == 2:
return jnp.sqrt(jnp.sum(jnp.real(x * jnp.conj(x)), axis=axis,
keepdims=keepdims))
elif ord == jnp.inf:
return jnp.amax(jnp.abs(x), axis=axis, keepdims=keepdims)
elif ord == -jnp.inf:
return jnp.amin(jnp.abs(x), axis=axis, keepdims=keepdims)
elif ord == 0:
return jnp.sum(x != 0, dtype=jnp.finfo(lax.dtype(x)).dtype,
axis=axis, keepdims=keepdims)
elif ord == 1:
# Numpy has a special case for ord == 1 as an optimization. We don't
# really need the optimization (XLA could do it for us), but the Numpy
# code has slightly different type promotion semantics, so we need a
# special case too.
return jnp.sum(jnp.abs(x), axis=axis, keepdims=keepdims)
else:
abs_x = jnp.abs(x)
ord = lax._const(abs_x, ord)
out = jnp.sum(abs_x ** ord, axis=axis, keepdims=keepdims)
return jnp.power(out, 1. / ord)
elif num_axes == 2:
row_axis, col_axis = cast(Tuple[int, ...], axis)
if ord is None or ord in ('f', 'fro'):
return jnp.sqrt(jnp.sum(jnp.real(x * jnp.conj(x)), axis=axis,
keepdims=keepdims))
elif ord == 1:
if not keepdims and col_axis > row_axis:
col_axis -= 1
return jnp.amax(jnp.sum(jnp.abs(x), axis=row_axis, keepdims=keepdims),
axis=col_axis, keepdims=keepdims)
elif ord == -1:
if not keepdims and col_axis > row_axis:
col_axis -= 1
return jnp.amin(jnp.sum(jnp.abs(x), axis=row_axis, keepdims=keepdims),
axis=col_axis, keepdims=keepdims)
elif ord == jnp.inf:
if not keepdims and row_axis > col_axis:
row_axis -= 1
return jnp.amax(jnp.sum(jnp.abs(x), axis=col_axis, keepdims=keepdims),
axis=row_axis, keepdims=keepdims)
elif ord == -jnp.inf:
if not keepdims and row_axis > col_axis:
row_axis -= 1
return jnp.amin(jnp.sum(jnp.abs(x), axis=col_axis, keepdims=keepdims),
axis=row_axis, keepdims=keepdims)
elif ord in ('nuc', 2, -2):
x = jnp.moveaxis(x, axis, (-2, -1))
if ord == 2:
reducer = jnp.amax
elif ord == -2:
reducer = jnp.amin
else:
reducer = jnp.sum
y = reducer(svd(x, compute_uv=False), axis=-1)
if keepdims:
result_shape = list(x_shape)
result_shape[axis[0]] = 1
result_shape[axis[1]] = 1
y = jnp.reshape(y, result_shape)
return y
else:
raise ValueError("Invalid order '{}' for matrix norm.".format(ord))
else:
raise ValueError(
"Invalid axis values ({}) for jnp.linalg.norm.".format(axis))
@_wraps(np.linalg.norm)
def norm(x, ord=None, axis=None, keepdims=False):
return _norm(x, ord, axis, keepdims)
@_wraps(np.linalg.qr)
def qr(a, mode="reduced"):
if mode in ("reduced", "r", "full"):
full_matrices = False
elif mode == "complete":
full_matrices = True
else:
raise ValueError("Unsupported QR decomposition mode '{}'".format(mode))
a = _promote_arg_dtypes(jnp.asarray(a))
q, r = lax_linalg.qr(a, full_matrices)
if mode == "r":
return r
return q, r
def _check_solve_shapes(a, b):
if not (a.ndim >= 2 and a.shape[-1] == a.shape[-2] and b.ndim >= 1):
msg = ("The arguments to solve must have shapes a=[..., m, m] and "
"b=[..., m, k] or b=[..., m]; got a={} and b={}")
raise ValueError(msg.format(a.shape, b.shape))
@partial(vectorize, signature='(n,m),(m)->(n)')
def _matvec_multiply(a, b):
return jnp.dot(a, b, precision=lax.Precision.HIGHEST)
@_wraps(np.linalg.solve)
@jit
def solve(a, b):
a, b = _promote_arg_dtypes(jnp.asarray(a), jnp.asarray(b))
_check_solve_shapes(a, b)
# With custom_linear_solve, we can reuse the same factorization when
# computing sensitivities. This is considerably faster.
lu, pivots = lax_linalg.lu(lax.stop_gradient(a))
custom_solve = partial(
lax.custom_linear_solve,
lambda x: _matvec_multiply(a, x),
solve=lambda _, x: lax_linalg.lu_solve(lu, pivots, x, trans=0),
transpose_solve=lambda _, x: lax_linalg.lu_solve(lu, pivots, x, trans=1))
if a.ndim == b.ndim + 1:
# b.shape == [..., m]
return custom_solve(b)
else:
# b.shape == [..., m, k]
return vmap(custom_solve, b.ndim - 1, max(a.ndim, b.ndim) - 1)(b)
@_wraps(np.linalg.lstsq, lax_description=textwrap.dedent("""\
It has two important differences:
1. In `numpy.linalg.lstsq`, the default `rcond` is `-1`, and warns that in the future
the default will be `None`. Here, the default rcond is `None`.
2. In `np.linalg.lstsq` the returned residuals are empty for low-rank or over-determined
solutions. Here, the residuals are returned in all cases, to make the function
compatible with jit. The non-jit compatible numpy behavior can be recovered by
passing numpy_resid=True.
The lstsq function does not currently have a custom JVP rule, so the gradient is
poorly behaved for some inputs, particularly for low-rank `a`.
"""))
def lstsq(a, b, rcond=None, *, numpy_resid=False):
# TODO: add lstsq to lax_linalg and implement this function via those wrappers.
# TODO: add custom jvp rule for more robust lstsq differentiation
a, b = _promote_arg_dtypes(a, b)
if a.shape[0] != b.shape[0]:
raise ValueError("Leading dimensions of input arrays must match")
b_orig_ndim = b.ndim
if b_orig_ndim == 1:
b = b[:, None]
if a.ndim != 2:
raise TypeError(
f"{a.ndim}-dimensional array given. Array must be two-dimensional")
if b.ndim != 2:
raise TypeError(
f"{b.ndim}-dimensional array given. Array must be one or two-dimensional")
m, n = a.shape
dtype = a.dtype
if rcond is None:
rcond = jnp.finfo(dtype).eps * max(n, m)
elif rcond < 0:
rcond = jnp.finfo(dtype).eps
u, s, vt = svd(a, full_matrices=False)
mask = s >= rcond * s[0]
rank = mask.sum()
safe_s = jnp.where(mask, s, 1)
s_inv = jnp.where(mask, 1 / safe_s, 0)[:, jnp.newaxis]
uTb = jnp.matmul(u.conj().T, b, precision=lax.Precision.HIGHEST)
x = jnp.matmul(vt.conj().T, s_inv * uTb, precision=lax.Precision.HIGHEST)
# Numpy returns empty residuals in some cases. To allow compilation, we
# default to returning full residuals in all cases.
if numpy_resid and (rank < n or m <= n):
resid = jnp.asarray([])
else:
b_estimate = jnp.matmul(a, x, precision=lax.Precision.HIGHEST)
resid = norm(b - b_estimate, axis=0) ** 2
if b_orig_ndim == 1:
x = x.ravel()
return x, resid, rank, s
_NOT_IMPLEMENTED = []
for name, func in get_module_functions(np.linalg).items():
if name not in globals():
_NOT_IMPLEMENTED.append(name)
globals()[name] = _not_implemented(func)