rocm_jax/tests/nn_test.py
Matthew Johnson 4236eb2b59
omnistaging, under a flag and disabled by default (#3370)
This change, when enabled, stages out all primitive calls in the dynamic
scope of a jitted, pmapped, or control flow function, rather than only
staging out based on data dependence. One improvement is that jitted
functions can consume less memory, by avoiding instantiating large
constants at trace time, and cause less memory fragmentation as well. It
also simplifies several internals.

See https://github.com/google/jax/pull/3370 fo more information.
2020-07-30 12:59:36 -07:00

229 lines
7.9 KiB
Python

# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for nn module."""
import collections
import itertools
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
from jax import core
from jax import test_util as jtu
from jax.test_util import check_grads
from jax import nn
from jax import random
import jax
import jax.numpy as jnp
from jax.config import config
config.parse_flags_with_absl()
class NNFunctionsTest(jtu.JaxTestCase):
def setUp(self):
super().setUp()
config.update("jax_numpy_rank_promotion", "raise")
def tearDown(self):
super().tearDown()
config.update("jax_numpy_rank_promotion", "allow")
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testSoftplusGrad(self):
check_grads(nn.softplus, (1e-8,), order=4,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradZero(self):
check_grads(nn.softplus, (0.,), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradInf(self):
self.assertAllClose(
1., jax.grad(nn.softplus)(float('inf')))
def testSoftplusGradNegInf(self):
check_grads(nn.softplus, (-float('inf'),), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradNan(self):
check_grads(nn.softplus, (float('nan'),), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
@parameterized.parameters([
int, jnp.int32, float, jnp.float64, jnp.float32, jnp.float64,])
def testSoftplusZero(self, dtype):
self.assertEqual(jnp.log(dtype(2)), nn.softplus(dtype(0)))
def testReluGrad(self):
rtol = 1e-2 if jtu.device_under_test() == "tpu" else None
check_grads(nn.relu, (1.,), order=3, rtol=rtol)
check_grads(nn.relu, (-1.,), order=3, rtol=rtol)
jaxpr = jax.make_jaxpr(jax.grad(nn.relu))(0.)
self.assertGreaterEqual(len(jaxpr.jaxpr.eqns), 2)
def testSoftplusValue(self):
val = nn.softplus(89.)
self.assertAllClose(val, 89., check_dtypes=False)
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testEluGrad(self):
check_grads(nn.elu, (1e4,), order=4, eps=1.)
def testEluValue(self):
val = nn.elu(1e4)
self.assertAllClose(val, 1e4, check_dtypes=False)
def testGluValue(self):
val = nn.glu(jnp.array([1.0, 0.0]))
self.assertAllClose(val, jnp.array([0.5]))
@parameterized.parameters(*itertools.product(
(jnp.float32, jnp.bfloat16, jnp.float16),
(nn.gelu, nn.relu, nn.softplus, nn.sigmoid)))
def testDtypeMatchesInput(self, dtype, fn):
if dtype is jnp.float16 and jtu.device_under_test() == "tpu":
self.skipTest("float16 not supported on TPU")
x = jnp.zeros((), dtype=dtype)
out = fn(x)
self.assertEqual(out.dtype, dtype)
@jtu.skip_on_devices("gpu", "tpu")
def testEluMemory(self):
# see https://github.com/google/jax/pull/1640
with core.skipping_checks(): # With checks we materialize the array
jax.make_jaxpr(nn.elu)(jnp.ones((10 ** 12,))) # don't oom
@jtu.skip_on_devices("gpu", "tpu")
def testHardTanhMemory(self):
# see https://github.com/google/jax/pull/1640
with core.skipping_checks(): # With checks we materialize the array
jax.make_jaxpr(nn.hard_tanh)(jnp.ones((10 ** 12,))) # don't oom
def testOneHot(self):
actual = nn.one_hot(jnp.array([0, 1, 2]), 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected)
actual = nn.one_hot(jnp.array([1, 2, 0]), 3)
expected = jnp.array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.]])
self.assertAllClose(actual, expected)
def testOneHotOutOfBound(self):
actual = nn.one_hot(jnp.array([-1, 3]), 3)
expected = jnp.array([[0., 0., 0.],
[0., 0., 0.]])
self.assertAllClose(actual, expected)
def testOneHotNonArrayInput(self):
actual = nn.one_hot([0, 1, 2], 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected)
def testOneHotCustomDtype(self):
actual = nn.one_hot(jnp.array([0, 1, 2]), 3, dtype=jnp.bool_)
expected = jnp.array([[True, False, False],
[False, True, False],
[False, False, True]])
self.assertAllClose(actual, expected)
def testOneHotConcretizationError(self):
# https://github.com/google/jax/issues/3654
msg = r"Abstract tracer.*\(in jax.nn.one_hot argument `num_classes`\).*"
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
jax.jit(nn.one_hot)(3, 5)
InitializerRecord = collections.namedtuple(
"InitializerRecord",
["name", "initializer", "shapes"])
ALL_SHAPES = [(2,), (2, 2), (2, 3), (3, 2), (2, 3, 4), (4, 3, 2), (2, 3, 4, 5)]
def initializer_record(name, initializer, min_dims=2, max_dims=4):
shapes = [shape for shape in ALL_SHAPES
if min_dims <= len(shape) <= max_dims]
return InitializerRecord(name, initializer, shapes)
INITIALIZER_RECS = [
initializer_record("uniform", nn.initializers.uniform, 1),
initializer_record("normal", nn.initializers.normal, 1),
initializer_record("he_normal", nn.initializers.he_normal),
initializer_record("he_uniform", nn.initializers.he_uniform),
initializer_record("glorot_normal", nn.initializers.glorot_normal),
initializer_record("glorot_uniform", nn.initializers.glorot_uniform),
initializer_record("lecun_normal", nn.initializers.lecun_normal),
initializer_record("lecun_uniform", nn.initializers.lecun_uniform),
initializer_record("orthogonal", nn.initializers.orthogonal, 2, 2),
initializer_record("delta_orthogonal", nn.initializers.delta_orthogonal, 4, 4)
]
class NNInitializersTest(jtu.JaxTestCase):
def setUp(self):
super().setUp()
config.update("jax_numpy_rank_promotion", "raise")
def tearDown(self):
super().tearDown()
config.update("jax_numpy_rank_promotion", "allow")
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_{}_{}".format(
rec.name,
jtu.format_shape_dtype_string(shape, dtype)),
"initializer": rec.initializer(),
"shape": shape, "dtype": dtype}
for rec in INITIALIZER_RECS
for shape in rec.shapes
for dtype in [np.float32, np.float64]))
def testInitializer(self, initializer, shape, dtype):
rng = random.PRNGKey(0)
val = initializer(rng, shape, dtype)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val))
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_{}_{}".format(
rec.name,
jtu.format_shape_dtype_string(shape, dtype)),
"initializer_provider": rec.initializer,
"shape": shape, "dtype": dtype}
for rec in INITIALIZER_RECS
for shape in rec.shapes
for dtype in [np.float32, np.float64]))
def testInitializerProvider(self, initializer_provider, shape, dtype):
rng = random.PRNGKey(0)
initializer = initializer_provider(dtype=dtype)
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val))
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())