mirror of
https://github.com/ROCm/jax.git
synced 2025-04-17 04:16:07 +00:00

This change, when enabled, stages out all primitive calls in the dynamic scope of a jitted, pmapped, or control flow function, rather than only staging out based on data dependence. One improvement is that jitted functions can consume less memory, by avoiding instantiating large constants at trace time, and cause less memory fragmentation as well. It also simplifies several internals. See https://github.com/google/jax/pull/3370 fo more information.
1788 lines
64 KiB
Python
1788 lines
64 KiB
Python
# Copyright 2018 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from functools import partial
|
|
import itertools as it
|
|
import gc
|
|
import os
|
|
from random import shuffle
|
|
from typing import Optional, cast
|
|
from unittest import SkipTest
|
|
import warnings
|
|
import weakref
|
|
|
|
import numpy as np
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
import jax
|
|
import jax.numpy as jnp
|
|
from jax import test_util as jtu
|
|
from jax import tree_util
|
|
from jax import lax
|
|
from jax import random
|
|
from jax.abstract_arrays import ShapedArray
|
|
from jax.api import (pmap, soft_pmap, jit, vmap, jvp, grad, make_jaxpr,
|
|
linearize, device_put)
|
|
from jax.lib import xla_bridge
|
|
from jax.util import prod, safe_map
|
|
from jax.interpreters import pxla
|
|
from jax.interpreters import xla
|
|
|
|
from jax.config import config
|
|
config.parse_flags_with_absl()
|
|
|
|
prev_xla_flags = None
|
|
|
|
# TODO(jakevdp): move the following to test_util.py
|
|
compatible_shapes = [[(3,)], [(3, 4), (3, 1), (1, 4)], [(2, 3, 4), (2, 1, 4)]]
|
|
|
|
def all_bdims(*shapes):
|
|
bdims = (it.chain([cast(Optional[int], None)],
|
|
range(len(shape) + 1)) for shape in shapes)
|
|
return (t for t in it.product(*bdims) if not all(e is None for e in t))
|
|
|
|
def add_bdim(bdim_size, bdim, shape):
|
|
shape = list(shape)
|
|
if bdim is not None:
|
|
shape.insert(bdim, bdim_size)
|
|
return tuple(shape)
|
|
|
|
def slicer(x, bdim):
|
|
if bdim is None:
|
|
return lambda _: x
|
|
else:
|
|
return lambda i: lax.index_in_dim(x, i, bdim, keepdims=False)
|
|
|
|
def args_slicer(args, bdims):
|
|
slicers = safe_map(slicer, args, bdims)
|
|
return lambda i: [sl(i) for sl in slicers]
|
|
|
|
# Run all tests with 8 CPU devices.
|
|
def setUpModule():
|
|
global prev_xla_flags
|
|
prev_xla_flags = os.getenv("XLA_FLAGS")
|
|
flags_str = prev_xla_flags or ""
|
|
# Don't override user-specified device count, or other XLA flags.
|
|
if "xla_force_host_platform_device_count" not in flags_str:
|
|
os.environ["XLA_FLAGS"] = (flags_str +
|
|
" --xla_force_host_platform_device_count=8")
|
|
# Clear any cached backends so new CPU backend will pick up the env var.
|
|
xla_bridge.get_backend.cache_clear()
|
|
|
|
# Reset to previous configuration in case other test modules will be run.
|
|
def tearDownModule():
|
|
if prev_xla_flags is None:
|
|
del os.environ["XLA_FLAGS"]
|
|
else:
|
|
os.environ["XLA_FLAGS"] = prev_xla_flags
|
|
xla_bridge.get_backend.cache_clear()
|
|
|
|
ignore_soft_pmap_warning = partial(
|
|
jtu.ignore_warning, message="soft_pmap is an experimental.*")
|
|
|
|
|
|
class PmapTest(jtu.JaxTestCase):
|
|
def _getMeshShape(self, device_mesh_shape):
|
|
device_count = xla_bridge.device_count()
|
|
if any(size == -1 for size in device_mesh_shape):
|
|
try:
|
|
return np.arange(device_count).reshape(device_mesh_shape).shape
|
|
except ValueError as err:
|
|
msg = "device mesh shape {} not compatible with device count {}"
|
|
raise SkipTest(msg.format(device_mesh_shape, device_count)) from err
|
|
else:
|
|
if device_count % prod(device_mesh_shape):
|
|
msg = "device mesh size {} does not divide available device count {}"
|
|
raise SkipTest(msg.format(prod(device_mesh_shape), device_count))
|
|
else:
|
|
return device_mesh_shape
|
|
|
|
def testBasic(self):
|
|
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.sum(x, 0)
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testMean(self):
|
|
f = pmap(lambda x: x - lax.pmean(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.broadcast_to(np.mean(x, 0), x.shape)
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testGather(self):
|
|
f = pmap(lambda x: lax.all_gather(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = np.array([x] * xla_bridge.device_count())
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testTrees(self):
|
|
ptranspose = lambda x, axis_name: lax.all_to_all(x, axis_name, 0, 0)
|
|
def protate(x, axis_name):
|
|
n = lax.psum(1, axis_name)
|
|
return lax.ppermute(x, axis_name, [(i, (i + 1) % n) for i in range(n)])
|
|
|
|
tree_f = lambda f: partial(tree_util.tree_map, f)
|
|
jax_f = lambda p: pmap(lambda x: p(x, 'i'), 'i')
|
|
np_f = lambda p: tree_f(lambda x: np.broadcast_to(p(x, 0), x.shape))
|
|
np_transpose = tree_f(np.transpose)
|
|
np_rotate = tree_f(lambda x: np.concatenate([x[-1:], x[:-1]]))
|
|
|
|
n = xla_bridge.device_count()
|
|
x = {'a': np.arange(1 * n * n, 2 * n * n).reshape([n, n]),
|
|
'b': np.arange(2 * n * n, 3 * n * n).reshape([n, n]),
|
|
'c': np.arange(4 * n * n, 5 * n * n).reshape([n, n])}
|
|
|
|
assert_allclose = partial(tree_util.tree_multimap,
|
|
partial(self.assertAllClose, check_dtypes=False))
|
|
assert_allclose(jax_f(lax.pmax)(x), np_f(np.max)(x))
|
|
assert_allclose(jax_f(lax.pmin)(x), np_f(np.min)(x))
|
|
assert_allclose(jax_f(lax.psum)(x), np_f(np.sum)(x))
|
|
assert_allclose(jax_f(lax.pmean)(x), np_f(np.mean)(x))
|
|
if jtu.device_under_test() not in ("cpu", "gpu"):
|
|
# NOTE: all-to-all and ppermute only supported on TPU.
|
|
assert_allclose(jax_f(ptranspose)(x), np_transpose(x))
|
|
assert_allclose(jax_f(protate)(x), np_rotate(x))
|
|
|
|
def testCollectivesWithTreesOfDifferentDtypes(self):
|
|
n = len(jax.devices())
|
|
x = {'a': np.arange(1 * n * n, 2 * n * n, dtype=np.float32).reshape([n, n]),
|
|
'b': np.arange(2 * n * n, 3 * n * n, dtype=np.int32).reshape([n, n]),
|
|
'c': np.arange(4 * n * n, 5 * n * n, dtype=np.float32).reshape([n, n]),
|
|
'd': np.arange(6 * n * n, 7 * n * n, dtype=np.int32).reshape([n, n])}
|
|
tree_f = lambda f: partial(tree_util.tree_map, f)
|
|
jax_f = lambda p: pmap(lambda x: p(x, 'i'), 'i')
|
|
np_f = lambda p: tree_f(lambda x: np.broadcast_to(p(x, 0), x.shape))
|
|
assert_allclose = partial(tree_util.tree_multimap,
|
|
partial(self.assertAllClose, check_dtypes=False))
|
|
assert_allclose(jax_f(lax.pmax)(x), np_f(np.max)(x))
|
|
assert_allclose(jax_f(lax.pmin)(x), np_f(np.min)(x))
|
|
assert_allclose(jax_f(lax.psum)(x), np_f(np.sum)(x))
|
|
assert_allclose(jax_f(lax.pmean)(x), np_f(np.mean)(x))
|
|
|
|
def testComplexPsum(self):
|
|
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4 * 2)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape).view(np.complex64)
|
|
expected = x - np.sum(x, 0)
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
def testNestedBasic(self):
|
|
f = lambda x: lax.psum(lax.psum(x, 'i'), 'j')
|
|
f = pmap(pmap(f, 'i'), 'j')
|
|
|
|
def sum_and_broadcast(x, axis):
|
|
return np.repeat(np.sum(x, axis, keepdims=True), x.shape[axis], axis)
|
|
|
|
shape = (xla_bridge.device_count(), 1, 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = f(x)
|
|
expected = sum_and_broadcast(sum_and_broadcast(x, 0), 1)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testMismatchedAxisSizes(self):
|
|
n = xla_bridge.device_count()
|
|
f = pmap(lambda x, y: x + y)
|
|
self.assertRaisesRegex(
|
|
ValueError,
|
|
"pmap got inconsistent sizes for array axes to be mapped",
|
|
lambda: f(np.random.randn(n), np.random.randn(n - 1)))
|
|
|
|
@parameterized.named_parameters(
|
|
{"testcase_name": "_mesh={}".format(device_mesh_shape).replace(" ", ""),
|
|
"device_mesh_shape": device_mesh_shape}
|
|
for device_mesh_shape in [(1, 1), (2, -1), (-1, 2)])
|
|
def testNestedShardingAndStacking(self, device_mesh_shape):
|
|
mesh_shape = self._getMeshShape(device_mesh_shape)
|
|
|
|
f = lambda x: x
|
|
f = pmap(pmap(f, 'i'), 'j')
|
|
|
|
shape = mesh_shape + (4,)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = f(x)
|
|
expected = x
|
|
self.assertEqual(ans.shape, expected.shape)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testPartiallyMapped(self):
|
|
f = pmap(lambda x, y: x, in_axes=(None, 0))
|
|
g = pmap(lambda x, y: x - lax.psum(y, 'i'), axis_name='i', in_axes=(None, 0))
|
|
|
|
mesh_shape = (xla_bridge.device_count(),)
|
|
shape = mesh_shape + (4,)
|
|
x = np.array(3., dtype=np.float32)
|
|
y = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
f_expected = np.broadcast_to(x, mesh_shape)
|
|
f_ans = f(x, y)
|
|
self.assertAllClose(f_ans, f_expected)
|
|
self.assertIsInstance(f_ans, pxla.ShardedDeviceArray)
|
|
# the output is actually replicated (has the same values in each device buffer)
|
|
# but out_axes is implicitly 0, so we shouldn't have replication in the
|
|
# sharding spec.
|
|
self.assertEmpty(f_ans.sharding_spec.replication_factors)
|
|
|
|
g_expected = np.broadcast_to(x - np.sum(y, 0, keepdims=True), shape)
|
|
g_ans = g(x, y)
|
|
self.assertAllClose(g_ans, g_expected)
|
|
self.assertIsInstance(g_ans, pxla.ShardedDeviceArray)
|
|
self.assertEmpty(g_ans.sharding_spec.replication_factors)
|
|
|
|
@parameterized.named_parameters(
|
|
{"testcase_name": "_mesh={}".format(device_mesh_shape).replace(" ", ""),
|
|
"device_mesh_shape": device_mesh_shape}
|
|
for device_mesh_shape in [(1, 1), (2, -1), (-1, 2)])
|
|
def testPartiallyMappedNested(self, device_mesh_shape):
|
|
mesh_shape = self._getMeshShape(device_mesh_shape)
|
|
|
|
f = pmap(lambda x, y: x - lax.psum(y, 'i'), axis_name='i', in_axes=(None, 0))
|
|
f = pmap(f, axis_name='j', in_axes=(None, 0))
|
|
|
|
x = 3.
|
|
y = np.arange(prod(mesh_shape), dtype=np.float32).reshape(mesh_shape)
|
|
expected = np.broadcast_to(x - np.sum(y, 1, keepdims=True), mesh_shape)
|
|
|
|
ans = f(x, y)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testJvpAndPartialEval(self):
|
|
@partial(pmap, axis_name='i')
|
|
def f(x):
|
|
return jnp.sin(x)
|
|
|
|
def splitjvp(x):
|
|
_, jvp = linearize(f, x)
|
|
return jvp(jnp.ones_like(x))
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = np.cos(x)
|
|
|
|
ans = splitjvp(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
make_jaxpr(splitjvp)(x) # doesn't crash
|
|
|
|
def testGradBasic(self):
|
|
@partial(pmap, axis_name='i')
|
|
def f(x):
|
|
return jnp.sin(x)
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = grad(lambda x: jnp.sum(jnp.sin(x)))(x)
|
|
expected = grad(lambda x: jnp.sum(f(x)))(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testGradOfPsum(self):
|
|
@partial(pmap, axis_name='i')
|
|
def f(x):
|
|
return lax.psum(x, axis_name='i')
|
|
|
|
shape = (jax.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
jtu.check_grads(f, (x,), 2, ["fwd", "rev"], 1e-2, 1e-2, eps=1.)
|
|
|
|
def testGradOfJvp(self):
|
|
@partial(pmap, axis_name='i')
|
|
def f(x):
|
|
return jnp.sin(x)
|
|
|
|
def splitjvp(x):
|
|
_, jvp = linearize(f, x)
|
|
return jvp(jnp.ones_like(x))
|
|
|
|
fun = lambda x: jnp.sum(jvp(jnp.sin, (x,), (jnp.ones_like(x),))[1])
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = grad(lambda x: jnp.sum(splitjvp(x)))(x)
|
|
expected = grad(fun)(x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
def testTwoArgsGrad(self):
|
|
def f(x, y):
|
|
return lax.psum(5. * jnp.cos(x) * jnp.sin(y), 'i')
|
|
f = pmap(f, 'i')
|
|
|
|
def g(x, y):
|
|
tot = jnp.sum(5. * jnp.cos(x) * jnp.sin(y))
|
|
return tot * jnp.ones_like(x) # broadcast to map like pjit does
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
y = 4 + x
|
|
ans = grad(lambda x, y: jnp.sum(g(x, y)))(x, y)
|
|
expected = grad(lambda x, y: jnp.sum(g(x, y)))(x, y)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@parameterized.named_parameters(
|
|
{"testcase_name": "_mesh={}".format(device_mesh_shape).replace(" ", ""),
|
|
"device_mesh_shape": device_mesh_shape}
|
|
for device_mesh_shape in [(1, 1), (2, -1), (-1, 2)])
|
|
def testNestedWithClosure(self, device_mesh_shape):
|
|
mesh_shape = self._getMeshShape(device_mesh_shape)
|
|
|
|
@partial(pmap, axis_name='i')
|
|
def test_fun(x):
|
|
y = jnp.sum(jnp.sin(x))
|
|
|
|
@partial(pmap, axis_name='j')
|
|
def g(z):
|
|
return 3. * jnp.exp(jnp.sin(x).sum() * jnp.cos(y) * jnp.tan(z))
|
|
|
|
return grad(lambda w: jnp.sum(g(w)))(x)
|
|
|
|
@vmap
|
|
def baseline_fun(x):
|
|
y = jnp.sum(jnp.sin(x))
|
|
|
|
@vmap
|
|
def g(z):
|
|
return 3. * jnp.exp(jnp.sin(x).sum() * jnp.cos(y) * jnp.tan(z))
|
|
|
|
return grad(lambda w: jnp.sum(g(w)))(x)
|
|
|
|
shape = mesh_shape + (4,)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = grad(lambda x: jnp.sum(test_fun(x)))(x)
|
|
expected = grad(lambda x: jnp.sum(baseline_fun(x)))(x)
|
|
self.assertAllClose(ans, expected, atol=1e-3)
|
|
|
|
def testShardedDeviceArrays(self):
|
|
f = lambda x: 2 * x
|
|
f = pmap(f, axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
# test that we can pass in and out ShardedDeviceArrays
|
|
y = f(x)
|
|
self.assertIsInstance(y, jnp.ndarray)
|
|
self.assertIsInstance(y, pxla.ShardedDeviceArray)
|
|
self.assertAllClose(y, 2 * x, check_dtypes=False)
|
|
z = f(y)
|
|
self.assertIsInstance(z, pxla.ShardedDeviceArray)
|
|
self.assertAllClose(z, 2 * 2 * x, check_dtypes=False)
|
|
|
|
# test that we can pass in a regular DeviceArray
|
|
y = f(device_put(x))
|
|
self.assertIsInstance(y, pxla.ShardedDeviceArray)
|
|
self.assertAllClose(y, 2 * x, check_dtypes=False)
|
|
|
|
# test that we can pass a ShardedDeviceArray to a regular jit computation
|
|
z = y + y
|
|
self.assertAllClose(z, 2 * 2 * x, check_dtypes=False)
|
|
|
|
# test that we can handle device movement on dispatch
|
|
y.device_buffers = y.device_buffers[::-1]
|
|
z = f(y)
|
|
self.assertAllClose(z, 2 * 2 * x[::-1], check_dtypes=False)
|
|
|
|
# test that the repr doesn't crash
|
|
repr(z)
|
|
|
|
# Tests edge cases in lax._reshape_sharded_device_array
|
|
@parameterized.named_parameters(
|
|
{"testcase_name": "_in={}_out={}".format(in_shape, out_shape)
|
|
.replace(" ", ""),
|
|
"in_shape": in_shape, "out_shape": out_shape}
|
|
for in_shape, out_shape in [
|
|
[(1,1), (1,)], [(1,), (1,1)], [(1,), ()], [(4,7), (2,2,7)]
|
|
])
|
|
def testShardedDeviceArrayReshape(self, in_shape, out_shape):
|
|
if xla_bridge.device_count() < max(in_shape[:1] + out_shape[:1]):
|
|
raise SkipTest("not enough devices")
|
|
|
|
x = np.arange(prod(in_shape)).reshape(in_shape)
|
|
sharded_x = pmap(lambda x: x)(x)
|
|
self.assertAllClose(sharded_x.reshape(out_shape), x.reshape(out_shape),
|
|
check_dtypes=False)
|
|
|
|
def testPsumMultiple(self):
|
|
f = lambda x: lax.psum(x, ('i', 'j'))
|
|
f = pmap(pmap(f, 'i'), 'j')
|
|
|
|
def sum_and_broadcast(x, axis):
|
|
return np.repeat(np.sum(x, axis, keepdims=True), x.shape[axis], axis)
|
|
|
|
device_count = xla_bridge.device_count()
|
|
num_pairs, ragged = divmod(device_count, 2)
|
|
if num_pairs > 1 and not ragged:
|
|
shape = (num_pairs, 2, 4)
|
|
else:
|
|
shape = (device_count, 1, 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = f(x)
|
|
expected = sum_and_broadcast(sum_and_broadcast(x, 0), 1)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testPsumReplicaGroups(self):
|
|
replicas = xla_bridge.device_count()
|
|
if replicas % 2 != 0:
|
|
raise SkipTest
|
|
axis_index_groups = np.arange(replicas).reshape(
|
|
2, replicas // 2).tolist()
|
|
f = lambda x: x - lax.psum(x, 'i', axis_index_groups=axis_index_groups)
|
|
f = pmap(f, 'i')
|
|
|
|
shape = (replicas, 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
def sum_helper(a):
|
|
return np.broadcast_to(a.sum(0, keepdims=True),
|
|
(replicas // 2, x.shape[1]))
|
|
expected_psum_1 = sum_helper(x[:replicas // 2])
|
|
expected_psum_2 = sum_helper(x[replicas // 2:])
|
|
expected_psum = np.concatenate([expected_psum_1, expected_psum_2], 0)
|
|
expected = x - expected_psum
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testNestedPmapReplicaGroups(self):
|
|
replicas = xla_bridge.device_count()
|
|
if replicas % 4 != 0:
|
|
raise SkipTest
|
|
axis_index_groups = np.arange(replicas // 2).reshape(
|
|
2, replicas // 4).tolist()
|
|
f = lambda x: x - lax.psum(x, 'i', axis_index_groups=axis_index_groups)
|
|
f1 = pmap(pmap(f, 'i'), 'j')
|
|
f2 = pmap(lambda x: pmap(f, 'i')(x) + 1., 'j') # "imperfectly nested" case
|
|
f3 = pmap(pmap(f, 'j'), 'i')
|
|
|
|
shape = (2, replicas // 2, 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
def sum_helper_f1(a):
|
|
return np.broadcast_to(a.sum(1, keepdims=True),
|
|
(shape[0], shape[1] // 2, shape[2]))
|
|
expected_psum_1 = sum_helper_f1(x[:, :replicas // 4])
|
|
expected_psum_2 = sum_helper_f1(x[:, replicas // 4:])
|
|
expected_psum = np.concatenate([expected_psum_1, expected_psum_2], 1)
|
|
expected = x - expected_psum
|
|
ans = f1(x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
expected = x - expected_psum + 1.
|
|
ans = f2(x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
shape = (replicas // 2, 2, 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
def sum_helper_f3(a):
|
|
return np.broadcast_to(a.sum(0, keepdims=True),
|
|
(shape[0] // 2, shape[1], shape[2]))
|
|
expected_psum_1 = sum_helper_f3(x[:replicas // 4])
|
|
expected_psum_2 = sum_helper_f3(x[replicas // 4:])
|
|
expected_psum = np.concatenate([expected_psum_1, expected_psum_2], 0)
|
|
expected = x - expected_psum
|
|
ans = f3(x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
def testAxisGroups(self):
|
|
axis_env = xla.AxisEnv(8, ('i', 'j'), (4, 2), None)
|
|
groups = xla.axis_groups(axis_env, 'i')
|
|
self.assertEqual(groups, ((0, 2, 4, 6), (1, 3, 5, 7)))
|
|
|
|
groups = xla.axis_groups(axis_env, 'j')
|
|
self.assertEqual(groups, ((0, 1), (2, 3), (4, 5), (6, 7)))
|
|
|
|
groups = xla.axis_groups(axis_env, ('i', 'j'))
|
|
self.assertEqual(groups, ((0, 1, 2, 3, 4, 5, 6, 7,),))
|
|
|
|
groups = xla.axis_groups(axis_env, ('j', 'i'))
|
|
self.assertEqual(len(groups), 1)
|
|
self.assertEqual((tuple(sorted(groups[0])),),
|
|
((0, 1, 2, 3, 4, 5, 6, 7,),)) # order doesn't matter
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testCollectivePermute(self):
|
|
device_count = xla_bridge.device_count()
|
|
rotation = [(i, (i + 1) % device_count) for i in range(device_count)]
|
|
f = lambda x: lax.ppermute(x, perm=rotation, axis_name='i')
|
|
f = pmap(f, 'i')
|
|
|
|
x = jnp.arange(4 * device_count).reshape((device_count, 4))
|
|
ans = f(x)
|
|
expected = np.roll(x, shift=1, axis=0)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testCollectivePermuteGrad(self):
|
|
device_count = xla_bridge.device_count()
|
|
shift_right = [(i, (i + 1)) for i in range(device_count - 1)]
|
|
f = lambda x: lax.ppermute(x, perm=shift_right, axis_name='i')
|
|
y = np.pi + np.arange(device_count, dtype=np.float32)
|
|
g = lambda x: jnp.sum(y * pmap(f, 'i')(x))
|
|
|
|
x = np.arange(device_count, dtype=np.float32)
|
|
ans = grad(g)(x)
|
|
expected = np.concatenate([np.pi + np.arange(1, device_count), [0]])
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testCollectivePermuteCyclicGrad(self):
|
|
device_count = xla_bridge.device_count()
|
|
shift_right = [(i, (i + 1) % device_count) for i in range(device_count)]
|
|
f = lambda x: lax.ppermute(x, perm=shift_right, axis_name='i')
|
|
y = np.pi + np.arange(device_count, dtype=np.float32)
|
|
g = lambda x: jnp.sum(y * pmap(f, 'i')(x))
|
|
|
|
x = np.arange(device_count, dtype=np.float32)
|
|
|
|
ans = grad(g)(x)
|
|
expected = np.roll(np.pi + np.arange(device_count), -1)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
jtu.check_grads(g, (x,), 2, ["fwd", "rev"], 1e-2, 1e-2)
|
|
|
|
@jtu.skip_on_devices("cpu")
|
|
def testCollectivePermuteCyclicWithPShuffle(self):
|
|
device_count = xla_bridge.device_count()
|
|
values = np.arange(device_count)
|
|
shift_right = [(i - 1) % device_count for i in range(device_count)]
|
|
f = lambda x: lax.pshuffle(x, perm=shift_right, axis_name='i')
|
|
expected = np.roll(values, 1)
|
|
ans = np.asarray(pmap(f, "i")(values))
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("cpu")
|
|
def testPShuffleWithBadPerm(self):
|
|
device_count = xla_bridge.device_count()
|
|
bad_perm = list(range(device_count))
|
|
bad_perm[0] = 1
|
|
f = lambda x: lax.pshuffle(x, perm=bad_perm, axis_name='i')
|
|
g = lambda: pmap(f, "i")(np.arange(device_count))
|
|
self.assertRaisesRegex(
|
|
ValueError,
|
|
"`perm` does not represent a permutation: \\[1.*\\]", g)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testPpermuteWithZipObject(self):
|
|
# https://github.com/google/jax/issues/1703
|
|
num_devices = xla_bridge.device_count()
|
|
perm = [num_devices - 1] + list(range(num_devices - 1))
|
|
f = pmap(lambda x: lax.ppermute(x, "i", zip(perm, range(num_devices))), "i")
|
|
result = f(jnp.arange(num_devices, dtype=jnp.float32))
|
|
expected = jnp.asarray(perm, dtype=jnp.float32)
|
|
self.assertAllClose(result, expected)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testRule30(self):
|
|
# This is a test of collective_permute implementing a simple halo exchange
|
|
# to run a rule 30 simulation: https://en.wikipedia.org/wiki/Rule_30
|
|
# Halo exchange should be useful in spatially-sharded convolutions and in
|
|
# other simulations.
|
|
device_count = xla_bridge.device_count()
|
|
|
|
def send_right(x, axis_name):
|
|
left_perm = [(i, (i + 1) % device_count) for i in range(device_count)]
|
|
return lax.ppermute(x, perm=left_perm, axis_name=axis_name)
|
|
|
|
def send_left(x, axis_name):
|
|
left_perm = [((i + 1) % device_count, i) for i in range(device_count)]
|
|
return lax.ppermute(x, perm=left_perm, axis_name=axis_name)
|
|
|
|
def update_board(board):
|
|
left = board[:-2]
|
|
right = board[2:]
|
|
center = board[1:-1]
|
|
return lax.bitwise_xor(left, lax.bitwise_or(center, right))
|
|
|
|
@partial(pmap, axis_name='i')
|
|
def step(board_slice):
|
|
left, right = board_slice[:1], board_slice[-1:]
|
|
right, left = send_left(left, 'i'), send_right(right, 'i')
|
|
enlarged_board_slice = jnp.concatenate([left, board_slice, right])
|
|
return update_board(enlarged_board_slice)
|
|
|
|
board = np.zeros(40, dtype=bool)
|
|
board[board.shape[0] // 2] = True
|
|
reshaped_board = board.reshape((device_count, -1))
|
|
|
|
boards = []
|
|
def print_board(board):
|
|
boards.append(''.join('*' if x else ' ' for x in board.ravel()))
|
|
|
|
print_board(reshaped_board)
|
|
for _ in range(20):
|
|
reshaped_board = step(reshaped_board)
|
|
print_board(reshaped_board)
|
|
|
|
ans = '\n'.join(boards)
|
|
expected = '\n'.join((
|
|
' * ',
|
|
' *** ',
|
|
' ** * ',
|
|
' ** **** ',
|
|
' ** * * ',
|
|
' ** **** *** ',
|
|
' ** * * * ',
|
|
' ** **** ****** ',
|
|
' ** * *** * ',
|
|
' ** **** ** * *** ',
|
|
' ** * * **** ** * ',
|
|
' ** **** ** * * **** ',
|
|
' ** * *** ** ** * * ',
|
|
' ** **** ** *** *** ** *** ',
|
|
' ** * * *** * *** * * ',
|
|
' ** **** ** * * ***** ******* ',
|
|
' ** * *** **** * *** * ',
|
|
' ** **** ** *** ** ** * *** ',
|
|
' ** * * *** * ** *** **** ** * ',
|
|
' ** **** ** * ****** * * *** ****',
|
|
' * * *** **** **** *** ** * ',
|
|
))
|
|
|
|
print(ans)
|
|
self.assertEqual(ans, expected)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testReduceMax(self):
|
|
f = pmap(lambda x: x - lax.pmax(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.max(x, 0)
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
|
def testReduceMin(self):
|
|
f = pmap(lambda x: x - lax.pmin(x, 'i'), axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.min(x, 0)
|
|
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testDeviceCountError(self):
|
|
device_count = xla_bridge.device_count()
|
|
|
|
f = pmap(lambda x: x)
|
|
x = jnp.arange(device_count + 1)
|
|
self.assertRaisesRegex(ValueError, ".*requires.*replicas", lambda: f(x))
|
|
|
|
f = pmap(lambda x: x)
|
|
x = np.ones((device_count + 1, 10))
|
|
self.assertRaisesRegex(ValueError, ".*requires.*replicas", lambda: f(x))
|
|
|
|
f = pmap(lambda x: pmap(lambda x: x)(x))
|
|
x = np.ones((device_count, 2, 10))
|
|
self.assertRaisesRegex(ValueError, ".*requires.*replicas", lambda: f(x))
|
|
|
|
def testPmapConstant(self):
|
|
device_count = xla_bridge.device_count()
|
|
f = pmap(lambda x: 3)
|
|
x = jnp.arange(device_count)
|
|
with jtu.count_jit_and_pmap_compiles() as count:
|
|
ans = f(x)
|
|
# self.assertEqual(count[0], 0) # TODO(mattjj): fix this
|
|
expected = np.repeat(3, device_count)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
f = pmap(lambda x: (x, 3))
|
|
x = np.arange(device_count)
|
|
with jtu.count_jit_and_pmap_compiles() as count: # noqa: F841
|
|
_, ans = f(x)
|
|
self.assertEqual(count[0], 1)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testPmapConstantDevices(self):
|
|
if xla_bridge.device_count() == 1:
|
|
raise SkipTest("this test requires multiple devices")
|
|
|
|
devices = xla_bridge.devices()[:-1]
|
|
shuffle(devices)
|
|
f = pmap(lambda x: 3, devices=devices)
|
|
x = jnp.arange(len(devices))
|
|
with jtu.count_jit_and_pmap_compiles() as count: # noqa: F841
|
|
ans = f(x)
|
|
# self.assertEqual(count[0], 0) # TODO(mattjj): don't compile for constants
|
|
expected = np.repeat(3, len(devices))
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
# Test that 'ans' was properly replicated across devices.
|
|
self.assertEqual([b.device() for b in ans.device_buffers], devices)
|
|
|
|
def testPmapConstantError(self):
|
|
device_count = xla_bridge.device_count()
|
|
f = pmap(lambda x: 3)
|
|
x = jnp.arange(device_count + 1)
|
|
if config.omnistaging_enabled:
|
|
self.assertRaisesRegex(
|
|
ValueError,
|
|
(r"compiling computation that requires \d+ logical devices, "
|
|
r"but only \d+ XLA devices are available .*"),
|
|
lambda: f(x))
|
|
|
|
# TODO(mattjj): test error message with explicit devices
|
|
# f = pmap(lambda x: 3, devices=[xla_bridge.devices()[0]])
|
|
# x = jnp.arange(2)
|
|
# self.assertRaisesRegex(
|
|
# ValueError, r"Cannot replicate across \d+ replicas because only \d+ "
|
|
# r"local devices are available.", lambda: f(x))
|
|
else:
|
|
self.assertRaisesRegex(
|
|
ValueError, r"Cannot replicate across \d+ replicas because only \d+ "
|
|
r"local devices are available.", lambda: f(x))
|
|
|
|
f = pmap(lambda x: 3, devices=[xla_bridge.devices()[0]])
|
|
x = jnp.arange(2)
|
|
self.assertRaisesRegex(
|
|
ValueError, "Cannot replicate across 2 replicas because only 1 "
|
|
"local devices are available.", lambda: f(x))
|
|
|
|
def testNestedPmapConstant(self):
|
|
if xla_bridge.device_count() == 1:
|
|
raise SkipTest("this test requires multiple devices")
|
|
|
|
f = pmap(pmap(lambda x: 3))
|
|
shape = (2, xla_bridge.device_count() // 2, 3)
|
|
x = jnp.arange(prod(shape)).reshape(shape)
|
|
with jtu.count_jit_and_pmap_compiles() as count: # noqa: F841
|
|
ans = f(x)
|
|
# self.assertEqual(count[0], 0) # TODO(mattjj): don't compile for constants
|
|
expected = 3 * np.ones(shape[:2])
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
# Test that 'ans' was properly replicated across devices.
|
|
expected_sharded = pmap(pmap(lambda x: x))(expected)
|
|
self.assertEqual([b.device() for b in ans.device_buffers],
|
|
[b.device() for b in expected_sharded.device_buffers])
|
|
|
|
f = pmap(pmap(lambda x: (x, 3)))
|
|
x_sharded, ans = f(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
self.assertEqual([b.device() for b in ans.device_buffers],
|
|
[b.device() for b in x_sharded.device_buffers])
|
|
|
|
def testNestedPmapConstantDevices(self):
|
|
raise SkipTest("Nested pmaps with devices not yet implemented")
|
|
|
|
if xla_bridge.device_count() < 6:
|
|
raise SkipTest("this test requires >= 6 devices")
|
|
|
|
devices = xla_bridge.devices()[:-2]
|
|
shuffle(devices)
|
|
f = pmap(pmap(lambda x: 3), devices=devices)
|
|
shape = (2, len(devices) // 2, 3)
|
|
x = jnp.arange(prod(shape)).reshape(shape)
|
|
with jtu.count_jit_and_pmap_compiles() as count: # noqa: F841
|
|
ans = f(x)
|
|
# self.assertEqual(count[0], 0) # TODO(mattjj): don't compile for constants
|
|
expected = 3 * np.ones(shape[:2])
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
# Test that 'ans' was properly replicated across devices.
|
|
expected_sharded = pmap(pmap(lambda x: x), devices=devices)(expected)
|
|
self.assertEqual([b.device() for b in ans.device_buffers],
|
|
[b.device() for b in expected_sharded.device_buffers])
|
|
|
|
def testNestedPmapConstantError(self):
|
|
f = pmap(pmap(lambda x: 3))
|
|
shape = (2, xla_bridge.device_count() // 2 + 1, 3)
|
|
x = jnp.arange(prod(shape)).reshape(shape)
|
|
if config.omnistaging_enabled:
|
|
self.assertRaisesRegex(
|
|
ValueError,
|
|
(r"compiling computation that requires \d+ logical devices, "
|
|
r"but only \d+ XLA devices are available .*"),
|
|
lambda: f(x))
|
|
|
|
# TODO(mattjj): check error message with explicit devices
|
|
# if xla_bridge.device_count() > 1:
|
|
# f = pmap(pmap(lambda x: 3), devices=xla_bridge.devices()[:-1])
|
|
# shape = (2, xla_bridge.device_count() // 2, 3)
|
|
# x = jnp.arange(prod(shape)).reshape(shape)
|
|
# self.assertRaisesRegex(
|
|
# ValueError,
|
|
# (r"compiling computation that requires \d+ replicas, "
|
|
# r"but only \d+ XLA devices are available"),
|
|
# lambda: f(x))
|
|
else:
|
|
self.assertRaisesRegex(
|
|
ValueError, r"Cannot replicate across \d+ replicas because only \d+ "
|
|
r"local devices are available.", lambda: f(x))
|
|
|
|
if xla_bridge.device_count() > 1:
|
|
f = pmap(pmap(lambda x: 3), devices=xla_bridge.devices()[:-1])
|
|
shape = (2, xla_bridge.device_count() // 2, 3)
|
|
x = jnp.arange(prod(shape)).reshape(shape)
|
|
self.assertRaisesRegex(
|
|
ValueError, r"Cannot replicate across \d+ replicas because only \d+ "
|
|
r"local devices are available.", lambda: f(x))
|
|
|
|
def testCollectiveConstant(self):
|
|
device_count = xla_bridge.device_count()
|
|
f = pmap(lambda x: lax.psum(1, 'i'), 'i')
|
|
x = jnp.arange(device_count)
|
|
ans = f(x)
|
|
expected = np.repeat(device_count, device_count)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testCollectiveConstantNested(self):
|
|
device_count = xla_bridge.device_count()
|
|
|
|
@partial(pmap, axis_name='i')
|
|
def f(x):
|
|
@partial(pmap, axis_name='j')
|
|
def g(y):
|
|
a = lax.psum(1, 'i')
|
|
b = lax.psum(1, 'j')
|
|
c = lax.psum(1, ('i', 'j'))
|
|
return a, b, c
|
|
return g(x)
|
|
|
|
shape = (device_count, 1, 4)
|
|
x = jnp.arange(prod(shape)).reshape(shape)
|
|
a, b, c = f(x)
|
|
|
|
self.assertEqual(a.shape, shape[:-1])
|
|
self.assertEqual(b.shape, shape[:-1])
|
|
self.assertEqual(c.shape, shape[:-1])
|
|
|
|
self.assertEqual(a.ravel()[0], device_count)
|
|
self.assertEqual(b.ravel()[0], 1)
|
|
self.assertEqual(c.ravel()[0], device_count * 1)
|
|
|
|
def testAxisIndex(self):
|
|
device_count = xla_bridge.device_count()
|
|
f = pmap(lambda x: x + lax.axis_index('i'), 'i')
|
|
x = jnp.ones(device_count)
|
|
ans = f(x)
|
|
expected = 1 + np.arange(device_count)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testVmapOfPmap(self):
|
|
device_count = xla_bridge.device_count()
|
|
f0 = lambda x: x
|
|
f1 = pmap(f0, axis_name='i')
|
|
ax = np.random.randn(2, device_count, 50, 60)
|
|
bx = vmap(f1)(ax)
|
|
self.assertAllClose(ax, bx, check_dtypes=False)
|
|
|
|
def testVmapOfPmap2(self):
|
|
N_DEVICES = xla_bridge.device_count()
|
|
keys = random.split(random.PRNGKey(1), 13) # [13, 2]
|
|
|
|
@pmap
|
|
def g(key):
|
|
_ = random.normal(key, ())
|
|
return 0.
|
|
|
|
@vmap
|
|
def s(keys):
|
|
keys = jnp.broadcast_to(keys, (N_DEVICES,) + keys.shape)
|
|
return g(keys)
|
|
|
|
ans = s(keys) # doesn't crash
|
|
self.assertEqual(ans.shape, (13, N_DEVICES))
|
|
|
|
def testVmapOfPmap3(self):
|
|
# https://github.com/google/jax/issues/3399
|
|
device_count = xla_bridge.device_count()
|
|
if device_count < 2:
|
|
raise SkipTest("test requires at least two devices")
|
|
|
|
def map_version(qs, pts):
|
|
return jax.lax.map(lambda x: func(x, pts), qs)
|
|
|
|
def vmap_version(qs, pts):
|
|
return jax.vmap(func, in_axes=(0, None))(qs, pts)
|
|
|
|
def func(q, pts):
|
|
q_from_pmap = jax.pmap(lambda x, y: y, in_axes=(0, None))(pts, q)
|
|
return q, q_from_pmap
|
|
|
|
pts = jnp.ones(device_count)
|
|
qs = jnp.asarray(((0,0), (3,3), (2,2)))
|
|
|
|
_, expected = map_version(qs, pts)
|
|
_, ans = vmap_version(qs, pts)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testVmapOfPmapNonLeadingAxis(self):
|
|
device_count = xla_bridge.device_count()
|
|
f0 = lambda x: x
|
|
f1 = pmap(f0, axis_name='i')
|
|
ax = np.random.randn(device_count, 2, 50, 60)
|
|
bx = vmap(f1, in_axes=2, out_axes=2)(ax)
|
|
self.assertAllClose(ax, bx, check_dtypes=False)
|
|
|
|
def testVmapOfPmapTuple(self):
|
|
device_count = xla_bridge.device_count()
|
|
f0 = lambda *x: x
|
|
f1 = pmap(f0, axis_name='i')
|
|
|
|
ax = np.random.randn(device_count, 2, 50, 60)
|
|
ay = np.random.randn(device_count, 30, 2)
|
|
az1 = np.random.randn(device_count, 20)
|
|
az2 = np.random.randn(2, device_count, 20)
|
|
|
|
bx, by, bz = vmap(f1, in_axes=(1, 2, (None, 0)), out_axes=(1, 2, 0))(ax, ay, (az1, az2))
|
|
|
|
self.assertAllClose(ax, bx, check_dtypes=False)
|
|
self.assertAllClose(ay, by, check_dtypes=False)
|
|
|
|
bz1, bz2 = bz
|
|
expected_bz1 = np.broadcast_to(az1, (2,) + az1.shape)
|
|
self.assertAllClose(expected_bz1, bz1, check_dtypes=False)
|
|
self.assertAllClose(bz2, bz2, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("gpu")
|
|
def testPswapaxes(self):
|
|
device_count = xla_bridge.device_count()
|
|
# TODO: AllToAll not yet implemented on XLA:CPU
|
|
if jtu.device_under_test() == "cpu":
|
|
device_count = 1
|
|
shape = (device_count, 3, device_count, 5)
|
|
x = np.arange(prod(shape)).reshape(shape)
|
|
|
|
ans = pmap(lambda x: lax.pswapaxes(x, 'i', 1), axis_name='i')(x)
|
|
expected = np.swapaxes(x, 0, 2)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@jtu.skip_on_devices("gpu")
|
|
def testGradOfPswapaxes(self):
|
|
device_count = xla_bridge.device_count()
|
|
# TODO: AllToAll not yet implemented on XLA:CPU
|
|
if jtu.device_under_test() == "cpu":
|
|
device_count = 1
|
|
shape = (device_count, 1, device_count)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
w = np.arange(device_count, dtype=np.float32)
|
|
|
|
@partial(pmap, axis_name='i')
|
|
def f(x, w):
|
|
g = lambda x: jnp.sum(lax.pswapaxes(x, 'i', 1) * w)
|
|
return grad(g)(x)
|
|
|
|
ans = f(x, w)
|
|
expected = np.tile(w, reps=device_count).reshape(shape)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testReshardInput(self):
|
|
if xla_bridge.device_count() < 6:
|
|
raise SkipTest("testReshardInput requires 6 devices")
|
|
# Manually construct a ShardedDeviceArray with the wrong sharding for the
|
|
# subsequent pmap
|
|
shard_shape = (3,2)
|
|
shard = jnp.arange(jnp.prod(shard_shape)).reshape(shard_shape)
|
|
bufs = [xla.device_put(shard, d) for d in xla_bridge.devices()[:4]]
|
|
aval = ShapedArray((6,4), shard.dtype)
|
|
sharding_spec = pxla.ShardingSpec(
|
|
shards_per_axis=(2, 2),
|
|
is_axis_materialized=(True, True),
|
|
replication_factors=[])
|
|
arr = pxla.ShardedDeviceArray(aval, sharding_spec, bufs)
|
|
|
|
r = pmap(lambda x: x + 1)(arr)
|
|
self.assertAllClose(r, arr + 1)
|
|
self.assertEqual(len(r.device_buffers), 6)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapBatchMatmul(self):
|
|
if not config.omnistaging_enabled: raise SkipTest("requires omnistaging")
|
|
n = 4 * xla_bridge.device_count()
|
|
xs = np.arange(n * 2 * 3).reshape(n, 2, 3)
|
|
ys = np.arange(n * 3 * 4).reshape(n, 3, 4)
|
|
ans = soft_pmap(jnp.dot, 'i')(xs, ys)
|
|
expected = np.einsum('nij,njk->nik', xs, ys)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapBatchMatmulJit(self):
|
|
if not config.omnistaging_enabled: raise SkipTest("requires omnistaging")
|
|
n = 4 * xla_bridge.device_count()
|
|
xs = np.arange(n * 2 * 3).reshape(n, 2, 3)
|
|
ys = np.arange(n * 3 * 4).reshape(n, 3, 4)
|
|
ans = soft_pmap(jit(jnp.dot), 'i')(xs, ys)
|
|
expected = np.einsum('nij,njk->nik', xs, ys)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapPsumConstant(self):
|
|
if not config.omnistaging_enabled: raise SkipTest("requires omnistaging")
|
|
n = 4 * xla_bridge.device_count()
|
|
def f(_):
|
|
return lax.psum(1, 'i')
|
|
ans = soft_pmap(f, 'i')(jnp.ones(n))
|
|
expected = n * np.ones(n)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapPsum(self):
|
|
if not config.omnistaging_enabled: raise SkipTest("requires omnistaging")
|
|
n = 4 * xla_bridge.device_count()
|
|
def f(x):
|
|
return x / lax.psum(x, 'i')
|
|
ans = soft_pmap(f, 'i')(jnp.ones(n))
|
|
expected = np.ones(n) / n
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapAxisIndex(self):
|
|
if not config.omnistaging_enabled: raise SkipTest("requires omnistaging")
|
|
n = 4 * xla_bridge.device_count()
|
|
def f(x):
|
|
return x * lax.axis_index('i')
|
|
ans = soft_pmap(f, 'i')(2 * jnp.ones(n))
|
|
expected = 2 * np.arange(n)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapOfJit(self):
|
|
if not config.omnistaging_enabled: raise SkipTest("requires omnistaging")
|
|
n = 4 * xla_bridge.device_count()
|
|
def f(x):
|
|
return 3 * x
|
|
ans = soft_pmap(jit(f), 'i')(np.arange(n))
|
|
expected = 3 * np.arange(n)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapNested(self):
|
|
raise SkipTest("not implemented") # TODO(mattjj): re-implement
|
|
n = 4 * xla_bridge.device_count()
|
|
|
|
@partial(soft_pmap, axis_name='i')
|
|
@partial(soft_pmap, axis_name='j')
|
|
def f(x):
|
|
i_size = lax.psum(1, 'i')
|
|
return x + lax.axis_index('i') + i_size * lax.axis_index('j')
|
|
|
|
ans = f(jnp.zeros((n, n)))
|
|
expected = np.arange(n ** 2).reshape(n, n).T
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testGradOfSoftPmap(self):
|
|
raise SkipTest("not implemented") # TODO(mattjj): re-implement
|
|
n = 4 * xla_bridge.device_count()
|
|
|
|
@partial(soft_pmap, axis_name='i')
|
|
def f(x):
|
|
return x * lax.axis_index('i')
|
|
|
|
ans = grad(lambda x: jnp.sum(f(x)))(jnp.zeros((n, n)))
|
|
expected = np.repeat(np.arange(n)[:, None], n, axis=1)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
@ignore_soft_pmap_warning()
|
|
def testSoftPmapDevicePersistence(self):
|
|
if not config.omnistaging_enabled: raise SkipTest("requires omnistaging")
|
|
device_count = xla_bridge.device_count()
|
|
shape = (2 * 2 * device_count, 2, 3)
|
|
|
|
# check that we can maintain device persistence across calls
|
|
x = np.arange(prod(shape)).reshape(shape)
|
|
x = soft_pmap(lambda x: x)(x)
|
|
self.assertIsInstance(x, pxla.ShardedDeviceArray)
|
|
x._npy_value = np.float32(np.nan) # can't be coerced to ndarray for xfer
|
|
x = soft_pmap(lambda x: x)(x) # doesn't crash
|
|
self.assertIsInstance(x, pxla.ShardedDeviceArray)
|
|
|
|
def testSoftPmapAllToAll(self):
|
|
raise SkipTest("the underlying code here is broken") # TODO(mattjj)
|
|
n = 4 * xla_bridge.device_count()
|
|
def f(x):
|
|
return lax.all_to_all(x, 'i', 0, 0)
|
|
ans = soft_pmap(f, 'i')(jnp.arange(n ** 2).reshape(n, n))
|
|
expected = np.arange(n ** 2).reshape(n, n).T
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testShardedDeviceArrayBlockUntilReady(self):
|
|
x = np.arange(xla_bridge.device_count())
|
|
x = pmap(lambda x: x)(x)
|
|
x.block_until_ready() # doesn't crash
|
|
|
|
def testJitPmapComposition(self):
|
|
f = lambda x: x - lax.psum(x, 'i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.sum(x, 0)
|
|
|
|
ans = jit(pmap(f, 'i'))(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
ans = pmap(jit(f), 'i')(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testMakeJaxprOfOpenSpmd(self):
|
|
f = lambda x: x - lax.psum(x, 'i')
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
make_jaxpr(f)(x) # doesn't crash
|
|
|
|
def testCompositionWithJitTwice(self):
|
|
@jit
|
|
def f(x):
|
|
y = 2 * x
|
|
|
|
@jit
|
|
def g(z):
|
|
return pmap(lambda x: x * y)(z)
|
|
|
|
return g(x)
|
|
|
|
f(np.arange(1.).reshape((1, 1))) # doesn't crash
|
|
|
|
def testIssue1065(self):
|
|
# from https://github.com/google/jax/issues/1065
|
|
device_count = xla_bridge.device_count()
|
|
|
|
def multi_step_pmap(state, count):
|
|
@partial(pmap, axis_name='x')
|
|
@jit
|
|
def exchange_and_multi_step(state):
|
|
return state
|
|
|
|
@jit
|
|
def time_evolution(state):
|
|
return lax.fori_loop(0, count, lambda i, s: exchange_and_multi_step(s), state)
|
|
|
|
return time_evolution(state)
|
|
|
|
multi_step_pmap(jnp.zeros((device_count,)), count=1)
|
|
|
|
def testShardedDeviceArrayGetItem(self):
|
|
f = lambda x: 2 * x
|
|
f = pmap(f, axis_name='i')
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
y = f(x)
|
|
self.assertIsInstance(y, jnp.ndarray)
|
|
self.assertIsInstance(y, pxla.ShardedDeviceArray)
|
|
|
|
z = y[0] # doesn't crash
|
|
self.assertAllClose(z, 2 * x[0], check_dtypes=False)
|
|
|
|
def testPostProcessMap(self):
|
|
# TODO(mattjj): this fails with multiple devices (unless we add a jit)
|
|
# because we assume eager ops (like scan here) can't require more than 1
|
|
# replica.
|
|
raise SkipTest("need eager multi-replica support")
|
|
# test came from https://github.com/google/jax/issues/1369
|
|
nrep = xla_bridge.device_count()
|
|
|
|
def pmvm(a, b):
|
|
a = a.reshape((nrep, -1, a.shape[1]))
|
|
func = pmap(lambda z: jnp.dot(z, b))
|
|
return func(a).reshape(b.shape)
|
|
|
|
n = nrep * 2
|
|
rng = np.random.RandomState(0)
|
|
a = rng.randn(n, n)
|
|
b = rng.randn(n)
|
|
|
|
iters = jnp.arange(5)
|
|
def body(carry, i):
|
|
return pmvm(a, carry), i
|
|
ans, _ = lax.scan(body, b, iters)
|
|
|
|
expected = np.linalg.matrix_power(a, 5).dot(b)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testManyArgs(self):
|
|
@pmap
|
|
def f(args_list):
|
|
return sum(args_list)
|
|
|
|
vals = list(range(500))
|
|
ndevices = xla_bridge.device_count()
|
|
self.assertAllClose(f(jnp.array([vals] * ndevices)),
|
|
jnp.array([sum(vals)] * ndevices))
|
|
|
|
def testPostProcessMap2(self):
|
|
# code from https://github.com/google/jax/issues/2787
|
|
def vv(x, y):
|
|
"""Vector-vector multiply"""
|
|
return jnp.dot(x, y)
|
|
|
|
def distributed_matrix_vector(x, y):
|
|
"""Matrix vector multiply. First batch it and then row by row"""
|
|
fv = lambda z: lax.map(lambda j: vv(j, y), z)
|
|
res = pmap(fv)(x.reshape((jax.device_count(), -1) + tuple(x.shape[1:])))
|
|
res = res.reshape(res.shape[0] * res.shape[1], *res.shape[2:])
|
|
return res
|
|
|
|
key = random.PRNGKey(1)
|
|
x = random.normal(key, (80, 50))
|
|
batched_mvm = vmap(lambda b: distributed_matrix_vector(x, b), in_axes=0)
|
|
y = random.normal(key, (10, 50, 1))
|
|
result = batched_mvm(y)
|
|
expected = jnp.einsum('ij,njk->nik', x, y)
|
|
tol = 1e-1 if jtu.device_under_test() == "tpu" else 1e-3
|
|
self.assertAllClose(result, expected, check_dtypes=False, atol=tol, rtol=tol)
|
|
|
|
def testAxisIndexRemat(self):
|
|
# https://github.com/google/jax/issues/2716
|
|
n = len(jax.devices())
|
|
|
|
def f(key):
|
|
key = random.fold_in(key, jax.lax.axis_index('i'))
|
|
return random.bernoulli(key, p=0.5)
|
|
|
|
keys = random.split(random.PRNGKey(0), n)
|
|
jax.pmap(jax.remat(f), axis_name='i')(keys)
|
|
|
|
def testPmapMapVmapCombinations(self):
|
|
# https://github.com/google/jax/issues/2822
|
|
def vv(x, y):
|
|
"""Vector-vector multiply"""
|
|
return jnp.dot(x, y)
|
|
|
|
def matrix_vector(x, y, parallel=True):
|
|
"""Matrix vector multiply. First batch it and then row by row"""
|
|
fv = lambda z: lax.map(lambda j: vv(j, y), z)
|
|
if parallel:
|
|
# split leading axis in two
|
|
new_x = x.reshape((jax.device_count(), -1, *x.shape[1:]))
|
|
# apply map
|
|
new_res = pmap(fv)(new_x)
|
|
# reshape back out
|
|
res = new_res.reshape(x.shape[0], *new_res.shape[2:])
|
|
else:
|
|
res = fv(x)
|
|
return res
|
|
|
|
x = random.normal(random.PRNGKey(1), (80, 5))
|
|
y = random.normal(random.PRNGKey(1), (10, 5))
|
|
|
|
result1 = vmap(lambda b: matrix_vector(x, b, True))(y) # vmap + pmap
|
|
result2 = lax.map(lambda b: matrix_vector(x, b, False), y) # map + map
|
|
result3 = lax.map(lambda b: matrix_vector(x, b, True), y) # map + pmap
|
|
result4 = jnp.stack([matrix_vector(x, b, False) for b in y]) # none + map
|
|
|
|
self.assertAllClose(result1, result2, check_dtypes=False, atol=1e-3, rtol=1e-3)
|
|
self.assertAllClose(result1, result3, check_dtypes=False, atol=1e-3, rtol=1e-3)
|
|
self.assertAllClose(result1, result4, check_dtypes=False, atol=1e-3, rtol=1e-3)
|
|
|
|
def testPmapAxisNameError(self):
|
|
# https://github.com/google/jax/issues/3120
|
|
a = np.arange(4)[np.newaxis,:]
|
|
def test(x):
|
|
return jax.lax.psum(x, axis_name='batch')
|
|
|
|
with self.assertRaisesRegex(NameError, "unbound axis name: batch"):
|
|
jax.pmap(test)(a)
|
|
|
|
def testPsumOnBooleanDtype(self):
|
|
# https://github.com/google/jax/issues/3123
|
|
n = xla_bridge.device_count()
|
|
if n > 1:
|
|
x = jnp.array([True, False])
|
|
|
|
out = pmap(lambda x: jax.lax.psum(x, 'i'), 'i')(x)
|
|
self.assertEqual(list(out), [1, 1])
|
|
|
|
out = pmap(lambda x: jax.lax.pmean(x, 'i'), 'i')(x)
|
|
self.assertEqual(list(out), [1/2, 1/2])
|
|
else:
|
|
x = jnp.array([True])
|
|
|
|
out = pmap(lambda x: jax.lax.psum(x, 'i'), 'i')(x)
|
|
self.assertEqual(list(out), [1])
|
|
|
|
out = pmap(lambda x: jax.lax.pmean(x, 'i'), 'i')(x)
|
|
self.assertEqual(list(out), [1])
|
|
|
|
def testPsumWithNoAxisDoesntLeakFunctions(self):
|
|
x = jnp.ones((1, 1024), dtype=np.float32)
|
|
f = lambda _: x
|
|
w = weakref.ref(f)
|
|
g = pmap(f)
|
|
g(np.ones((1,), dtype=np.float32)).block_until_ready()
|
|
del f, g
|
|
gc.collect()
|
|
# 'f' should not be alive at this point; in particular the pmap cache must
|
|
# not keep it alive.
|
|
self.assertTrue(w() is None)
|
|
|
|
def testJitOfPmapWarningMessage(self):
|
|
device_count = xla_bridge.device_count()
|
|
|
|
if device_count == 1:
|
|
raise SkipTest("test requires at least two devices")
|
|
|
|
def foo(x): return x
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always")
|
|
jit(pmap(foo))(jnp.arange(device_count))
|
|
|
|
self.assertGreaterEqual(len(w), 1)
|
|
self.assertIn("The jitted function foo includes a pmap",
|
|
str(w[-1].message))
|
|
|
|
def testPsumZeroCotangents(self):
|
|
# https://github.com/google/jax/issues/3651
|
|
def loss(params, meta_params):
|
|
(net, mpo) = params
|
|
return meta_params * mpo * net
|
|
|
|
def inner(meta_params, params):
|
|
grads = jax.grad(loss)(params, meta_params)
|
|
grads = lax.psum(grads, axis_name="i")
|
|
net_grads, mpo_grads = grads
|
|
net = params[0] + net_grads
|
|
mpo = params[1]
|
|
return mpo * net
|
|
|
|
def outer(params):
|
|
meta_params = jnp.array(4.0)
|
|
return jax.grad(inner)(meta_params, params)
|
|
|
|
params = (jnp.array([2.0]), jnp.array([3.0]))
|
|
jax.pmap(outer, axis_name='i')(params) # doesn't crash
|
|
|
|
f = jax.pmap(outer, axis_name='i')
|
|
jtu.check_grads(f, (params,), 2, ["fwd", "rev"], 1e-3, 1e-3)
|
|
|
|
def test_issue_1062(self):
|
|
# code from https://github.com/google/jax/issues/1062 @shoyer
|
|
# this tests, among other things, whether ShardedDeviceTuple constants work
|
|
device_count = xla_bridge.device_count()
|
|
|
|
@jit
|
|
def multi_step(state, count):
|
|
return lax.fori_loop(0, count, lambda i, s: s, state)
|
|
|
|
@jit
|
|
def multi_step_pmap(state, count=2):
|
|
@partial(pmap, axis_name='x')
|
|
def pmapped_multi_step(state):
|
|
return multi_step(state, count)
|
|
|
|
return pmapped_multi_step(state)
|
|
|
|
u = np.ones((device_count, 100))
|
|
multi_step_pmap(u) # doesn't crash
|
|
|
|
|
|
|
|
class VmapOfPmapTest(jtu.JaxTestCase):
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": f"{shapes}_{vmap_bdims}_{pmap_bdims}",
|
|
"shapes": shapes, "vmap_bdims": vmap_bdims, "pmap_bdims": pmap_bdims}
|
|
for shape_group in compatible_shapes
|
|
for num_args in range(1, 4)
|
|
for shapes in it.combinations_with_replacement(shape_group, num_args)
|
|
for vmap_bdims in all_bdims(*shapes)
|
|
for pmap_bdims in it.product([0, None], repeat=num_args)
|
|
if not all(bd is None for bd in pmap_bdims)
|
|
))
|
|
def testVmapOfPmap(self, shapes, vmap_bdims, pmap_bdims):
|
|
vmapped_size = 3
|
|
pmapped_size = xla_bridge.device_count()
|
|
|
|
rng = jtu.rand_default(self.rng())
|
|
|
|
def fun(*args):
|
|
return sum(args)
|
|
|
|
final_shapes = map(partial(add_bdim, vmapped_size), vmap_bdims,
|
|
map(partial(add_bdim, pmapped_size), pmap_bdims, shapes))
|
|
|
|
args = [rng(shape, jnp.float32) for shape in final_shapes]
|
|
args_slice = args_slicer(args, vmap_bdims)
|
|
ans = vmap(pmap(fun, in_axes=pmap_bdims), vmap_bdims)(*args)
|
|
expected = np.stack([fun(*args_slice(i)) for i in range(vmapped_size)])
|
|
self.assertAllClose(ans, expected)
|
|
|
|
|
|
class PmapWithDevicesTest(jtu.JaxTestCase):
|
|
|
|
def testAllDevices(self):
|
|
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i',
|
|
devices=xla_bridge.devices())
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
expected = x - np.sum(x, 0)
|
|
ans = f(x)
|
|
self.assertAllClose(ans, expected)
|
|
|
|
def testOneDevice(self):
|
|
if xla_bridge.device_count() == 1:
|
|
raise SkipTest("this test requires multiple devices")
|
|
|
|
d0 = xla_bridge.devices()[0]
|
|
d1 = xla_bridge.devices()[1]
|
|
f = lambda x: jnp.dot(x, x.T)
|
|
f0 = pmap(f, devices=[d0])
|
|
f1 = pmap(f, devices=[d1])
|
|
x = np.random.rand(1, 1000, 1000)
|
|
r0 = f0(x)
|
|
r1 = f1(x)
|
|
expected = np.expand_dims(np.dot(x.squeeze(), x.squeeze().T), 0)
|
|
self.assertAllClose(r0, expected, atol=1e-6, rtol=1e-3)
|
|
self.assertAllClose(r1, expected, atol=1e-6, rtol=1e-3)
|
|
|
|
def testNoDevicesError(self):
|
|
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i', devices=[])
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
with self.assertRaisesRegex(
|
|
ValueError, "'devices' argument to pmap must be non-empty, or None."):
|
|
f(x)
|
|
|
|
def testBadAxisSizeError(self):
|
|
if xla_bridge.device_count() == 1:
|
|
raise SkipTest("this test requires multiple devices")
|
|
|
|
f = pmap(lambda x: lax.psum(x, 'i'), axis_name='i',
|
|
devices=xla_bridge.devices())
|
|
with self.assertRaisesRegex(
|
|
ValueError, r"Leading axis size of input to pmapped function must "
|
|
r"equal the number of local devices passed to pmap. Got axis_size=1, "
|
|
r"num_local_devices=\d."):
|
|
f(jnp.ones(1))
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError, r"Leading axis size of input to pmapped function must "
|
|
r"equal the number of local devices passed to pmap. Got axis_size=\d, "
|
|
r"num_local_devices=\d."):
|
|
f(jnp.ones(xla_bridge.device_count() + 1))
|
|
|
|
def testNestedPmaps(self):
|
|
if xla_bridge.device_count() % 2 != 0:
|
|
raise SkipTest
|
|
|
|
# Devices specified in outer pmap are OK
|
|
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
|
|
def foo(x):
|
|
@partial(pmap, axis_name='j')
|
|
def bar(y):
|
|
return lax.psum(y, 'j')
|
|
return bar(x)
|
|
|
|
x = jnp.ones((xla_bridge.device_count() // 2, 2))
|
|
ans = foo(x)
|
|
expected = x * 2
|
|
self.assertAllClose(ans, expected)
|
|
|
|
def testNestedPmapsError(self):
|
|
# Devices specified in inner pmap not OK
|
|
@partial(pmap, axis_name='i')
|
|
def foo(x):
|
|
@partial(pmap, axis_name='j', devices=xla_bridge.devices())
|
|
def bar(y):
|
|
return lax.psum(y, 'j')
|
|
return bar(x)
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Nested pmap with explicit devices argument."):
|
|
foo(jnp.ones((xla_bridge.device_count(), 1)))
|
|
|
|
def testJitInPmap(self):
|
|
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
|
|
def foo(x):
|
|
@jit
|
|
def bar(y):
|
|
return y + 1
|
|
return lax.psum(bar(x), 'i')
|
|
|
|
ndevices = xla_bridge.device_count()
|
|
ans = foo(jnp.ones((ndevices, 1)))
|
|
expected = np.ones((ndevices, 1), dtype=jnp.float_) * ndevices * 2
|
|
self.assertAllClose(ans, expected)
|
|
|
|
def testPmapInJit(self):
|
|
@jit
|
|
def foo(x):
|
|
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
|
|
def bar(y):
|
|
return lax.psum(y, 'i')
|
|
return bar(x)
|
|
|
|
ndevices = xla_bridge.device_count()
|
|
ans = foo(jnp.ones((ndevices, 1)))
|
|
expected = np.ones((ndevices, 1), dtype=jnp.float_) * ndevices
|
|
self.assertAllClose(ans, expected)
|
|
|
|
def testGradBasic(self):
|
|
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
|
|
def f(x):
|
|
return jnp.sin(x)
|
|
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
|
|
ans = grad(lambda x: jnp.sum(jnp.sin(x)))(x)
|
|
expected = grad(lambda x: jnp.sum(f(x)))(x)
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
def testPmapStaticArgnums(self):
|
|
@partial(pmap, axis_name='i', static_broadcasted_argnums=1)
|
|
def f(x, y):
|
|
return jnp.sin(x + y)
|
|
shape = (xla_bridge.device_count(), 4)
|
|
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
|
|
y = np.arange(4, dtype=np.float32)
|
|
|
|
ans = f(x, y)
|
|
expected = np.sin(x + y[None])
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
class ShardedDeviceArrayTest(jtu.JaxTestCase):
|
|
|
|
def testThreadsafeIndexing(self):
|
|
# NOTE(skye): I picked these values to be big enough to cause interesting
|
|
# execution overlap, but small enough to not use too much memory. YMMV.
|
|
shape = (8, 8000, 1000)
|
|
|
|
if jax.device_count() < shape[0]:
|
|
raise SkipTest(f"requires {shape[0]} devices")
|
|
|
|
x = jnp.arange(jnp.prod(shape)).reshape(shape)
|
|
sharded_x = pmap(lambda x: x)(x)
|
|
|
|
num_threads = 10
|
|
futures = []
|
|
expected = []
|
|
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|
for i in range(num_threads):
|
|
idx = i % shape[0]
|
|
# Mix together different kinds of indices
|
|
if i % 2 == 0:
|
|
idx = slice(idx, idx + 1)
|
|
# Use the "kwarg trick" to work around late-binding closures. See
|
|
# https://docs.python-guide.org/writing/gotchas/#late-binding-closures.
|
|
futures.append(executor.submit(
|
|
lambda idx=idx: [sharded_x[idx] for _ in range(10)][0]))
|
|
expected.append(x[idx])
|
|
actual = [f.result() for f in futures]
|
|
self.assertAllClose(actual, expected, check_dtypes=False)
|
|
|
|
|
|
class SpecToIndicesTest(jtu.JaxTestCase):
|
|
|
|
def testShardsPerAxis(self):
|
|
shape = (4, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(2, 2),
|
|
is_axis_materialized=(True, True),
|
|
replication_factors=[])
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
((slice(0,2), slice(0,4)),
|
|
(slice(0,2), slice(4,8)),
|
|
(slice(2,4), slice(0,4)),
|
|
(slice(2,4), slice(4,8))))
|
|
|
|
def testUnshardedAxis(self):
|
|
shape = (4, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(2, 1),
|
|
is_axis_materialized=(True, True),
|
|
replication_factors=[])
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
(slice(0,2), (slice(2,4))))
|
|
|
|
def testNoSharding(self):
|
|
shape = (4, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(1, 1),
|
|
is_axis_materialized=(True, True),
|
|
replication_factors=[])
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
(slice(None),))
|
|
|
|
def testUnmaterializedAxis(self):
|
|
shape = (4, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(4, 1),
|
|
is_axis_materialized=(False, True),
|
|
replication_factors=[])
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
(0, 1, 2, 3))
|
|
|
|
shape = (2, 2)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(1, 2),
|
|
is_axis_materialized=(True, False),
|
|
replication_factors=[])
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
((slice(None), 0),
|
|
(slice(None), 1)))
|
|
|
|
def testReplicationAfterUnsharded(self):
|
|
shape = (2, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(2, 1),
|
|
is_axis_materialized=(False, True),
|
|
replication_factors=[(3, 2)])
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
(0, 0, 0, 1, 1, 1))
|
|
|
|
def testReplicationPosition2(self):
|
|
shape = (2, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(2, 2),
|
|
is_axis_materialized=(False, True),
|
|
replication_factors=[(3, 2)])
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
((0, slice(0, 4)), (0, slice(0, 4)), (0, slice(0, 4)),
|
|
(0, slice(4, 8)), (0, slice(4, 8)), (0, slice(4, 8)),
|
|
(1, slice(0, 4)), (1, slice(0, 4)), (1, slice(0, 4)),
|
|
(1, slice(4, 8)), (1, slice(4, 8)), (1, slice(4, 8))))
|
|
|
|
def testReplicationPosition1(self):
|
|
shape = (2, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(2, 2),
|
|
is_axis_materialized=(False, True),
|
|
replication_factors=[(3, 1)])
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
((0, slice(0, 4)), (0, slice(4, 8)),
|
|
(0, slice(0, 4)), (0, slice(4, 8)),
|
|
(0, slice(0, 4)), (0, slice(4, 8)),
|
|
(1, slice(0, 4)), (1, slice(4, 8)),
|
|
(1, slice(0, 4)), (1, slice(4, 8)),
|
|
(1, slice(0, 4)), (1, slice(4, 8))))
|
|
|
|
def testReplicationPosition0(self):
|
|
shape = (2, 8)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(2, 1),
|
|
is_axis_materialized=(False, True),
|
|
replication_factors=[(3, 0)])
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
(0, 1, 0, 1, 0, 1))
|
|
|
|
def testMultipleReplications(self):
|
|
shape = (2, 7, 4)
|
|
spec = pxla.ShardingSpec(shards_per_axis=(2, 1, 2),
|
|
is_axis_materialized=(False, True, True),
|
|
replication_factors=[(3, 0), (2, 0), (2, 2)])
|
|
self.assertEqual(
|
|
pxla.spec_to_indices(shape, spec),
|
|
((0, slice(None), slice(0, 2)), (0, slice(None), slice(2, 4)),
|
|
(0, slice(None), slice(0, 2)), (0, slice(None), slice(2, 4)),
|
|
(1, slice(None), slice(0, 2)), (1, slice(None), slice(2, 4)),
|
|
(1, slice(None), slice(0, 2)), (1, slice(None), slice(2, 4))) * 3 * 2)
|
|
|
|
def testReplicatedScalar(self):
|
|
shape = ()
|
|
spec = pxla.ShardingSpec(shards_per_axis=(),
|
|
is_axis_materialized=(),
|
|
replication_factors=[(3, 0)])
|
|
self.assertEqual(pxla.spec_to_indices(shape, spec),
|
|
((), (), ()))
|
|
|
|
|
|
def _spec_str(spec):
|
|
return (f"({spec.shards_per_axis},"
|
|
f"{spec.is_axis_materialized},"
|
|
f"{spec.replication_factors})")
|
|
|
|
|
|
class ShardArgsTest(jtu.JaxTestCase):
|
|
|
|
def numpy_array(x):
|
|
return x
|
|
|
|
def device_array(x):
|
|
return jax.device_put(x)
|
|
|
|
# TODO(skye): add coverage for ShardedDeviceArrays
|
|
|
|
@parameterized.named_parameters(
|
|
{"testcase_name":
|
|
f"_shape={shape}_spec={_spec_str(spec)}_arg={make_arg.__name__}"
|
|
.replace(" ", ""),
|
|
"shape": shape, "spec": spec, "make_arg": make_arg}
|
|
for make_arg in [numpy_array, device_array]
|
|
for shape, spec in [
|
|
# pmap(in_axes=0)
|
|
[(4, 8), pxla.ShardingSpec(shards_per_axis=(4, 1),
|
|
is_axis_materialized=(False, True),
|
|
replication_factors=[])],
|
|
# pmap(in_axes=1)
|
|
[(2, 2), pxla.ShardingSpec(shards_per_axis=(1, 2),
|
|
is_axis_materialized=(True, False),
|
|
replication_factors=[])],
|
|
# unsharded
|
|
[(4, 8), pxla.ShardingSpec(shards_per_axis=(1, 1),
|
|
is_axis_materialized=(True, True),
|
|
replication_factors=[])],
|
|
# partitioned, 1 axis
|
|
[(4, 8), pxla.ShardingSpec(shards_per_axis=(2, 1),
|
|
is_axis_materialized=(True, True),
|
|
replication_factors=[])],
|
|
# partitioned, 2 axes
|
|
[(4, 8), pxla.ShardingSpec(shards_per_axis=(2, 2),
|
|
is_axis_materialized=(True, True),
|
|
replication_factors=[])],
|
|
# partitioned + sharding
|
|
[(2, 8), pxla.ShardingSpec(shards_per_axis=(2, 2),
|
|
is_axis_materialized=(False, True),
|
|
replication_factors=[])],
|
|
# replication + sharding
|
|
[(2, 8), pxla.ShardingSpec(shards_per_axis=(2, 1),
|
|
is_axis_materialized=(False, True),
|
|
replication_factors=[(3, 2)])],
|
|
# replication, no sharding
|
|
[(2, 8), pxla.ShardingSpec(shards_per_axis=(1, 1),
|
|
is_axis_materialized=(True, True),
|
|
replication_factors=[(3, 2)])],
|
|
# multiple replicated axes
|
|
[(1, 8), pxla.ShardingSpec(shards_per_axis=(1, 2),
|
|
is_axis_materialized=(False, True),
|
|
replication_factors=[(2, 0), (2, 1)])],
|
|
# replicated scalar
|
|
[(), pxla.ShardingSpec(shards_per_axis=(),
|
|
is_axis_materialized=(),
|
|
replication_factors=[(2, 0), (3, 0)])]
|
|
])
|
|
def testShardArgs(self, shape, spec, make_arg):
|
|
indices = pxla.spec_to_indices(shape, spec)
|
|
nshards = len(indices)
|
|
if jax.device_count() < nshards:
|
|
raise SkipTest
|
|
x = np.arange(np.prod(shape)).reshape(shape)
|
|
arg = make_arg(x)
|
|
bufs = pxla.shard_args(jax.devices()[:nshards],
|
|
[indices], [arg])
|
|
self.assertEqual(len(bufs), nshards)
|
|
for buf, idx in zip(bufs, indices):
|
|
self.assertEqual(len(buf), 1)
|
|
self.assertAllClose(buf[0].to_py(), x[idx], check_dtypes=False)
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|