mirror of
https://github.com/ROCm/jax.git
synced 2025-04-15 19:36:06 +00:00
608 lines
22 KiB
C++
608 lines
22 KiB
C++
/* Copyright 2021 The JAX Authors.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "jaxlib/gpu/sparse_kernels.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <stdexcept>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "absl/status/status.h"
|
|
#include "absl/status/statusor.h"
|
|
#include "absl/synchronization/mutex.h"
|
|
#include "jaxlib/gpu/gpu_kernel_helpers.h"
|
|
#include "jaxlib/gpu/vendor.h"
|
|
#include "jaxlib/handle_pool.h"
|
|
#include "jaxlib/kernel_helpers.h"
|
|
#include "xla/service/custom_call_status.h"
|
|
|
|
namespace jax {
|
|
|
|
template <>
|
|
/*static*/ absl::StatusOr<SparseHandlePool::Handle> SparseHandlePool::Borrow(
|
|
gpuStream_t stream) {
|
|
SparseHandlePool* pool = Instance();
|
|
absl::MutexLock lock(&pool->mu_);
|
|
gpusparseHandle_t handle;
|
|
if (pool->handles_[stream].empty()) {
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreate(&handle)));
|
|
} else {
|
|
handle = pool->handles_[stream].back();
|
|
pool->handles_[stream].pop_back();
|
|
}
|
|
if (stream) {
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseSetStream(handle, stream)));
|
|
}
|
|
return Handle(pool, handle, stream);
|
|
}
|
|
|
|
namespace JAX_GPU_NAMESPACE {
|
|
|
|
SparseConst ConstZero(gpuDataType type) {
|
|
SparseConst c;
|
|
std::memset(&c, 0, sizeof(c));
|
|
return c;
|
|
}
|
|
|
|
SparseConst ConstOne(gpuDataType type) {
|
|
SparseConst c;
|
|
std::memset(&c, 0, sizeof(c));
|
|
switch (type) {
|
|
#ifdef JAX_GPU_CUDA
|
|
#if JAX_GPU_HAVE_SPARSE
|
|
// TODO(jakevdp): 4I/4U here might break on big endian platforms.
|
|
case CUDA_R_4I:
|
|
case CUDA_C_4I:
|
|
#endif
|
|
case CUDA_R_8I:
|
|
case CUDA_C_8I:
|
|
c.i8[0] = 1;
|
|
break;
|
|
#if JAX_GPU_HAVE_SPARSE
|
|
case CUDA_R_4U:
|
|
case CUDA_C_4U:
|
|
#endif
|
|
case CUDA_R_8U:
|
|
case CUDA_C_8U:
|
|
c.u8[0] = 1;
|
|
break;
|
|
#if JAX_GPU_HAVE_SPARSE
|
|
case CUDA_R_16I:
|
|
case CUDA_C_16I:
|
|
c.i16[0] = 1;
|
|
break;
|
|
case CUDA_R_16U:
|
|
case CUDA_C_16U:
|
|
c.u16[0] = 1;
|
|
break;
|
|
#endif
|
|
case CUDA_R_32I:
|
|
case CUDA_C_32I:
|
|
c.i32[0] = 1;
|
|
break;
|
|
case CUDA_R_32U:
|
|
case CUDA_C_32U:
|
|
c.u32[0] = 1;
|
|
break;
|
|
#if JAX_GPU_HAVE_SPARSE
|
|
case CUDA_R_64I:
|
|
case CUDA_C_64I:
|
|
c.i64[0] = 1;
|
|
break;
|
|
case CUDA_R_64U:
|
|
case CUDA_C_64U:
|
|
c.u64[0] = 1;
|
|
break;
|
|
#endif
|
|
#if JAX_GPU_HAVE_FP8
|
|
case CUDA_R_8F_E4M3:
|
|
c.u8[0] = __nv_cvt_float_to_fp8(1.0f, __NV_NOSAT, __NV_E4M3);
|
|
break;
|
|
case CUDA_R_8F_E5M2:
|
|
c.u8[0] = __nv_cvt_float_to_fp8(1.0f, __NV_NOSAT, __NV_E5M2);
|
|
break;
|
|
#endif
|
|
#if JAX_GPU_HAVE_SPARSE
|
|
case CUDA_R_16BF:
|
|
case CUDA_C_16BF:
|
|
c.u16[0] = 0b11111110000000; // 1.0 in little-endian bfloat16
|
|
break;
|
|
#endif
|
|
#endif // JAX_GPU_CUDA
|
|
// TODO(rocm): add more data types if new rocm supports them.
|
|
|
|
// TODO(jakevdp): 16F/16BF here might break on big endian platforms.
|
|
case GPU_R_16F:
|
|
case GPU_C_16F:
|
|
c.u16[0] = 0b11110000000000; // 1.0 in little-endian float16
|
|
break;
|
|
case GPU_R_32F:
|
|
case GPU_C_32F:
|
|
c.f32[0] = 1.0;
|
|
break;
|
|
case GPU_R_64F:
|
|
case GPU_C_64F:
|
|
c.f64[0] = 1.0;
|
|
break;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
#if JAX_GPU_HAVE_SPARSE
|
|
// CsrToDense: Convert CSR matrix to dense matrix
|
|
|
|
static absl::Status CsrToDense_(gpuStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const SparseMatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
gpusparseSpMatDescr_t mat_a = 0;
|
|
gpusparseDnMatDescr_t mat_b = 0;
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpusparseCreateCsr(&mat_a, d.rows, d.cols, d.nnz,
|
|
/*csrRowOffsets=*/buffers[2],
|
|
/*csrColInd=*/buffers[1],
|
|
/*csrValues=*/buffers[0], d.index_type, d.index_type,
|
|
GPUSPARSE_INDEX_BASE_ZERO, d.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateDnMat(
|
|
&mat_b, d.rows, d.cols,
|
|
/*ld=*/d.cols, buffers[3], d.value_type, GPUSPARSE_ORDER_ROW)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpusparseSparseToDense(handle.get(), mat_a, mat_b,
|
|
GPUSPARSE_SPARSETODENSE_ALG_DEFAULT, buffers[4])));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnMat(mat_b)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CsrToDense(gpuStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CsrToDense_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CsrFromDense: Convert dense matrix to CSR matrix
|
|
|
|
static absl::Status CsrFromDense_(gpuStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const SparseMatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
gpusparseDnMatDescr_t mat_a = 0;
|
|
gpusparseSpMatDescr_t mat_b = 0;
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateDnMat(
|
|
&mat_a, d.rows, d.cols,
|
|
/*ld=*/d.cols, buffers[0], d.value_type, GPUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpusparseCreateCsr(&mat_b, d.rows, d.cols, d.nnz,
|
|
/*csrRowOffsets=*/buffers[3],
|
|
/*csrColInd=*/buffers[2],
|
|
/*csrValues=*/buffers[1], d.index_type, d.index_type,
|
|
GPUSPARSE_INDEX_BASE_ZERO, d.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDenseToSparse_analysis(
|
|
handle.get(), mat_a, mat_b, GPUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
|
|
buffers[4])));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDenseToSparse_convert(
|
|
handle.get(), mat_a, mat_b, GPUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
|
|
buffers[4])));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroySpMat(mat_b)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CsrFromDense(gpuStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CsrFromDense_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CsrMatvec: Product of CSR matrix and dense vector.
|
|
|
|
static absl::Status CsrMatvec_(gpuStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<CsrMatvecDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const CsrMatvecDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
void* csr_values = buffers[0];
|
|
void* csr_col_ind = buffers[1];
|
|
void* csr_row_offsets = buffers[2];
|
|
void* xbuf = buffers[3];
|
|
void* ybuf = buffers[4];
|
|
void* buf = buffers[5];
|
|
|
|
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
|
|
// are sufficient for basic matvec operations.
|
|
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
|
|
// or else the operation will segfault.
|
|
SparseConst alpha = ConstOne(d.y.type);
|
|
SparseConst beta = ConstZero(d.y.type);
|
|
|
|
gpusparseSpMatDescr_t mat_a = 0;
|
|
gpusparseDnVecDescr_t vec_x = 0;
|
|
gpusparseDnVecDescr_t vec_y = 0;
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateCsr(
|
|
&mat_a, d.A.rows, d.A.cols, d.A.nnz, csr_row_offsets, csr_col_ind,
|
|
csr_values, d.A.index_type, d.A.index_type, GPUSPARSE_INDEX_BASE_ZERO,
|
|
d.A.value_type)));
|
|
JAX_RETURN_IF_ERROR(
|
|
JAX_AS_STATUS(gpusparseCreateDnVec(&vec_x, d.x.size, xbuf, d.x.type)));
|
|
JAX_RETURN_IF_ERROR(
|
|
JAX_AS_STATUS(gpusparseCreateDnVec(&vec_y, d.y.size, ybuf, d.y.type)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpusparseSpMV(handle.get(), d.op, &alpha, mat_a, vec_x, &beta, vec_y,
|
|
d.y.type, GPUSPARSE_SPMV_CSR_ALG, buf)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnVec(vec_x)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnVec(vec_y)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CsrMatvec(gpuStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CsrMatvec_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CsrMatmat: Product of CSR matrix and dense matrix.
|
|
|
|
static absl::Status CsrMatmat_(gpuStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<CsrMatmatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const CsrMatmatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
void* csr_values = buffers[0];
|
|
void* csr_col_ind = buffers[1];
|
|
void* csr_row_offsets = buffers[2];
|
|
void* Bbuf = buffers[3];
|
|
void* Cbuf = buffers[4];
|
|
void* buf = buffers[5];
|
|
|
|
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
|
|
// are sufficient for basic matvec operations.
|
|
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
|
|
// or else the operation will segfault.
|
|
SparseConst alpha = ConstOne(d.C.type);
|
|
SparseConst beta = ConstZero(d.C.type);
|
|
|
|
gpusparseSpMatDescr_t mat_a = 0;
|
|
gpusparseDnMatDescr_t mat_b = 0;
|
|
gpusparseDnMatDescr_t mat_c = 0;
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateCsr(
|
|
&mat_a, d.A.rows, d.A.cols, d.A.nnz, csr_row_offsets, csr_col_ind,
|
|
csr_values, d.A.index_type, d.A.index_type, GPUSPARSE_INDEX_BASE_ZERO,
|
|
d.A.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateDnMat(
|
|
&mat_b, d.B.rows, d.B.cols,
|
|
/*ld=*/d.B.cols, Bbuf, d.B.type, GPUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateDnMat(
|
|
&mat_c, d.C.rows, d.C.cols,
|
|
/*ld=*/d.C.cols, Cbuf, d.C.type, GPUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseSpMM(
|
|
handle.get(), d.op_A, /*opB=*/GPUSPARSE_OPERATION_NON_TRANSPOSE, &alpha,
|
|
mat_a, mat_b, &beta, mat_c, d.C.type, GPUSPARSE_SPMM_CSR_ALG, buf)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnMat(mat_b)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnMat(mat_c)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CsrMatmat(gpuStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CsrMatmat_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CooToDense: Convert COO matrix to dense matrix
|
|
|
|
static absl::Status CooToDense_(gpuStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const SparseMatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
gpusparseSpMatDescr_t mat_a = 0;
|
|
gpusparseDnMatDescr_t mat_b = 0;
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpusparseCreateCoo(&mat_a, d.rows, d.cols, d.nnz,
|
|
/*cooRowInd=*/buffers[1],
|
|
/*cooColInd=*/buffers[2],
|
|
/*cooValues=*/buffers[0], d.index_type,
|
|
GPUSPARSE_INDEX_BASE_ZERO, d.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateDnMat(
|
|
&mat_b, d.rows, d.cols,
|
|
/*ld=*/d.cols, buffers[3], d.value_type, GPUSPARSE_ORDER_ROW)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpusparseSparseToDense(handle.get(), mat_a, mat_b,
|
|
GPUSPARSE_SPARSETODENSE_ALG_DEFAULT, buffers[4])));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnMat(mat_b)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CooToDense(gpuStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CooToDense_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CooFromDense: Convert dense matrix to COO matrix
|
|
|
|
static absl::Status CooFromDense_(gpuStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<SparseMatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const SparseMatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
gpusparseDnMatDescr_t mat_a = 0;
|
|
gpusparseSpMatDescr_t mat_b = 0;
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateDnMat(
|
|
&mat_a, d.rows, d.cols,
|
|
/*ld=*/d.cols, buffers[0], d.value_type, GPUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpusparseCreateCoo(&mat_b, d.rows, d.cols, d.nnz,
|
|
/*cooRowInd=*/buffers[2],
|
|
/*cooColInd=*/buffers[3],
|
|
/*cooValues=*/buffers[1], d.index_type,
|
|
GPUSPARSE_INDEX_BASE_ZERO, d.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDenseToSparse_analysis(
|
|
handle.get(), mat_a, mat_b, GPUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
|
|
buffers[4])));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDenseToSparse_convert(
|
|
handle.get(), mat_a, mat_b, GPUSPARSE_DENSETOSPARSE_ALG_DEFAULT,
|
|
buffers[4])));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroySpMat(mat_b)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CooFromDense(gpuStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CooFromDense_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CooMatvec: Product of COO matrix and dense vector.
|
|
|
|
static absl::Status CooMatvec_(gpuStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<CooMatvecDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const CooMatvecDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
void* coo_values = buffers[0];
|
|
void* coo_row_ind = buffers[1];
|
|
void* coo_col_ind = buffers[2];
|
|
void* xbuf = buffers[3];
|
|
void* ybuf = buffers[4];
|
|
void* buf = buffers[5];
|
|
|
|
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
|
|
// are sufficient for basic matvec operations.
|
|
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
|
|
// or else the operation will segfault.
|
|
SparseConst alpha = ConstOne(d.y.type);
|
|
SparseConst beta = ConstZero(d.y.type);
|
|
|
|
gpusparseSpMatDescr_t mat_a = 0;
|
|
gpusparseDnVecDescr_t vec_x = 0;
|
|
gpusparseDnVecDescr_t vec_y = 0;
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateCoo(
|
|
&mat_a, d.A.rows, d.A.cols, d.A.nnz, coo_row_ind, coo_col_ind, coo_values,
|
|
d.A.index_type, GPUSPARSE_INDEX_BASE_ZERO, d.A.value_type)));
|
|
JAX_RETURN_IF_ERROR(
|
|
JAX_AS_STATUS(gpusparseCreateDnVec(&vec_x, d.x.size, xbuf, d.x.type)));
|
|
JAX_RETURN_IF_ERROR(
|
|
JAX_AS_STATUS(gpusparseCreateDnVec(&vec_y, d.y.size, ybuf, d.y.type)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpusparseSpMV(handle.get(), d.op, &alpha, mat_a, vec_x, &beta, vec_y,
|
|
d.y.type, GPUSPARSE_SPMV_COO_ALG, buf)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnVec(vec_x)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnVec(vec_y)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CooMatvec(gpuStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CooMatvec_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
// CooMatmat: Product of COO matrix and dense matrix.
|
|
|
|
static absl::Status CooMatmat_(gpuStream_t stream, void** buffers,
|
|
const char* opaque, size_t opaque_len) {
|
|
auto s = UnpackDescriptor<CooMatmatDescriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const CooMatmatDescriptor& d = **s;
|
|
auto h = SparseHandlePool::Borrow(stream);
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
void* coo_values = buffers[0];
|
|
void* coo_row_ind = buffers[1];
|
|
void* coo_col_ind = buffers[2];
|
|
void* Bbuf = buffers[3];
|
|
void* Cbuf = buffers[4];
|
|
void* buf = buffers[5];
|
|
|
|
// TODO(jakevdp): alpha and beta should be user-specifiable, but constants
|
|
// are sufficient for basic matvec operations.
|
|
// Note that, contrary to cusparse docs, alpha and beta must be host pointers
|
|
// or else the operation will segfault.
|
|
SparseConst alpha = ConstOne(d.C.type);
|
|
SparseConst beta = ConstZero(d.C.type);
|
|
|
|
gpusparseSpMatDescr_t mat_a = 0;
|
|
gpusparseDnMatDescr_t mat_b = 0;
|
|
gpusparseDnMatDescr_t mat_c = 0;
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateCoo(
|
|
&mat_a, d.A.rows, d.A.cols, d.A.nnz, coo_row_ind, coo_col_ind, coo_values,
|
|
d.A.index_type, GPUSPARSE_INDEX_BASE_ZERO, d.A.value_type)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpusparseCooSetStridedBatch(mat_a, /*batchCount=*/d.A.batch_count,
|
|
/*batchStride=*/d.A.batch_stride)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateDnMat(
|
|
&mat_b, d.B.rows, d.B.cols,
|
|
/*ld=*/d.B.cols, Bbuf, d.B.type, GPUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpusparseDnMatSetStridedBatch(mat_b, /*batchCount=*/d.B.batch_count,
|
|
/*batchStride=*/d.B.batch_stride)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseCreateDnMat(
|
|
&mat_c, d.C.rows, d.C.cols,
|
|
/*ld=*/d.C.cols, Cbuf, d.C.type, GPUSPARSE_ORDER_ROW)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpusparseDnMatSetStridedBatch(mat_c, /*batchCount=*/d.C.batch_count,
|
|
/*batchStride=*/d.C.batch_stride)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseSpMM(
|
|
handle.get(), d.op_A, /*opB=*/GPUSPARSE_OPERATION_NON_TRANSPOSE, &alpha,
|
|
mat_a, mat_b, &beta, mat_c, d.C.type, GPUSPARSE_SPMM_COO_ALG, buf)));
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroySpMat(mat_a)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnMat(mat_b)));
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(gpusparseDestroyDnMat(mat_c)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void CooMatmat(gpuStream_t stream, void** buffers, const char* opaque,
|
|
size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = CooMatmat_(stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
#endif // if JAX_GPU_HAVE_SPARSE
|
|
|
|
template <typename T, typename F>
|
|
static absl::Status gtsv2(F computeGtsv2, gpuStream_t stream, void** buffers,
|
|
const char* opaque, std::size_t opaque_len) {
|
|
auto h = SparseHandlePool::Borrow();
|
|
JAX_RETURN_IF_ERROR(h.status());
|
|
auto& handle = *h;
|
|
|
|
auto s = UnpackDescriptor<Gtsv2Descriptor>(opaque, opaque_len);
|
|
JAX_RETURN_IF_ERROR(s.status());
|
|
const Gtsv2Descriptor& descriptor = **s;
|
|
int m = descriptor.m;
|
|
int n = descriptor.n;
|
|
int ldb = descriptor.ldb;
|
|
|
|
const T* dl = (const T*)(buffers[0]);
|
|
const T* d = (const T*)(buffers[1]);
|
|
const T* du = (const T*)(buffers[2]);
|
|
const T* B = (T*)(buffers[3]);
|
|
T* X = (T*)(buffers[4]);
|
|
void* buffer = buffers[5];
|
|
|
|
// The solution X is written in place to B. We need to therefore copy the
|
|
// contents of B into the output buffer X and pass that into the kernel as B.
|
|
// Once copy insertion is supported for custom call aliasing, we could alias B
|
|
// with X and avoid the copy, the code below is written defensively assuming B
|
|
// and X might alias, but today we know they will not.
|
|
// TODO(b/182906199): Update the comment here once copy insertion is WAI.
|
|
if (X != B) {
|
|
size_t B_bytes = ldb * n * sizeof(T);
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
gpuMemcpyAsync(X, B, B_bytes, gpuMemcpyDeviceToDevice, stream)));
|
|
}
|
|
|
|
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
|
|
computeGtsv2(handle.get(), m, n, dl, d, du, /*B=*/X, ldb, buffer)));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
void gtsv2_f32(gpuStream_t stream, void** buffers, const char* opaque,
|
|
std::size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = gtsv2<float>(gpusparseSgtsv2, stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
void gtsv2_f64(gpuStream_t stream, void** buffers, const char* opaque,
|
|
std::size_t opaque_len, XlaCustomCallStatus* status) {
|
|
auto s = gtsv2<double>(gpusparseDgtsv2, stream, buffers, opaque, opaque_len);
|
|
if (!s.ok()) {
|
|
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
|
|
s.message().length());
|
|
}
|
|
}
|
|
|
|
} // namespace JAX_GPU_NAMESPACE
|
|
} // namespace jax
|