mirror of
https://github.com/ROCm/jax.git
synced 2025-04-25 10:16:07 +00:00

Refactoring only, no functional changes intended. Previously the MLIR lowering rule signature was ``` def rule(ctx, avals_in, avals_out, *args, **jaxpr_params): ``` where `ctx` was a module-wide context. Change it to ``` def rule(ctx, *args, **jaxpr_params) ``` where `ctx` is a per-rule context object. The previous parameters are now available as `ctx.module_context`, `ctx.avals_in`, and `ctx.avals_out`. This change makes it easier to add new per-rule context information without having to refactor all of the lowering rules to accept a new argument. One example is a shape environment for dynamic shapes. Another example, which motivated this work, is that I want to include the primitive name as part of the rule context. PiperOrigin-RevId: 416698663
397 lines
12 KiB
Python
397 lines
12 KiB
Python
# Copyright 2020 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from absl.testing import absltest, parameterized
|
|
|
|
import numpy as np
|
|
|
|
from jax._src import test_util as jtu
|
|
import jax.numpy as jnp
|
|
from jax import core, jit, lax, make_jaxpr
|
|
from jax._src import device_array
|
|
from jax._src import dispatch
|
|
from jax._src import dtypes
|
|
from jax.interpreters import mlir
|
|
from jax.interpreters import xla
|
|
from jax._src.lib.mlir import ir
|
|
from jax._src.lib import xla_bridge, xla_client
|
|
xops = xla_client.ops
|
|
xc = xla_client
|
|
xb = xla_bridge
|
|
|
|
from jax.config import config
|
|
config.parse_flags_with_absl()
|
|
|
|
# TODO(jakevdp): use a setup/teardown method to populate and unpopulate all the
|
|
# dictionaries associated with the following objects.
|
|
|
|
# Define a sparse array data structure. The important feature here is that
|
|
# it is a jaxpr object that is backed by two device buffers.
|
|
class SparseArray:
|
|
"""Simple sparse COO array data structure."""
|
|
def __init__(self, aval, data, indices):
|
|
self.aval = aval
|
|
self.shape = aval.shape
|
|
self.data = data
|
|
self.indices = indices
|
|
|
|
@property
|
|
def index_dtype(self):
|
|
return self.indices.dtype
|
|
|
|
@property
|
|
def dtype(self):
|
|
return self.data.dtype
|
|
|
|
@property
|
|
def nnz(self):
|
|
return self.data.shape[0]
|
|
|
|
def __repr__(self):
|
|
return repr(list((tuple(ind), d) for ind, d in zip(self.indices, self.data)))
|
|
|
|
|
|
class AbstractSparseArray(core.ShapedArray):
|
|
__slots__ = ['index_dtype', 'nnz', 'data_aval', 'indices_aval']
|
|
|
|
def __init__(self, shape, dtype, index_dtype, nnz, weak_type=False,
|
|
named_shape=None):
|
|
super().__init__(shape, dtypes.canonicalize_dtype(dtype))
|
|
named_shape = {} if named_shape is None else named_shape
|
|
self.index_dtype = index_dtype
|
|
self.nnz = nnz
|
|
self.data_aval = core.ShapedArray((nnz,), dtypes.canonicalize_dtype(dtype),
|
|
weak_type, named_shape)
|
|
self.indices_aval = core.ShapedArray(
|
|
(nnz, len(shape)), dtypes.canonicalize_dtype(index_dtype),
|
|
named_shape=named_shape)
|
|
|
|
def update(self, shape=None, dtype=None, index_dtype=None, nnz=None,
|
|
weak_type=None, named_shape=None):
|
|
if shape is None:
|
|
shape = self.shape
|
|
if dtype is None:
|
|
dtype = self.dtype
|
|
if index_dtype is None:
|
|
index_dtype = self.dtype
|
|
if nnz is None:
|
|
nnz = self.nnz
|
|
if weak_type is None:
|
|
weak_type = self.weak_type
|
|
if named_shape is None:
|
|
named_shape = self.named_shape
|
|
return AbstractSparseArray(
|
|
shape, dtype, index_dtype, nnz, weak_type, named_shape)
|
|
|
|
def strip_weak_type(self):
|
|
return self
|
|
|
|
@core.aval_property
|
|
def data(self):
|
|
return sp_data_p.bind(self)
|
|
|
|
@core.aval_property
|
|
def indices(self):
|
|
return sp_indices_p.bind(self)
|
|
|
|
class ConcreteSparseArray(AbstractSparseArray):
|
|
pass
|
|
|
|
def sparse_array_result_handler(device, aval):
|
|
def build_sparse_array(data_buf, indices_buf):
|
|
data = device_array.make_device_array(aval.data_aval, device, data_buf)
|
|
indices = device_array.make_device_array(aval.indices_aval, device, indices_buf)
|
|
return SparseArray(aval, data, indices)
|
|
return build_sparse_array
|
|
|
|
def sparse_array_shape_handler(a):
|
|
return (
|
|
xc.Shape.array_shape(a.data_aval.dtype, a.data_aval.shape),
|
|
xc.Shape.array_shape(a.indices_aval.dtype, a.indices_aval.shape),
|
|
)
|
|
|
|
def sparse_array_device_put_handler(a, device):
|
|
return (
|
|
xb.get_device_backend(device).buffer_from_pyval(a.data, device),
|
|
xb.get_device_backend(device).buffer_from_pyval(a.indices, device)
|
|
)
|
|
|
|
def sparse_array_constant_handler(c, val, canonicalize_dtypes):
|
|
return (
|
|
xla.pyval_to_ir_constant(val.data, canonicalize_dtypes),
|
|
xla.pyval_to_ir_constant(val.indices, canonicalize_dtypes)
|
|
)
|
|
|
|
core.pytype_aval_mappings[SparseArray] = lambda x: x.aval
|
|
core.raise_to_shaped_mappings[AbstractSparseArray] = lambda aval, _: aval
|
|
xla.pytype_aval_mappings[SparseArray] = lambda x: x.aval
|
|
xla.canonicalize_dtype_handlers[SparseArray] = lambda x: x
|
|
dispatch.device_put_handlers[SparseArray] = sparse_array_device_put_handler
|
|
dispatch.result_handlers[AbstractSparseArray] = sparse_array_result_handler
|
|
dispatch.num_buffers_handlers[AbstractSparseArray] = lambda _: 2
|
|
xla.xla_shape_handlers[AbstractSparseArray] = sparse_array_shape_handler
|
|
xla.register_constant_handler(SparseArray, sparse_array_constant_handler)
|
|
|
|
def sparse_array_mlir_type_handler(a):
|
|
return (
|
|
ir.RankedTensorType.get(
|
|
a.data_aval.shape, mlir.dtype_to_ir_type(a.data_aval.dtype)),
|
|
ir.RankedTensorType.get(
|
|
a.indices_aval.shape, mlir.dtype_to_ir_type(a.indices_aval.dtype)),
|
|
)
|
|
|
|
mlir.ir_type_handlers[AbstractSparseArray] = sparse_array_mlir_type_handler
|
|
|
|
sp_indices_p = core.Primitive('sp_indices')
|
|
|
|
@sp_indices_p.def_impl
|
|
def _sp_indices_impl(mat):
|
|
return mat.indices
|
|
|
|
@sp_indices_p.def_abstract_eval
|
|
def _sp_indices_abstract_eval(mat):
|
|
return mat.indices_aval
|
|
|
|
def _sp_indices_translation_rule(ctx, avals_in, avals_out, data, indices):
|
|
return [indices]
|
|
|
|
# Note: cannot use lower_fun to define attribute access primitives
|
|
# because it leads to infinite recursion.
|
|
xla.register_translation(sp_indices_p, _sp_indices_translation_rule)
|
|
|
|
def _sp_indices_mhlo_lowering(ctx, data_and_indices):
|
|
return [data_and_indices[1]]
|
|
|
|
mlir.register_lowering(sp_indices_p, _sp_indices_mhlo_lowering)
|
|
|
|
sp_data_p = core.Primitive('sp_data')
|
|
|
|
@sp_data_p.def_impl
|
|
def _sp_data_impl(mat):
|
|
return mat.data
|
|
|
|
@sp_data_p.def_abstract_eval
|
|
def _sp_data_abstract_eval(mat):
|
|
return mat.data_aval
|
|
|
|
def _sp_data_translation_rule(ctx, avals_in, avals_out, data, indices):
|
|
return [data]
|
|
|
|
# Note: cannot use lower_fun to define attribute access primitives
|
|
# because it leads to infinite recursion.
|
|
xla.register_translation(sp_data_p, _sp_data_translation_rule)
|
|
|
|
def _sp_data_mhlo_lowering(ctx, data_and_indices):
|
|
return [data_and_indices[0]]
|
|
|
|
mlir.register_lowering(sp_data_p, _sp_data_mhlo_lowering)
|
|
|
|
def identity(x):
|
|
return identity_p.bind(x)
|
|
|
|
identity_p = core.Primitive('identity')
|
|
|
|
@identity_p.def_impl
|
|
def _identity_impl(mat):
|
|
return mat
|
|
|
|
@identity_p.def_abstract_eval
|
|
def _identity_abstract_eval(mat):
|
|
return AbstractSparseArray(mat.shape, mat.dtype, mat.index_dtype, mat.nnz)
|
|
|
|
xla.register_translation(
|
|
identity_p, xla.lower_fun(_identity_impl, multiple_results=False,
|
|
new_style=True))
|
|
|
|
|
|
mlir.register_lowering(
|
|
identity_p, mlir.lower_fun(_identity_impl, multiple_results=False))
|
|
|
|
def split(x):
|
|
return split_p.bind(x)
|
|
|
|
split_p = core.Primitive('split')
|
|
split_p.multiple_results = True
|
|
|
|
@split_p.def_impl
|
|
def _split_impl(mat):
|
|
return mat, mat
|
|
|
|
@split_p.def_abstract_eval
|
|
def _split_abstract_eval(mat):
|
|
m = AbstractSparseArray(mat.shape, mat.dtype, mat.index_dtype, mat.nnz)
|
|
return m, m
|
|
|
|
xla.register_translation(
|
|
split_p, xla.lower_fun(_split_impl, multiple_results=True, new_style=True))
|
|
|
|
def make_sparse_array(rng, shape, dtype, nnz=0.2):
|
|
mat = rng(shape, dtype)
|
|
size = int(np.prod(shape))
|
|
if 0 < nnz < 1:
|
|
nnz = nnz * size
|
|
nnz = int(nnz)
|
|
if nnz == 0:
|
|
mat = np.zeros_like(mat)
|
|
elif nnz < size:
|
|
# TODO(jakevdp): do we care about duplicates?
|
|
cutoff = np.sort(mat.ravel())[nnz]
|
|
mat[mat >= cutoff] = 0
|
|
nz = (mat != 0)
|
|
data = jnp.array(mat[nz])
|
|
indices = jnp.array(np.where(nz)).T
|
|
aval = AbstractSparseArray(shape, data.dtype, indices.dtype, len(indices))
|
|
return SparseArray(aval, data, indices)
|
|
|
|
def matvec(mat, v):
|
|
v = jnp.asarray(v)
|
|
assert v.ndim == 1
|
|
assert len(mat.shape) == 2
|
|
assert v.shape[0] == mat.shape[1]
|
|
rows = mat.indices[:, 0]
|
|
cols = mat.indices[:, 1]
|
|
dv = mat.data * v[cols]
|
|
return jnp.zeros(mat.shape[0], dtype=dv.dtype).at[rows].add(dv)
|
|
|
|
|
|
class Empty:
|
|
def __init__(self, aval):
|
|
self.aval = aval
|
|
|
|
class AbstractEmpty(core.AbstractValue):
|
|
|
|
def join(self, other):
|
|
assert isinstance(other, self.__class__), other
|
|
return self
|
|
|
|
def __hash__(self):
|
|
return hash(())
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, AbstractEmpty)
|
|
|
|
class ConcreteEmpty(AbstractEmpty):
|
|
pass
|
|
|
|
|
|
core.pytype_aval_mappings[Empty] = lambda x: ConcreteEmpty()
|
|
core.raise_to_shaped_mappings[AbstractEmpty] = lambda aval, _: aval
|
|
xla.pytype_aval_mappings[Empty] = lambda x: AbstractEmpty()
|
|
xla.canonicalize_dtype_handlers[Empty] = lambda x: x
|
|
dispatch.device_put_handlers[Empty] = lambda _, __: ()
|
|
dispatch.result_handlers[AbstractEmpty] = lambda _, __: lambda: Empty(AbstractEmpty())
|
|
dispatch.num_buffers_handlers[AbstractEmpty] = lambda _: 0
|
|
xla.xla_shape_handlers[AbstractEmpty] = lambda _: ()
|
|
|
|
|
|
class CustomObjectTest(jtu.JaxTestCase):
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_compile={}_primitive={}".format(compile, primitive),
|
|
"compile": compile, "primitive": primitive}
|
|
for primitive in [True, False]
|
|
for compile in [True, False]))
|
|
def testSparseIdentity(self, compile, primitive):
|
|
f = identity if primitive else (lambda x: x)
|
|
f = jit(f) if compile else f
|
|
rng = jtu.rand_default(self.rng())
|
|
M = make_sparse_array(rng, (10,), jnp.float32)
|
|
M2 = f(M)
|
|
|
|
jaxpr = make_jaxpr(f)(M).jaxpr
|
|
core.check_jaxpr(jaxpr)
|
|
|
|
self.assertEqual(M.dtype, M2.dtype)
|
|
self.assertEqual(M.index_dtype, M2.index_dtype)
|
|
self.assertAllClose(M.data, M2.data)
|
|
self.assertAllClose(M.indices, M2.indices)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_compile={}".format(compile),
|
|
"compile": compile}
|
|
for compile in [True, False]))
|
|
def testSparseSplit(self, compile):
|
|
f = jit(split) if compile else split
|
|
rng = jtu.rand_default(self.rng())
|
|
M = make_sparse_array(rng, (10,), jnp.float32)
|
|
M2, M3 = f(M)
|
|
|
|
jaxpr = make_jaxpr(f)(M).jaxpr
|
|
core.check_jaxpr(jaxpr)
|
|
|
|
for MM in M2, M3:
|
|
self.assertEqual(M.dtype, MM.dtype)
|
|
self.assertEqual(M.index_dtype, MM.index_dtype)
|
|
self.assertArraysEqual(M.data, MM.data)
|
|
self.assertArraysEqual(M.indices, MM.indices)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_compile={}_primitive={}".format(compile, primitive),
|
|
"compile": compile, "primitive": primitive}
|
|
for primitive in [True, False]
|
|
for compile in [True, False]))
|
|
def testSparseLaxLoop(self, compile, primitive):
|
|
rng = jtu.rand_default(self.rng())
|
|
f = identity if primitive else (lambda x: x)
|
|
f = jit(f) if compile else f
|
|
body_fun = lambda _, A: f(A)
|
|
M = make_sparse_array(rng, (10,), jnp.float32)
|
|
lax.fori_loop(0, 10, body_fun, M)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_attr={}".format(attr), "attr": attr}
|
|
for attr in ["data", "indices"]))
|
|
def testSparseAttrAccess(self, attr):
|
|
rng = jtu.rand_default(self.rng())
|
|
args_maker = lambda: [make_sparse_array(rng, (10,), jnp.float32)]
|
|
f = lambda x: getattr(x, attr)
|
|
self._CompileAndCheck(f, args_maker)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_{}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype)),
|
|
"shape": shape, "dtype": dtype}
|
|
for shape in [(3, 3), (2, 6), (6, 2)]
|
|
for dtype in jtu.dtypes.floating))
|
|
def testSparseMatvec(self, shape, dtype):
|
|
rng = jtu.rand_default(self.rng())
|
|
args_maker = lambda: [make_sparse_array(rng, shape, dtype), rng(shape[-1:], dtype)]
|
|
self._CompileAndCheck(matvec, args_maker)
|
|
|
|
def testLowerToNothing(self):
|
|
empty = Empty(AbstractEmpty())
|
|
jaxpr = make_jaxpr(jit(lambda e: e))(empty).jaxpr
|
|
core.check_jaxpr(jaxpr)
|
|
|
|
# cannot return a unit, because CompileAndCheck assumes array output.
|
|
testfunc = lambda e: None
|
|
args_maker = lambda: [empty]
|
|
self._CompileAndCheck(testfunc, args_maker)
|
|
|
|
def testConstantHandler(self):
|
|
def make_const_array():
|
|
data = np.arange(3.0)
|
|
indices = np.arange(3)[:, None]
|
|
shape = (5,)
|
|
aval = AbstractSparseArray(shape, data.dtype, indices.dtype, len(indices))
|
|
return SparseArray(aval, data, indices)
|
|
out1 = make_const_array()
|
|
out2 = jit(make_const_array)()
|
|
self.assertArraysEqual(out1.data, out2.data)
|
|
self.assertArraysEqual(out1.indices, out2.indices)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|