rocm_jax/jaxlib/gpu_prng.py
jax authors 0be07e6aec Remove support for CUDA 11.
Pin minimal required versions for CUDA to 12.1.

Reverts 910a31d7b7510e3375718ab1ea0d38df7bd2c0d5

PiperOrigin-RevId: 618911489
2024-03-25 11:46:39 -07:00

110 lines
3.5 KiB
Python

# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import functools
from functools import partial
import importlib
import itertools
import operator
import jaxlib.mlir.ir as ir
from jaxlib import xla_client
from .hlo_helpers import custom_call
from .gpu_common_utils import GpuLibNotLinkedError
for cuda_module_name in [".cuda", "jax_cuda12_plugin"]:
try:
_cuda_prng = importlib.import_module(
f"{cuda_module_name}._prng", package="jaxlib"
)
except ImportError:
_cuda_prng = None
else:
break
if _cuda_prng:
for _name, _value in _cuda_prng.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="CUDA")
try:
from .rocm import _prng as _hip_prng # pytype: disable=import-error
for _name, _value in _hip_prng.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="ROCM")
except ImportError:
_hip_prng = None
_prod = lambda xs: functools.reduce(operator.mul, xs, 1)
def _threefry2x32_lowering(prng, platform, keys, data,
length: int | ir.Value | None = None,
output_shape: ir.Value | None = None):
"""ThreeFry2x32 kernel for GPU.
In presence of dynamic shapes, `length` is an `ir.Value` and `output_shape`
is a 1D tensor describing the shape of the two outputs.
"""
if not prng:
raise GpuLibNotLinkedError()
assert len(keys) == 2, keys
assert len(data) == 2, data
assert (ir.RankedTensorType(keys[0].type).element_type ==
ir.IntegerType.get_unsigned(32)), keys[0].type
typ = keys[0].type
dims = ir.RankedTensorType(typ).shape
for x in itertools.chain(keys, data):
assert x.type == typ, (x.type, typ)
ndims = len(dims)
layout = tuple(range(ndims - 1, -1, -1))
operand_layouts = [layout] * 4
operands = [keys[0], keys[1], data[0], data[1]]
if length is None:
length = _prod(dims)
if isinstance(length, int):
opaque = prng.threefry2x32_descriptor(length)
result_shapes = None
else:
assert output_shape is not None
opaque = prng.threefry2x32_descriptor(-1)
assert (ir.RankedTensorType(length.type).element_type ==
ir.IntegerType.get_signless(64)), length
assert (ir.RankedTensorType(length.type).shape ==
[1]), (length, ir.RankedTensorType(length.type).shape)
# Pass the length, which will be used by the custom call target since the
# static length in the descriptor is -1.
operands.append(length)
operand_layouts.append((0,))
# We also need to pass separately the shapes of the outputs.
result_shapes = [output_shape, output_shape]
return custom_call(
f"{platform}_threefry2x32",
result_types=[typ, typ],
operands=operands,
backend_config=opaque,
operand_layouts=operand_layouts,
result_layouts=[layout] * 2,
result_shapes=result_shapes).results
cuda_threefry2x32 = partial(_threefry2x32_lowering, _cuda_prng, "cu")
rocm_threefry2x32 = partial(_threefry2x32_lowering, _hip_prng, "hip")