Peter Hawkins 5527966b27 [JAX] Deprecate .to_py() property on arrays. Implement __array__ instead.
.to_py() was something of an accidental export from the JAX array classes. There are other mechanisms to turn a JAX array into a NumPy array, including `np.asarray(x)` and `jax.device_get(x)`. Deprecate this mechanism because it is redundant.

PiperOrigin-RevId: 469984029
2022-08-25 07:28:27 -07:00

1646 lines
65 KiB
Python

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lowering and execution path that converts jaxprs into the MLIR MHLO/CHLO
# dialects.
from __future__ import annotations
import collections
import dataclasses
import functools
from functools import partial
import io
import itertools
import re
import typing
from typing import (Any, Callable, Dict, Iterator, List, NamedTuple, Optional,
Sequence, Set, Tuple, Type, Union, FrozenSet)
from typing_extensions import Protocol
import warnings
import jax
from jax import core
from jax import linear_util as lu
from jax._src import ad_util
from jax._src import device_array
from jax._src import dtypes
from jax._src.lib import version as jaxlib_version
from jax._src.lib.mlir import ir
from jax._src.lib.mlir.dialects import chlo
from jax._src.lib.mlir.dialects import mhlo
from jax._src.lib.mlir.dialects import func as func_dialect
from jax._src.lib import can_execute_with_token
from jax._src.lib import xla_bridge as xb
from jax._src.lib import xla_client as xc
from jax._src import source_info_util
import jax._src.util as util
from jax.config import config
import jax.interpreters.ad as ad
import jax.interpreters.partial_eval as pe
import jax.interpreters.xla as xla
import numpy as np
map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip
T = typing.TypeVar("T")
Value = Any # = ir.Value
# mypy implicitly sets this variable to true when type checking.
MYPY = False
lowerable_effects: Set[core.Effect] = set()
# IR Helpers
def dense_int_elements(xs) -> ir.DenseIntElementsAttr:
return ir.DenseIntElementsAttr.get(np.asarray(xs, np.int64))
def dense_bool_elements(xs: Sequence[bool]) -> ir.DenseElementsAttr:
a = np.packbits(np.array(xs, np.bool_), bitorder='little')
# TODO(b/209005197): Work around for MLIR crash for non-splat single element
# buffers.
if len(xs) == 1:
a = np.array(0 if a.item() == 0 else 0xff, np.uint8)
return ir.DenseElementsAttr.get(
a, type=ir.IntegerType.get_signless(1), shape=[len(xs)])
def i32_attr(i): return ir.IntegerAttr.get(ir.IntegerType.get_signless(32), i)
def i64_attr(i): return ir.IntegerAttr.get(ir.IntegerType.get_signless(64), i)
def shape_tensor(sizes: Sequence[Union[int, ir.RankedTensorType]]
) -> ir.RankedTensorType:
int1d = aval_to_ir_type(core.ShapedArray((1,), np.int32))
def lower_dim(d):
if type(d) is int:
return ir_constant(np.array([d], np.int32))
else:
return mhlo.ReshapeOp(int1d, mhlo.ConvertOp(aval_to_ir_type(core.ShapedArray((), np.int32)), d))
d, *ds = map(lower_dim, sizes)
if not ds:
return d
else:
return mhlo.ConcatenateOp([d, *ds], i64_attr(0)).result
def delegate_lowering(ctx, lowering_fun, *args, **ctx_override_kwargs):
"""Side-effects on `ctx`"""
ctx_new = ctx.replace(**ctx_override_kwargs)
out = lowering_fun(ctx_new, *args)
ctx.set_tokens_out(ctx_new.tokens_out)
return out
# IR Types
# Non-canonicalized dtype to IR type mapping.
_dtype_to_ir_type : Dict[np.dtype, Callable[[], ir.Type]] = {
np.dtype(dtypes.float0): partial(ir.IntegerType.get_signless, 1),
np.dtype(np.bool_): partial(ir.IntegerType.get_signless, 1),
np.dtype(np.int8): partial(ir.IntegerType.get_signless, 8),
np.dtype(np.int16): partial(ir.IntegerType.get_signless, 16),
np.dtype(np.int32): partial(ir.IntegerType.get_signless, 32),
np.dtype(np.int64): partial(ir.IntegerType.get_signless, 64),
np.dtype(np.uint8): partial(ir.IntegerType.get_unsigned, 8),
np.dtype(np.uint16): partial(ir.IntegerType.get_unsigned, 16),
np.dtype(np.uint32): partial(ir.IntegerType.get_unsigned, 32),
np.dtype(np.uint64): partial(ir.IntegerType.get_unsigned, 64),
np.dtype(dtypes.bfloat16): ir.BF16Type.get,
np.dtype(np.float16): ir.F16Type.get,
np.dtype(np.float32): ir.F32Type.get,
np.dtype(np.float64): ir.F64Type.get,
np.dtype(np.complex64): lambda: ir.ComplexType.get(ir.F32Type.get()),
np.dtype(np.complex128): lambda: ir.ComplexType.get(ir.F64Type.get()),
}
def dtype_to_ir_type(dtype: Union[np.dtype, np.generic]) -> ir.Type:
assert isinstance(dtype, (np.dtype, np.generic)), type(dtype)
dtype = np.dtype(dtype)
try:
ir_type_factory = _dtype_to_ir_type[dtype]
except KeyError as err:
raise TypeError(
f"No dtype_to_ir_type handler for dtype: {dtype}") from err
return ir_type_factory()
def _array_ir_types(aval: Union[core.ShapedArray, core.DShapedArray]
) -> Sequence[ir.Type]:
if type(aval.dtype) in core.custom_eltypes:
return aval.dtype.aval_to_ir_types(aval)
return (ir.RankedTensorType.get(aval.shape, dtype_to_ir_type(aval.dtype)),)
def _dynamic_array_ir_types(aval: core.ShapedArray) -> Sequence[ir.Type]:
# in the MHLO builder, -1 indicates a '?' axis size
shape = [d if type(d) is int else d.bound if type(d) is core.BInt else -1
for d in aval.shape]
return (ir.RankedTensorType.get(shape, dtype_to_ir_type(aval.dtype)),)
def _bint_ir_types(aval: core.AbstractBInt) -> Sequence[ir.Type]:
dtype = dtypes._scalar_type_to_dtype(int)
return (ir.RankedTensorType.get((), dtype_to_ir_type(dtype)),)
ir_type_handlers: Dict[Type[core.AbstractValue],
Callable[[Any], Sequence[ir.Type]]] = {}
def aval_to_ir_types(aval: core.AbstractValue) -> Sequence[ir.Type]:
"""Converts a JAX aval to zero or more MLIR IR types.
In general, a JAX value may be represented by multiple IR values, so this
function returns multiple types."""
try:
return ir_type_handlers[type(aval)](aval)
except KeyError as err:
raise TypeError(f"No ir_type_handler for aval type: {type(aval)}") from err
ir_type_handlers[core.AbstractBInt] = _bint_ir_types
ir_type_handlers[core.ShapedArray] = _array_ir_types
ir_type_handlers[core.ConcreteArray] = _array_ir_types
ir_type_handlers[core.AbstractToken] = lambda _: [mhlo.TokenType.get()]
ir_type_handlers[core.DShapedArray] = _dynamic_array_ir_types
def aval_to_ir_type(aval: core.AbstractValue) -> ir.Type:
"""Convenience wrapper around aval_to_ir_types for single types.
For some common cases, e.g. dense arrays, we know JAX values are represented
by a single IR value."""
types = aval_to_ir_types(aval)
if len(types) != 1:
raise TypeError(f"aval_to_ir_type called on {aval} which corresponds to "
f"multiple IR types {types}")
return types[0]
# Constants
class ConstantHandler(Protocol):
def __call__(self, val: Any, canonicalize_types: bool) -> Sequence[ir.Value]:
"""Builds an IR representation for a constant `val`.
A JAX value is represented by zero or more IR values."""
_constant_handlers : Dict[type, ConstantHandler] = {}
def register_constant_handler(type_: type, handler_fun: ConstantHandler):
_constant_handlers[type_] = handler_fun
def get_constant_handler(type_: type) -> ConstantHandler:
return _constant_handlers[type_]
def ir_constants(val: Any,
canonicalize_types: bool = True) -> Sequence[ir.Value]:
"""Translate a Python `val` to an IR constant, canonicalizing its dtype.
Args:
val: a Python value to be translated to a constant.
Returns:
A representation of the constant as a list of IR values.
"""
for t in type(val).__mro__:
handler = _constant_handlers.get(t)
if handler:
out = handler(val, canonicalize_types)
assert all(isinstance(v, ir.Value) for v in out), (type(val), out)
return out
if hasattr(val, '__jax_array__'):
return ir_constants(val.__jax_array__(), canonicalize_types)
raise TypeError(f"No constant handler for type: {type(val)}")
def ir_constant(val: Any, canonicalize_types: bool = True) -> ir.Value:
"""Convenience wrapper around ir_constants for singleton values."""
values = ir_constants(val, canonicalize_types=canonicalize_types)
if len(values) != 1:
raise TypeError(f"ir_constant called on {val} which corresponds to "
f"multiple IR values {values}")
return values[0]
def _numpy_array_constant(x: np.ndarray, canonicalize_types
) -> Sequence[ir.Value]:
if canonicalize_types:
x = np.asarray(x, dtypes.canonicalize_dtype(x.dtype))
element_type = dtype_to_ir_type(x.dtype)
shape = x.shape
if x.dtype == np.bool_:
nelems = x.size
x = np.packbits(x, bitorder='little')
# TODO(b/209005197): Work around for MLIR crash for non-splat single element
# buffers.
if nelems == 1:
x = np.array(0 if x.item() == 0 else 0xff, np.uint8)
elif x.dtype == dtypes.bfloat16:
x = x.view(np.uint16)
x = np.ascontiguousarray(x)
attr = ir.DenseElementsAttr.get(x, type=element_type, shape=shape)
return (mhlo.ConstantOp(attr).result,)
def _ndarray_constant_handler(val: np.ndarray, canonicalize_types
) -> Sequence[ir.Value]:
"""Constant handler for ndarray literals, handling zero-size strides.
In most cases this function calls _numpy_array_constant(val) except it has
special handling of arrays with any strides of size zero: for those, it
generates appropriate calls to NumpyArrayConstant, Broadcast, and Transpose
to avoid staging in large literals that might arise from np.zeros or np.ones
or the output of lax.broadcast (which uses np.broadcast_to which in turn
uses size-zero strides).
Args:
val: an ndarray.
Returns:
An XLA ComputationDataHandle / XlaOp representing the constant ndarray
staged into the XLA Computation.
"""
if dtypes.result_type(val) == dtypes.float0:
return _numpy_array_constant(np.zeros(val.shape, dtype=np.bool_),
canonicalize_types=False)
elif np.any(np.equal(0, val.strides)) and val.size > 0:
zero_stride_axes, = np.where(np.equal(0, val.strides))
other_axes, = np.where(np.not_equal(0, val.strides))
collapsed_val = val[tuple(0 if ax in zero_stride_axes else slice(None) # type: ignore
for ax in range(val.ndim))] # type: ignore
if canonicalize_types:
collapsed_val = np.asarray(
collapsed_val, dtypes.canonicalize_dtype(collapsed_val.dtype))
out = mhlo.BroadcastInDimOp(
ir.RankedTensorType.get(
val.shape, dtype_to_ir_type(collapsed_val.dtype)),
_numpy_array_constant(collapsed_val, canonicalize_types=False)[0],
dense_int_elements(other_axes)).result
return (out,)
else:
return _numpy_array_constant(val, canonicalize_types)
register_constant_handler(np.ndarray, _ndarray_constant_handler)
for _scalar_type in [np.int8, np.int16, np.int32, np.int64,
np.uint8, np.uint16, np.uint32, np.uint64,
np.float16, np.float32, np.float64,
np.complex64, np.complex128,
np.bool_, np.longlong, dtypes.bfloat16]:
register_constant_handler(_scalar_type, _ndarray_constant_handler)
def _python_scalar_handler(dtype, val, canonicalize_dtypes):
return _numpy_array_constant(np.array(val, dtype), canonicalize_dtypes)
for ptype, dtype in dtypes.python_scalar_dtypes.items():
register_constant_handler(ptype, partial(_python_scalar_handler, dtype))
def _device_array_constant_handler(val, canonicalize_types):
return _ndarray_constant_handler(np.asarray(val.device_buffer),
canonicalize_types)
for t in device_array.device_array_types:
register_constant_handler(t, _device_array_constant_handler)
register_constant_handler(
core.Token, lambda _, __: [mhlo.CreateTokenOp(mhlo.TokenType.get()).result])
# Source locations
def _source_info_to_location(
primitive: core.Primitive, params: Dict,
source_info: source_info_util.SourceInfo,
name_stack: Union[str, source_info_util.NameStack] = "") -> ir.Location:
if config.jax_experimental_name_stack:
eqn_str = (f'{str(source_info.name_stack)}/'
f'{core.str_eqn_compact(primitive.name, params)}')
else:
assert isinstance(name_stack, str)
eqn_str = name_stack + core.str_eqn_compact(primitive.name, params)
frame = source_info_util.user_frame(source_info)
if frame is None:
loc = ir.Location.unknown()
else:
loc = ir.Location.file(xla._get_canonical_source_file(frame),
frame.line_num, 1)
loc = ir.Location.name(eqn_str, childLoc=loc)
# TODO(phawkins): also include primitive.name as the operator type.
return loc
# Translation rules
NameStack = Union[str, source_info_util.NameStack]
def make_ir_context() -> ir.Context:
"""Creates an MLIR context suitable for JAX IR."""
context = ir.Context()
mhlo.register_mhlo_dialect(context)
chlo.register_chlo_dialect(context)
return context
Mesh = Any
MeshAxisName = Any
@dataclasses.dataclass(frozen=True)
class SPMDAxisContext:
"""A hardware axis context for parallel computations that use the GSPMD partitioner.
This includes the mesh that will later by used to execute this computation,
as well as a set of mesh axes that are currently (e.g. because the current lowering
is invoked inside an xmap) lowered in the MANUAL sharding mode.
"""
mesh: Mesh
manual_axes: FrozenSet[MeshAxisName] = frozenset()
@property
def axis_env(self):
# All collectives that touch axis_env should remember to set use_global_device_ids
# when this context is enabled!
if self.manual_axes != frozenset(self.mesh.axis_names):
raise NotImplementedError(
"Collectives in manually partitioned computations are only supported "
"when all mesh axes are partitioned manually (no partial automatic sharding). "
"Make sure that you mention all mesh axes in axis_resources!")
return self.unsafe_axis_env
@property
def unsafe_axis_env(self):
return xla.AxisEnv(
nreps=self.mesh.size,
names=self.mesh.axis_names,
sizes=tuple(self.mesh.shape.values()))
def extend_manual(self, axes: FrozenSet[MeshAxisName]) -> SPMDAxisContext:
return SPMDAxisContext(self.mesh, self.manual_axes | axes)
@dataclasses.dataclass(frozen=True)
class ReplicaAxisContext:
"""A hardware axis context for parallel computations that are partitioned by JAX.
Unlike in the SPMDAxisContext, this means that JAX might need to emit calls to
explicit collectives.
"""
axis_env: xla.AxisEnv
@dataclasses.dataclass(frozen=True)
class ShardingContext:
"""A hardware axis context for parallel computations that use the sharding
interface.
This context also uses the GSPMD partitioner.
"""
sharding: Any
# Similar to SPMDContext as ShardingContext also uses the GSPMD partitioner.
@property
def axis_env(self):
return xla.AxisEnv(nreps=1, names=(), sizes=())
AxisContext = Union[SPMDAxisContext, ReplicaAxisContext, ShardingContext]
@dataclasses.dataclass
class ModuleContext:
"""Module-wide context information for MLIR lowering."""
context: ir.Context
module: ir.Module
ip: ir.InsertionPoint
symbol_table: ir.SymbolTable
backend_or_name: Optional[Union[str, xb.XlaBackend]]
platform: str
axis_context: AxisContext
name_stack: NameStack
keepalives: List[Any]
channel_iterator: Iterator[int]
host_callbacks: List[Any]
# Cached primitive lowerings.
cached_primitive_lowerings: Dict[Any, func_dialect.FuncOp]
cached_call_jaxpr_lowerings: Dict[Any, func_dialect.FuncOp]
@property
def axis_env(self) -> xla.AxisEnv:
return self.axis_context.axis_env
def __init__(
self,
backend_or_name: Optional[Union[str, xb.XlaBackend]],
platform: str,
axis_context: AxisContext,
name_stack: NameStack,
keepalives: List[Any],
channel_iterator: Iterator[int],
host_callbacks: List[Any],
context: Optional[ir.Context] = None,
module: Optional[ir.Module] = None,
ip: Optional[ir.InsertionPoint] = None,
symbol_table: Optional[ir.SymbolTable] = None,
cached_primitive_lowerings: Optional[Dict[Any,
func_dialect.FuncOp]] = None,
cached_call_jaxpr_lowerings: Optional[Dict[Any,
func_dialect.FuncOp]] = None):
assert platform is not None
self.context = context or make_ir_context()
self.module = module or ir.Module.create(loc=ir.Location.unknown(self.context))
self.ip = ip or ir.InsertionPoint(self.module.body)
self.symbol_table = symbol_table or ir.SymbolTable(self.module.operation)
self.backend_or_name = backend_or_name
self.platform = platform
self.axis_context = axis_context
self.name_stack = name_stack
self.cached_primitive_lowerings = ({} if cached_primitive_lowerings is None
else cached_primitive_lowerings)
self.channel_iterator = channel_iterator
self.keepalives = keepalives
self.host_callbacks = host_callbacks
self.cached_call_jaxpr_lowerings = ({}
if cached_call_jaxpr_lowerings is None
else cached_call_jaxpr_lowerings)
@property
def backend(self) -> xb.XlaBackend:
if self.backend_or_name is None or isinstance(self.backend_or_name, str):
return xb.get_backend(self.backend_or_name)
return self.backend_or_name
def new_channel(self) -> int:
return next(self.channel_iterator)
def add_host_callback(self, host_callback: Any) -> None:
self.host_callbacks.append(host_callback)
def add_keepalive(self, keepalive: Any) -> None:
self.keepalives.append(keepalive)
def replace(self, **kw): return dataclasses.replace(self, **kw)
@dataclasses.dataclass
class LoweringRuleContext:
"""Per-rule context information for MLIR lowering."""
module_context: ModuleContext
primitive: Optional[core.Primitive]
avals_in: Sequence[core.AbstractValue]
avals_out: Any # Usually Sequence[core.AbstractValue], but sometimes None.
tokens_in: TokenSet
tokens_out: Optional[TokenSet] # Mutable store for output containers
axis_size_env: Optional[Dict[core.Var, ir.Value]] = None # Dynamic axis sizes
def set_tokens_out(self, tokens_out: TokenSet):
assert self.tokens_out is None, 'Should only set `tokens_out` once.'
self.tokens_out = tokens_out
def replace(self, **kw): return dataclasses.replace(self, **kw)
if not MYPY:
class LoweringRule(Protocol):
def __call__(self, ctx: LoweringRuleContext,
*args: Union[ir.Value, Sequence[ir.Value]],
**kw) -> Sequence[Union[ir.Value, Sequence[ir.Value]]]:
"""Converts a JAX primitive invocation into MLIR."""
else:
LoweringRule = Any
_lowerings: Dict[core.Primitive, LoweringRule] = {}
_platform_specific_lowerings: Dict[str, Dict[core.Primitive, LoweringRule]]
_platform_specific_lowerings = collections.defaultdict(dict)
def register_lowering(prim: core.Primitive, rule: LoweringRule,
platform: Optional[str] = None):
if platform is None:
_lowerings[prim] = rule
else:
# For backward compatibility reasons, we allow rules to be registered
# under "gpu" even though the platforms are now called "cuda" and "rocm".
# TODO(phawkins): fix up users to specify either "cuda" or "rocm" and remove
# this expansion.
for p in xb.expand_platform_alias(platform):
_platform_specific_lowerings[p][prim] = rule
def _unwrap_singleton_ir_values(x): return x[0] if len(x) == 1 else x
def wrap_singleton_ir_values(x: Union[ir.Value, Sequence[ir.Value]]
) -> Sequence[ir.Value]:
"""Adds a consistent tuples to a mixture of tupled and untuple values."""
return (x,) if isinstance(x, ir.Value) else tuple(x)
def flatten_lowering_ir_args(
xs: Sequence[Union[ir.Value, Sequence[ir.Value]]]
) -> Sequence[Sequence[ir.Value]]:
return util.flatten(map(wrap_singleton_ir_values, xs))
_module_unique_id = itertools.count()
_module_name_regex = re.compile(r"[^\w.-]")
def sharded_aval(aval: core.ShapedArray,
sharding: Optional[xc.OpSharding]) -> core.ShapedArray:
"""Returns the new aval sharded based on sharding proto."""
if sharding is None:
return aval
if (sharding.type == xc.OpSharding.Type.REPLICATED or
sharding.type == xc.OpSharding.Type.MANUAL):
return aval
sharded_shape = []
tile_rank = len(sharding.tile_assignment_dimensions)
if sharding.replicate_on_last_tile_dim:
tile_rank -= 1
if sharding.last_tile_dims:
tile_rank -= len(sharding.last_tile_dims)
if tile_rank == 0:
return aval
for i in range(tile_rank):
partitions = sharding.tile_assignment_dimensions[i]
assert partitions > 0
sharded_shape.append((aval.shape[i] + partitions - 1) // partitions)
return aval.update(tuple(sharded_shape))
class LoweringResult(NamedTuple):
module: ir.Module
keepalive: Optional[Any]
host_callbacks: List[Any]
def lower_jaxpr_to_module(
module_name: str,
jaxpr: core.ClosedJaxpr,
unordered_effects: List[core.Effect],
ordered_effects: List[core.Effect],
backend_or_name: Optional[Union[str, xb.XlaBackend]],
platform: str,
axis_context: AxisContext,
name_stack: NameStack,
donated_args: Sequence[bool],
replicated_args: Optional[Sequence[bool]] = None,
arg_shardings: Optional[Sequence[Optional[xc.OpSharding]]] = None,
result_shardings: Optional[Sequence[Optional[xc.OpSharding]]] = None
) -> LoweringResult:
"""Lowers a top-level jaxpr to an MHLO module.
Handles the quirks of the argument/return value passing conventions of the
runtime.
"""
platform = xb.canonicalize_platform(platform)
if not xb.is_known_platform(platform):
raise ValueError(f"Unknown platform {platform}")
input_output_aliases = None
in_avals = jaxpr.in_avals
if arg_shardings is not None:
in_avals = [
sharded_aval(in_aval, in_sharding)
for in_aval, in_sharding in zip(in_avals, arg_shardings)
]
out_avals = jaxpr.out_avals
if result_shardings is not None:
out_avals = [
sharded_aval(out_aval, out_sharding)
for out_aval, out_sharding in zip(out_avals, result_shardings)
]
platforms_with_donation = ("cuda", "rocm", "tpu")
if platform in platforms_with_donation:
input_output_aliases, donated_args = _set_up_aliases(
in_avals, out_avals, donated_args)
if any(eff not in lowerable_effects for eff in jaxpr.effects):
raise ValueError(f'Cannot lower jaxpr with effects: {jaxpr.effects}')
if any(donated_args):
# TODO(tomhennigan): At call time we should mark these buffers as deleted.
unused_donations = [str(a) for a, d in zip(in_avals, donated_args)
if d]
msg = "See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer-donation."
if platform not in platforms_with_donation:
msg = f"Donation is not implemented for {platform}.\n{msg}"
warnings.warn(f"Some donated buffers were not usable: {', '.join(unused_donations)}.\n{msg}")
# MHLO channels need to start at 1
channel_iter = itertools.count(1)
# Create a keepalives list that will be mutated during the lowering.
keepalives: List[Any] = []
host_callbacks: List[Any] = []
ctx = ModuleContext(backend_or_name, platform, axis_context, name_stack,
keepalives, channel_iter, host_callbacks)
with ctx.context, ir.Location.unknown(ctx.context):
# Remove module name characters that XLA would alter. This ensures that
# XLA computation preserves the module name.
module_name = _module_name_regex.sub("_", module_name)
if config.jax_unique_mhlo_module_names:
# Some clients expect modules to have unique names, e.g., in trace data.
# This may or may not be a reasonable assumption.
ctx.module.operation.attributes["sym_name"] = ir.StringAttr.get(
f"{module_name}.{next(_module_unique_id)}")
else:
ctx.module.operation.attributes["sym_name"] = ir.StringAttr.get(
module_name)
unlowerable_effects = {eff for eff in jaxpr.effects
if eff not in lowerable_effects}
if unlowerable_effects:
raise ValueError(
f'Cannot lower jaxpr with unlowerable effects: {unlowerable_effects}')
lower_jaxpr_to_fun(
ctx, "main", jaxpr, ordered_effects, public=True, create_tokens=True,
replace_tokens_with_dummy=True,
num_output_tokens=(
1 if (unordered_effects and not can_execute_with_token) else 0),
replicated_args=replicated_args,
arg_shardings=arg_shardings, result_shardings=result_shardings,
input_output_aliases=input_output_aliases)
ctx.module.operation.verify()
return LoweringResult(ctx.module, ctx.keepalives, ctx.host_callbacks)
def module_to_string(module: ir.Module) -> str:
output = io.StringIO()
module.operation.print(file=output, enable_debug_info=True,
print_generic_op_form=False)
return output.getvalue()
def _set_up_aliases(avals_in, avals_out, donated_args):
input_output_aliases = [None] * len(avals_in)
# To match-up in-avals to out-avals we only care about the number of
# bytes, so we strip off unrelated aval metadata (eg. the named shape)
strip_metadata = lambda a: a.strip_named_shape().strip_weak_type()
avals_in = map(strip_metadata, avals_in)
avals_out = map(strip_metadata, avals_out)
donations = collections.defaultdict(collections.deque)
for i, (aval, donated) in enumerate(zip(avals_in, donated_args)):
if donated:
donations[aval].append(i)
out_donated_args = list(donated_args)
for i, aval in enumerate(avals_out):
if donations.get(aval, ()):
input_id = donations[aval].popleft()
input_output_aliases[input_id] = i
out_donated_args[input_id] = False
return input_output_aliases, out_donated_args
Token = Sequence[ir.Value]
def token_type() -> Sequence[ir.Type]:
return [mhlo.TokenType.get()]
def create_token() -> Token:
return wrap_singleton_ir_values(
mhlo.CreateTokenOp(mhlo.TokenType.get()).result)
class TokenSet:
"""An immutable container of tokens to be used to lower effectful jaxprs. When lowering
effectful jaxprs, we need to thread MHLO tokens to sequence them. Each effect
will need its own token that will be threaded in and out of the effectful
primitives. A `TokenSet` encapsulates a set of MHLO tokens that will be
used by the lowering rules.
"""
_tokens: typing.OrderedDict[core.Effect, Token]
def __init__(self, *args, **kwargs):
self._tokens = collections.OrderedDict(*args, **kwargs)
def __len__(self):
return len(self._tokens)
def get(self, effect: core.Effect) -> Token:
return self._tokens[effect]
@classmethod
def create(cls, effects: Sequence[core.Effect]) -> TokenSet:
"""Creates a `TokenSet` corresponding to a list of `core.Effect`s."""
tokens = [create_token() for _ in effects]
return TokenSet(zip(effects, tokens))
def items(self) -> Sequence[Tuple[core.Effect, Token]]:
return tuple(self._tokens.items())
def effects(self) -> Sequence[core.Effect]:
return tuple(self._tokens.keys())
def tokens(self) -> Sequence[Token]:
return tuple(self._tokens.values())
def subset(self, effects: Sequence[core.Effect]) -> TokenSet:
"""Return a subset of the `TokenSet` restricted to a set of `core.Effect`s."""
return TokenSet((eff, self._tokens[eff]) for eff in effects)
def update_tokens(self, tokens: TokenSet) -> TokenSet:
"""Returns a new `TokenSet` with tokens replaced with ones from the input `TokenSet`."""
new_tokens = []
for eff in self.effects():
if eff in tokens._tokens:
new_tokens.append(tokens._tokens[eff])
else:
new_tokens.append(self._tokens[eff])
return TokenSet(zip(self.effects(), new_tokens))
def dummy_token_type() -> Sequence[ir.Type]:
return aval_to_ir_types(core.ShapedArray((0,), np.bool_))
def dummy_token() -> Sequence[ir.Value]:
return ir_constants(np.zeros(0, np.bool_))
def lower_jaxpr_to_fun(
ctx: ModuleContext,
name: str,
jaxpr: core.ClosedJaxpr,
effects: Sequence[core.Effect],
*,
create_tokens: bool = False,
public: bool = False,
replace_tokens_with_dummy: bool = False,
replicated_args: Optional[Sequence[bool]] = None,
arg_shardings: Optional[Sequence[Optional[xc.OpSharding]]] = None,
result_shardings: Optional[Sequence[Optional[xc.OpSharding]]] = None,
use_sharding_annotations: bool = True,
input_output_aliases: Optional[Sequence[Optional[int]]] = None,
num_output_tokens: int = 0,
) -> func_dialect.FuncOp:
"""Lowers jaxpr and its callees to an IR function.
Assumes that an MLIR context, location, and insertion point are set.
Args:
ctx: the lowering context.
name: the function name. The name will be uniquified by the symbol table,
so it is ok to use the same name multiple times.
jaxpr: the jaxpr to lower.
effects: a sequence of `core.Effect`s corresponding to an ordering of tokens
that will be created in or used by the lowered function.
create_tokens: if true, the MHLO will create tokens and ignore dummy input tokens.
public: if true, the function's visibility is set to "public".
replace_tokens_with_dummy: if true, token arguments/return values are
replaced with bool arrays of size [0].
replicated_args: if present, annotates arguments as replicated.
arg_shardings: sharding annotations for each argument (optional).
result_shardings: sharding annotations for each argument (optional).
use_sharding_annotations: if True, use mhlo.sharding annotations on
parameters and return values to express sharding. If False, use
mhlo.custom_call operators with sharding annotations.
TODO(b/228598865): remove this option when mhlo.sharding annotations are
propagated on non-entry functions during MHLO->HLO conversion.
input_output_aliases: optional sequence that maps argument numbers to the
corresponding output that should alias them.
Returns the name of the function.
"""
def aval_to_types(aval):
if replace_tokens_with_dummy and aval is core.abstract_token:
aval = core.ShapedArray((), np.dtype(np.bool_))
return aval_to_ir_types(aval)
input_types = map(aval_to_types, jaxpr.in_avals)
output_types = map(aval_to_types, jaxpr.out_avals)
num_tokens = len(effects)
if create_tokens:
# If we create the tokens they won't be inputs to the MLIR function.
token_types = [dummy_token_type() for _ in effects]
output_token_types = [dummy_token_type() for _ in range(num_output_tokens)]
else:
# If we aren't creating tokens they will be the initial inputs to the
# MLIR function.
output_token_types = []
num_tokens = len(effects)
token_types = [token_type() for _ in effects]
input_types = [*token_types, *input_types]
output_types = [*output_token_types, *token_types, *output_types]
if input_output_aliases is not None:
token_input_output_aliases = [None] * num_tokens
input_output_aliases = [*token_input_output_aliases, *input_output_aliases]
# Update the existing aliases to account for the new output values
input_output_aliases = [None if a is None else a + num_output_tokens +
num_tokens for a in input_output_aliases]
if arg_shardings is not None:
token_shardings = [None] * num_tokens
arg_shardings = [*token_shardings, *arg_shardings]
if result_shardings is not None:
token_shardings = [None] * (num_tokens + num_output_tokens)
result_shardings = [*token_shardings, *result_shardings]
if replicated_args is not None:
token_replicated_args = [False] * num_tokens
replicated_args = [*token_replicated_args, *replicated_args]
flat_input_types = util.flatten(input_types)
flat_output_types = util.flatten(output_types)
ftype = ir.FunctionType.get(flat_input_types, flat_output_types)
func_op = func_dialect.FuncOp(name, ftype, ip=ctx.ip)
func_op.attributes["sym_visibility"] = ir.StringAttr.get(
"public" if public else "private")
ctx.symbol_table.insert(func_op)
ir_arg_shardings = None
if arg_shardings is not None:
ir_arg_shardings = util.flatten(
[[sharding] * len(types) for sharding, types
in zip(arg_shardings, input_types)])
ir_result_shardings = None
if result_shardings is not None:
ir_result_shardings = util.flatten(
[[sharding] * len(types)
for sharding, types in zip(result_shardings, output_types)])
if (replicated_args is not None or ir_arg_shardings is not None
or input_output_aliases is not None):
arg_attrs: List[Dict[str, ir.Attribute]] = [
{} for _ in range(len(flat_input_types))]
if replicated_args is not None:
replicated_ir_args = [[replicated] * len(types) for replicated, types
in zip(replicated_args, input_types)]
for attrs, replicated in zip(arg_attrs, util.flatten(replicated_ir_args)):
if replicated:
attrs["mhlo.is_same_data_across_replicas"] = ir.UnitAttr.get()
if use_sharding_annotations and ir_arg_shardings is not None:
for attrs, sharding in zip(arg_attrs, ir_arg_shardings):
if sharding is not None:
attrs["mhlo.sharding"] = ir.StringAttr.get(
sharding.SerializeToString())
if input_output_aliases is not None:
output_ids = util.unflatten(list(range(len(flat_output_types))),
map(len, output_types))
aliases: List[Optional[int]] = []
for types, alias in zip(input_types, input_output_aliases):
if alias is None:
aliases.extend([None] * len(types))
else:
aliases.extend(output_ids[alias])
for attrs, alias in zip(arg_attrs, aliases):
if alias is not None:
attrs["tf.aliasing_output"] = i32_attr(alias)
func_op.arg_attrs = ir.ArrayAttr.get(
[ir.DictAttr.get(attrs) for attrs in arg_attrs])
if use_sharding_annotations and ir_result_shardings is not None:
func_op.result_attrs = ir.ArrayAttr.get([
ir.DictAttr.get(
{} if sharding is None else
{"mhlo.sharding": ir.StringAttr.get(sharding.SerializeToString())}
) for sharding in ir_result_shardings
])
entry_block = func_op.add_entry_block()
with ir.InsertionPoint(entry_block):
flat_args = entry_block.arguments
if not use_sharding_annotations and ir_arg_shardings is not None:
flat_args = [a if s is None else wrap_with_sharding_op(a, s)
for a, s in zip(flat_args, ir_arg_shardings)]
unflattened_args = util.unflatten(flat_args, map(len, input_types))
# We separate out the token inputs and the usual inputs. The token inputs
# will be passed to `jaxpr_subcomp` separately from the `args`.
token_args, unflattened_args = util.split_list(unflattened_args, [num_tokens])
if create_tokens:
tokens_in = TokenSet.create(effects)
else:
tokens_in = TokenSet(zip(effects, token_args))
args: List[List[ir.Value]] = []
for aval, arg in zip(jaxpr.in_avals, unflattened_args):
if replace_tokens_with_dummy and aval is core.abstract_token:
args.append(mhlo.CreateTokenOp(mhlo.TokenType.get()).results)
else:
args.append(arg)
callee_name_stack = xla.extend_name_stack(ctx.name_stack,
util.wrap_name(name, 'jit'))
out_vals, tokens_out = jaxpr_subcomp(ctx.replace(name_stack=callee_name_stack),
jaxpr.jaxpr, tokens_in, map(ir_constants, jaxpr.consts),
*args)
outs = []
if create_tokens:
for _ in range(num_output_tokens):
outs.append(dummy_token())
for _ in effects:
outs.append(dummy_token())
else:
for token in tokens_out.tokens():
outs.append(token)
for aval, out in zip(jaxpr.out_avals, out_vals):
if replace_tokens_with_dummy and aval is core.abstract_token:
outs.append(ir_constants(np.zeros((), np.bool_)))
else:
outs.append(out)
flat_outputs = util.flatten(outs)
if not use_sharding_annotations and ir_result_shardings is not None:
flat_outputs = [o if s is None else wrap_with_sharding_op(o, s)
for o, s in zip(flat_outputs, ir_result_shardings)]
func_dialect.ReturnOp(flat_outputs)
return func_op
def _emit_lowering_rule_as_fun(lowering_rule,
ctx: LoweringRuleContext) -> func_dialect.FuncOp:
"""Emits the contents of a lowering rule as a private function."""
input_types = map(aval_to_ir_types, ctx.avals_in)
output_types = map(aval_to_ir_types, ctx.avals_out)
token_types = [token_type() for _ in ctx.tokens_in.items()]
input_types = [*token_types, *input_types]
output_types = [*token_types, *output_types]
flat_input_types = util.flatten(input_types)
flat_output_types = util.flatten(output_types)
ftype = ir.FunctionType.get(flat_input_types, flat_output_types)
assert ctx.primitive is not None
func_op = func_dialect.FuncOp(ctx.primitive.name, ftype,
ip=ctx.module_context.ip)
func_op.attributes["sym_visibility"] = ir.StringAttr.get("private")
ctx.module_context.symbol_table.insert(func_op)
entry_block = func_op.add_entry_block()
with ir.InsertionPoint(entry_block):
unflattened_args = util.unflatten(entry_block.arguments,
map(len, input_types))
token_args, unflattened_args = util.split_list(unflattened_args, [len(ctx.tokens_in)])
sub_ctx = ctx.replace(tokens_in=TokenSet(zip(ctx.tokens_in.effects(), token_args)))
outs = lowering_rule(sub_ctx, *_unwrap_singleton_ir_values(unflattened_args))
if sub_ctx.tokens_out:
outs = [*sub_ctx.tokens_out.tokens(), outs]
func_dialect.ReturnOp(util.flatten(map(wrap_singleton_ir_values, outs)))
return func_op
def jaxpr_subcomp(ctx: ModuleContext, jaxpr: core.Jaxpr,
tokens: TokenSet,
consts: Sequence[Sequence[ir.Value]],
*args: Sequence[ir.Value]
) -> Tuple[Sequence[Sequence[ir.Value]], TokenSet]:
"""Lowers a jaxpr into mHLO, inlined into an existing function.
Assumes that an MLIR context, location, and insertion point are set.
"""
assert ctx.platform != "gpu"
def read(v: core.Var) -> Sequence[ir.Value]:
if type(v) is core.Literal:
return ir_constants(v.val, canonicalize_types=True)
else:
return env[v]
def aval(v: core.Var) -> core.AbstractValue:
if type(v) is core.Literal:
return xla.abstractify(v.val)
else:
return v.aval
def write(v: core.Var, node: Sequence[ir.Value]):
assert node is not None
env[v] = tuple(node)
env: Dict[core.Var, Tuple[ir.Value, ...]] = {}
assert len(args) == len(jaxpr.invars), (jaxpr, args)
assert len(consts) == len(jaxpr.constvars), (jaxpr, consts)
assert all(isinstance(v, ir.Value) for vs in consts for v in vs), consts
map(write, jaxpr.constvars, consts)
map(write, jaxpr.invars, args)
for eqn in jaxpr.eqns:
in_nodes = map(read, eqn.invars)
if config.jax_experimental_name_stack:
assert isinstance(ctx.name_stack, source_info_util.NameStack), type(ctx.name_stack)
source_info = eqn.source_info.replace(
name_stack=ctx.name_stack + eqn.source_info.name_stack)
else:
source_info = eqn.source_info
loc = _source_info_to_location(eqn.primitive, eqn.params, source_info,
name_stack=ctx.name_stack)
with source_info_util.user_context(eqn.source_info.traceback), loc:
if eqn.primitive in _platform_specific_lowerings[ctx.platform]:
rule = _platform_specific_lowerings[ctx.platform][eqn.primitive]
elif eqn.primitive in xla._backend_specific_translations[ctx.platform]:
rule = xla_fallback_lowering(eqn.primitive)
elif eqn.primitive in _lowerings:
rule = _lowerings[eqn.primitive]
elif eqn.primitive in xla._translations:
rule = xla_fallback_lowering(eqn.primitive)
else:
raise NotImplementedError(
f"MLIR translation rule for primitive '{eqn.primitive.name}' not "
f"found for platform {ctx.platform}")
eqn_ctx = (ctx.replace(name_stack=source_info.name_stack) if
config.jax_experimental_name_stack else ctx)
effects = [eff for eff in eqn.effects if eff in core.ordered_effects]
tokens_in = tokens.subset(effects)
avals_in = map(aval, eqn.invars)
rule_ctx = LoweringRuleContext(
module_context=eqn_ctx, primitive=eqn.primitive, avals_in=avals_in,
avals_out=map(aval, eqn.outvars), tokens_in=tokens_in,
tokens_out=None)
if config.jax_dynamic_shapes:
axis_size_env = {d: read(d)[0]
for a in avals_in if type(a) is core.DShapedArray
for d in a.shape if type(d) is core.Var}
rule_ctx = rule_ctx.replace(axis_size_env=axis_size_env)
ans = rule(rule_ctx, *map(_unwrap_singleton_ir_values, in_nodes),
**eqn.params)
if effects:
# If there were ordered effects in the primitive, there should be output
# tokens we need for subsequent ordered effects.
tokens_out = rule_ctx.tokens_out
if tokens_out is None:
raise ValueError(
f'Lowering rule for `{eqn.primitive}` needs to set `tokens_out` '
f'because it has effects: {eqn.effects}.')
if tokens_out.effects() != tokens_in.effects():
raise ValueError(
f'Lowering rule for `{eqn.primitive}` '
'returns incorrect set of output tokens. '
f'Expected: {tuple(tokens_in.effects())} vs. Actual: {tuple(tokens_out.effects())}')
tokens = tokens.update_tokens(tokens_out)
try:
out_nodes = tuple(map(wrap_singleton_ir_values, ans))
except TypeError as e:
raise ValueError("Output of translation rule must be iterable: "
f"{eqn}, got output {ans}") from e
assert all(isinstance(v, tuple) for v in out_nodes), (ans, eqn)
assert all(isinstance(v, ir.Value) for w in out_nodes for v in w), (ans, eqn)
assert len(ans) == len(eqn.outvars), (ans, eqn)
map(write, eqn.outvars, out_nodes)
return map(read, jaxpr.outvars), tokens
def _ir_consts(consts):
unique_consts = {id(const): const for const in consts}
ir_consts = {
id_: ir_constants(const) for id_, const in unique_consts.items()}
return [ir_consts[id(const)] for const in consts]
def lower_fun(fun: Callable, multiple_results: bool = True) -> Callable:
"""Converts a traceable JAX function `fun` into a lowering rule.
The returned function does not use `avals_out`, so callers may pass any value
as `avals_out`."""
def f_lowered(ctx, *args, **params):
f = fun if multiple_results else lambda *args, **kw: (fun(*args, **kw),)
wrapped_fun = lu.wrap_init(f, params)
if config.jax_dynamic_shapes:
# We might be applying this function to arguments with dynamic shapes,
# i.e. there might be Vars in the shape tuples of ctx.avals_in. In that
# case, we need to form a jaxpr with leading binders for those axis size
# arguments (by computing an InputType and using trace_to_jaxpr_dynamic2),
# and we need to call jaxpr_subcomp with these arguments made explicit.
args = (*ctx.axis_size_env.values(), *args)
idx = {d: core.DBIdx(i) for i, d in enumerate(ctx.axis_size_env)}
i32_aval = core.ShapedArray((), np.dtype('int32'))
implicit_args = [(i32_aval, False)] * len(ctx.axis_size_env)
explicit_args = [(a.update(shape=tuple(idx.get(d, d) for d in a.shape))
if type(a) is core.DShapedArray else a, True)
for a in ctx.avals_in]
wrapped_fun = lu.annotate(wrapped_fun, (*implicit_args, *explicit_args))
jaxpr, _, consts = pe.trace_to_jaxpr_dynamic2(wrapped_fun)
else:
jaxpr, _, consts = pe.trace_to_jaxpr_dynamic(wrapped_fun, ctx.avals_in)
# TODO(frostig,mattjj): check ctx.avals_out against jaxpr avals out?
out, tokens = jaxpr_subcomp(
ctx.module_context, jaxpr, ctx.tokens_in, _ir_consts(consts),
*map(wrap_singleton_ir_values, args))
ctx.set_tokens_out(tokens)
return out
return f_lowered
def _lower_jaxpr_to_fun_cached(ctx, fn_name, call_jaxpr, effects):
if not call_jaxpr.consts:
# Cacheable.
key = (fn_name, call_jaxpr.jaxpr, tuple(effects))
try:
func_op = ctx.cached_call_jaxpr_lowerings[key]
except KeyError:
func_op = lower_jaxpr_to_fun(ctx, fn_name, call_jaxpr, effects)
ctx.cached_call_jaxpr_lowerings[key] = func_op
else:
func_op = lower_jaxpr_to_fun(ctx, fn_name, call_jaxpr, effects)
return func_op
def _call_lowering(fn_name, stack_name, call_jaxpr, backend, ctx, avals_in,
avals_out, tokens_in, *args):
if isinstance(call_jaxpr, core.Jaxpr):
call_jaxpr = core.ClosedJaxpr(call_jaxpr, ())
xla.check_backend_matches(backend, ctx.platform)
effects = tokens_in.effects()
output_types = map(aval_to_ir_types, avals_out)
output_types = [token_type()] * len(effects) + output_types
flat_output_types = util.flatten(output_types)
symbol_name = _lower_jaxpr_to_fun_cached(ctx, fn_name, call_jaxpr, effects).name.value
args = [*tokens_in.tokens(), *args]
call = func_dialect.CallOp(flat_output_types,
ir.FlatSymbolRefAttr.get(symbol_name),
flatten_lowering_ir_args(args))
out_nodes = util.unflatten(call.results, map(len, output_types))
tokens, out_nodes = util.split_list(out_nodes, [len(effects)])
tokens_out = tokens_in.update_tokens(TokenSet(zip(effects, tokens)))
return out_nodes, tokens_out
def _xla_call_lower(ctx, *args,
backend=None, name, call_jaxpr, donated_invars, inline=None,
device=None, keep_unused=None):
del device, donated_invars, inline, keep_unused # Ignored.
out_nodes, tokens = _call_lowering(
name, util.wrap_name(name, "jit"), call_jaxpr, backend,
ctx.module_context, ctx.avals_in, ctx.avals_out, ctx.tokens_in, *args)
ctx.set_tokens_out(tokens)
return out_nodes
register_lowering(xla.xla_call_p, _xla_call_lower)
def _named_call_lowering(ctx, *args, name, backend=None,
call_jaxpr):
out_nodes, tokens = _call_lowering(
name, name, call_jaxpr, backend, ctx.module_context,
ctx.avals_in, ctx.avals_out, ctx.tokens_in, *args)
ctx.set_tokens_out(tokens)
return out_nodes
register_lowering(core.named_call_p, _named_call_lowering)
register_lowering(core.call_p, partial(_named_call_lowering, name="core_call"))
register_lowering(core.closed_call_p,
partial(_named_call_lowering, name="core_closed_call"))
register_lowering(core.closed_call_p,
partial(_named_call_lowering, name="core_closed_call"))
def full_like_aval(value, aval: core.ShapedArray) -> ir.Value:
"""Returns an IR constant shaped full of `value` shaped like `aval`."""
zero = ir_constant(np.array(value, aval.dtype))
return mhlo.BroadcastOp(zero, dense_int_elements(aval.shape)).result
def zeros_like_lowering(ctx, x):
aval, = ctx.avals_in
assert isinstance(aval, core.ShapedArray), aval
return [full_like_aval(0, aval)]
register_lowering(ad_util.zeros_like_p, zeros_like_lowering)
def add_jaxvals_lowering(ctx, x, y):
return mhlo.AddOp(x, y).results
register_lowering(ad_util.add_jaxvals_p, add_jaxvals_lowering)
register_lowering(ad_util.stop_gradient_p, lambda ctx, x: [x])
def compare_mhlo(x, y, direction: str, comparison_type: Optional[str] = None):
"""Creates mhlo.CompareOp."""
if comparison_type is None:
elem_type = ir.RankedTensorType(x.type).element_type
if ir.IntegerType.isinstance(elem_type):
comparison_type = ("UNSIGNED" if ir.IntegerType.is_unsigned(elem_type)
else "SIGNED")
else:
comparison_type = "FLOAT"
return mhlo.CompareOp(
x,
y,
mhlo.ComparisonDirectionAttr.get(direction),
compare_type=mhlo.ComparisonTypeAttr.get(comparison_type))
def _minmax_mhlo(op, cmp, x, y):
"""Min/max that compares complex values lexicographically as pairs."""
tensor_type = ir.RankedTensorType(x.type)
if ir.ComplexType.isinstance(tensor_type.element_type):
rx = mhlo.RealOp(x).result
ry = mhlo.RealOp(y).result
real_eq = compare_mhlo(rx, ry, "EQ", "FLOAT")
real_cmp = compare_mhlo(rx, ry, cmp, "FLOAT")
imag_cmp = compare_mhlo(
mhlo.ImagOp(x).result,
mhlo.ImagOp(y).result, cmp, "FLOAT")
which = mhlo.SelectOp(real_eq, imag_cmp, real_cmp).result
return mhlo.SelectOp(which, x, y)
else:
return op(x, y)
min_mhlo = partial(_minmax_mhlo, mhlo.MinOp, "LT")
max_mhlo = partial(_minmax_mhlo, mhlo.MaxOp, "GT")
def convert_mhlo(x, aval_in, aval_out):
"""Variant of convert that has XLA HLO semantics.
In particular, treat casts to boolean as x != 0, rather than truncating
integer values (b/209440332)."""
if aval_out.dtype == np.dtype(np.bool_):
if dtypes.issubdtype(aval_in.dtype, np.inexact):
compare_type = "FLOAT"
elif dtypes.issubdtype(aval_in.dtype, np.signedinteger):
compare_type = "SIGNED"
else:
compare_type = "UNSIGNED"
return compare_mhlo(x, full_like_aval(0, aval_in), "NE",
compare_type).result
return mhlo.ConvertOp(aval_to_ir_type(aval_out), x).result
def _wrap_with_spmd_op(name: str,
result_type: ir.Type,
x: ir.Value,
sharding_proto: xc.OpSharding,
unspecified_dims: Optional[Set[int]] = None):
# unspecified_dims indicate dimensions whose shardings are not specified and
# XLA sharding propagation can change them.
if unspecified_dims:
backend_config = "unspecified_dims=[" + ",".join(
[str(i) for i in sorted(unspecified_dims)]) + "]"
else:
backend_config = ""
op = mhlo.CustomCallOp([result_type], [x],
call_target_name=ir.StringAttr.get(name),
has_side_effect=ir.BoolAttr.get(False),
backend_config=ir.StringAttr.get(backend_config),
api_version=i32_attr(1),
called_computations=ir.ArrayAttr.get([]),
operand_layouts=None,
result_layouts=None)
op.attributes["mhlo.sharding"] = ir.StringAttr.get(
sharding_proto.SerializeToString())
return op.result
def wrap_with_sharding_op(x: ir.Value,
sharding_proto: xc.OpSharding,
unspecified_dims: Optional[Set[int]] = None):
return _wrap_with_spmd_op("Sharding", x.type, x, sharding_proto,
unspecified_dims)
wrap_with_full_to_shard_op = partial(_wrap_with_spmd_op, "SPMDFullToShardShape")
wrap_with_shard_to_full_op = partial(_wrap_with_spmd_op, "SPMDShardToFullShape")
def set_sharding(op, sharding_proto: xc.OpSharding):
op.attributes["mhlo.sharding"] = ir.StringAttr.get(
sharding_proto.SerializeToString())
# MLIR lowerings for lax primitives
def cache_lowering(f):
"""Decorator that causes the contents of a lowering rule to be reused.
The lowering will be emitted out-of-line in a separate function, together with
a call to that function. If the same primitive is called with the same shapes
and parameters, a new call to the original function will be added, without
emitting a new function.
"""
@functools.wraps(f)
def cached_lowering(ctx, *args, **params):
assert ctx.primitive is not None
key = (ctx.primitive, tuple(ctx.avals_in), tuple(ctx.avals_out),
tuple(params.items()))
try:
func = ctx.module_context.cached_primitive_lowerings.get(key)
except TypeError:
# If the parameters aren't hashable, give up on caching.
# TODO(phawkins): switch to requiring hashability, when XLA fallback
# computations have been ported to MHLO.
return f(ctx, *args, **params)
if func is None:
func = _emit_lowering_rule_as_fun(partial(f, **params), ctx)
ctx.module_context.cached_primitive_lowerings[key] = func
output_types = map(aval_to_ir_types, ctx.avals_out)
flat_output_types = util.flatten(output_types)
call = func_dialect.CallOp(flat_output_types,
ir.FlatSymbolRefAttr.get(func.name.value),
flatten_lowering_ir_args(args))
return util.unflatten(call.results, map(len, output_types))
return cached_lowering
def xla_computation_to_mhlo_module(xla_computation: xc.XlaComputation
) -> ir.Module:
module_str = xc._xla.mlir.xla_computation_to_mlir_module(xla_computation)
return ir.Module.parse(module_str)
def merge_mhlo_modules(dst_module: ir.Module,
sym_name: str,
src_module: ir.Module) -> str:
"""Returns the name of src_module's main() function, after renaming."""
callee_name = None
assert dst_module.context == src_module.context
dst_symtab = ir.SymbolTable(dst_module.operation)
n = len(dst_module.body.operations)
for op in src_module.body.operations:
dst_module.body.append(op)
ops = list(dst_module.body.operations)[n:]
for op in ops:
op = typing.cast(func_dialect.FuncOp, op)
old_name = op.name.value
if op.name.value == "main":
dst_symtab.set_symbol_name(op, sym_name)
op.attributes["sym_visibility"] = ir.StringAttr.get("private")
callee_name = ir.StringAttr(dst_symtab.insert(op)).value
new_name = callee_name
else:
new_name = ir.StringAttr(dst_symtab.insert(op)).value
# Replace references to the symbol with the new name
for other_op in ops:
dst_symtab.replace_all_symbol_uses(
old_name, new_name, other_op.operation)
assert callee_name is not None
return callee_name
def xla_fallback_lowering(prim: core.Primitive):
@cache_lowering
def fallback(ctx: LoweringRuleContext, *args, **params):
module_ctx = ctx.module_context
axis_ctx = module_ctx.axis_context
if isinstance(axis_ctx, SPMDAxisContext):
axis_env = axis_ctx.unsafe_axis_env
else:
axis_env = module_ctx.axis_env
xla_computation = xla.primitive_subcomputation(
module_ctx.platform, axis_env, prim, ctx.avals_in,
ctx.avals_out, **params)
xla_module = xla_computation_to_mhlo_module(xla_computation)
callee_name = merge_mhlo_modules(
module_ctx.module, f"xla_fallback_{prim.name}", xla_module)
output_types = map(aval_to_ir_types, ctx.avals_out)
flat_output_types = util.flatten(output_types)
output_type = (ir.TupleType.get_tuple(flat_output_types)
if prim.multiple_results else flat_output_types[0])
call = func_dialect.CallOp([output_type],
ir.FlatSymbolRefAttr.get(callee_name),
flatten_lowering_ir_args(args)).result
if not prim.multiple_results:
return [call]
flat_results = [mhlo.GetTupleElementOp(call, i32_attr(i)).result
for i in range(len(flat_output_types))]
return util.unflatten(flat_results, map(len, output_types))
return fallback
register_lowering(ad.custom_lin_p, ad._raise_custom_vjp_error_on_jvp)
DEVICE_TO_DEVICE_TYPE = 1
SEND_TO_HOST_TYPE = 2
RECV_FROM_HOST_TYPE = 3
_dtype_to_xla_type_string_map = {
np.dtype("bool"): "pred",
np.dtype("float16"): "f16",
np.dtype("float32"): "f32",
np.dtype("float64"): "f64",
np.dtype("int8"): "s8",
np.dtype("uint8"): "u8",
np.dtype("int16"): "s16",
np.dtype("uint16"): "u16",
np.dtype("int32"): "s32",
np.dtype("uint32"): "u32",
np.dtype("int64"): "s64",
np.dtype("uint64"): "u64",
dtypes._bfloat16_dtype: "bf16",
np.dtype("complex64"): "c64",
np.dtype("complex128"): "c128",
}
def _dtype_to_xla_type_string(dtype: np.dtype) -> str:
if dtype not in _dtype_to_xla_type_string_map:
raise NotImplementedError(dtype)
return _dtype_to_xla_type_string_map[dtype]
def send_to_host(channel: int, token: mhlo.TokenType, operand: Any,
aval: core.ShapedArray, name: str, *,
sharding: Optional[xc.OpSharding] = None) -> ir.Value:
channel_handle = mhlo.ChannelHandle.get(channel, SEND_TO_HOST_TYPE)
send_op = mhlo.SendOp(mhlo.TokenType.get(), [operand], token, channel_handle,
is_host_transfer=ir.BoolAttr.get(True))
dtype_str = _dtype_to_xla_type_string(aval.dtype)
if dtype_str in {"f64", "s64", "u64", "c64", "c128"}:
raise NotImplementedError("64-bit types not supported.")
send_op.attributes["mhlo.frontend_attributes"] = ir.DictAttr.get(
dict(
_xla_host_transfer_handler_name=ir.StringAttr.get(str(name)),
_xla_host_transfer_original_type=ir.StringAttr.get(dtype_str),
_xla_host_transfer_rendezvous=ir.StringAttr.get(str(name))))
if sharding is not None:
set_sharding(send_op, sharding)
return send_op.result
def receive_from_host(channel: int, token: mhlo.TokenType,
out_aval: core.ShapedArray, name: str, *,
sharding: Optional[xc.OpSharding] = None) -> ir.Value:
channel_handle = mhlo.ChannelHandle.get(channel, RECV_FROM_HOST_TYPE)
recv_op = mhlo.RecvOp([aval_to_ir_type(out_aval),
mhlo.TokenType.get()], token, channel_handle,
is_host_transfer=ir.BoolAttr.get(True))
dtype_str = _dtype_to_xla_type_string(out_aval.dtype)
if dtype_str in {"f64", "s64", "u64", "c64", "c128"}:
raise NotImplementedError("64-bit types not supported.")
recv_op.attributes["mhlo.frontend_attributes"] = ir.DictAttr.get(
dict(
_xla_host_transfer_handler_name=ir.StringAttr.get(str(name)),
_xla_host_transfer_original_type=ir.StringAttr.get(dtype_str),
_xla_host_transfer_rendezvous=ir.StringAttr.get(str(name))))
if sharding is not None:
set_sharding(recv_op, sharding)
# Token should be at the end of the results
result, token = recv_op.results
return token, result
def _emit_tpu_python_callback(
backend: xb.XlaBackend,
ctx: LoweringRuleContext,
callback,
token: Optional[Any],
operands: List[ir.Value],
operand_avals: List[core.ShapedArray],
operand_shapes: List[xc.Shape],
result_avals: List[core.ShapedArray],
result_shapes: List[xc.Shape],
*,
sharding: Optional[xc.OpSharding] = None
) -> Tuple[List[ir.Value], Any, Any]:
token = token or mhlo.CreateTokenOp(mhlo.TokenType.get()).result
_wrapped_callback = callback
send_channels = []
if not operand_avals:
# If there are no operands to the callback, we need to insert a dummy send
# op or the callback will never be triggered!
# TODO(sharadmv,chky): Enable this fix in the runtime as opposed to in
# MHLO builder.
callback_without_args = _wrapped_callback
def _wrapped_callback(*args): # pylint: disable=function-redefined
del args
return callback_without_args()
send_channel = ctx.module_context.new_channel()
dummy_send_aval = core.ShapedArray((1,), np.float32)
dummy_send_val = ir_constant(np.zeros(1, np.float32))
operand_shapes = [*operand_shapes,
xla.aval_to_xla_shapes(dummy_send_aval)[0]]
token = send_to_host(send_channel, token, dummy_send_val, dummy_send_aval,
callback.__name__, sharding=sharding)
send_channels.append(send_channel)
else:
for operand, operand_aval in zip(operands, operand_avals):
if any(s == 0 for s in operand_aval.shape):
raise NotImplementedError(
"Callbacks with zero-dimensional values not supported on TPU.")
channel = ctx.module_context.new_channel()
token = send_to_host(channel, token, operand, operand_aval,
callback.__name__, sharding=sharding)
send_channels.append(channel)
recv_channels = []
outputs = []
# `send-to-host`s can be interleaved by the transfer manager so we add in a
# dummy recv to sequence them (the recv can only happen after all the sends
# are done). We'd like to send back a 0-shaped array to avoid unnecessary
# copies but that currently doesn't work with the transfer
# manager as well.
# TODO(b/238239458): enable sending back a 0-dim array
# TODO(b/238239928): avoid interleaving sends in the transfer manager
if not result_avals:
callback_without_return_values = _wrapped_callback
def _wrapped_callback(*args): # pylint: disable=function-redefined
callback_without_return_values(*args)
return (np.zeros(1, np.float32),)
recv_channel = ctx.module_context.new_channel()
dummy_recv_aval = core.ShapedArray((1,), np.float32)
result_shapes = [*result_shapes,
xla.aval_to_xla_shapes(dummy_recv_aval)[0]]
token, _ = receive_from_host(recv_channel, token, dummy_recv_aval,
callback.__name__, sharding=sharding)
recv_channels.append(recv_channel)
else:
for result_aval in result_avals:
if any(s == 0 for s in result_aval.shape):
raise NotImplementedError(
"Callbacks with zero-dimensional values not supported on TPU.")
channel = ctx.module_context.new_channel()
assert isinstance(result_aval, core.ShapedArray)
token, out = receive_from_host(channel, token, result_aval,
callback.__name__, sharding=sharding)
outputs.append(out)
recv_channels.append(channel)
opaque = backend.make_python_callback_from_host_send_and_recv(
_wrapped_callback, operand_shapes, result_shapes, send_channels,
recv_channels)
ctx.module_context.add_host_callback(opaque)
return outputs, token, opaque
def emit_python_callback(
ctx: LoweringRuleContext, callback, token: Optional[Any],
operands: List[ir.Value], operand_avals: List[core.ShapedArray],
result_avals: List[core.ShapedArray],
has_side_effect: bool, *, sharding: Optional[xc.OpSharding] = None
) -> Tuple[List[ir.Value], Any, Any]:
"""Emits MHLO that calls back to a provided Python function."""
platform = ctx.module_context.platform
if platform in {"tpu"} and jaxlib_version < (0, 3, 15):
raise ValueError(
"`EmitPythonCallback` on TPU only supported on jaxlib >= 0.3.15")
if platform not in {"cpu", "cuda", "rocm", "tpu"}:
raise ValueError(
f"`EmitPythonCallback` not supported on {platform} backend.")
backend = ctx.module_context.backend
result_shapes = util.flatten(
[xla.aval_to_xla_shapes(result_aval) for result_aval in result_avals])
operand_shapes = util.flatten(
[xla.aval_to_xla_shapes(op_aval) for op_aval in operand_avals])
# First we apply checks to ensure output shapes and dtypes match the expected
# ones.
def _wrapped_callback(*args):
out_vals = callback(*args)
if len(out_vals) != len(result_avals):
raise RuntimeError(
"Mismatched number of outputs from callback. "
"Expected: {}, Actual: {}".format(len(result_avals), len(out_vals)))
for i, (out_val, out_aval) in enumerate(zip(out_vals, result_avals)):
if out_val.shape != out_aval.shape:
raise RuntimeError(
f"Incorrect output shape for return value {i}: "
"Expected: {}, Actual: {}".format(out_aval.shape, out_val.shape))
if out_val.dtype != out_aval.dtype:
raise RuntimeError(
f"Incorrect output dtype for return value {i}: "
"Expected: {}, Actual: {}".format(out_aval.dtype, out_val.dtype))
return out_vals
if platform == "tpu":
return _emit_tpu_python_callback(backend, ctx, _wrapped_callback, token,
operands, operand_avals, operand_shapes, result_avals, result_shapes,
sharding=sharding)
result_types = util.flatten([aval_to_ir_types(aval) for aval in result_avals])
if token:
callback_without_token = _wrapped_callback
def _wrapped_callback(token, *args): # type: ignore # pylint: disable=function-redefined
return (token, *callback_without_token(*args))
operand_shapes = [
xla.aval_to_xla_shapes(core.abstract_token)[0], *operand_shapes
]
result_shapes = [
xla.aval_to_xla_shapes(core.abstract_token)[0], *result_shapes
]
operands = [token, *operands]
result_types = [token_type()[0], *result_types]
callback_descriptor, keepalive = (
backend.get_emit_python_callback_descriptor(_wrapped_callback,
operand_shapes,
result_shapes))
descriptor_operand = ir_constant(
callback_descriptor, canonicalize_types=False)
callback_operands = [descriptor_operand, *operands]
result_type = ir.TupleType.get_tuple(result_types)
call_target_name = ("xla_python_gpu_callback"
if platform in {"cuda", "rocm"} else "xla_python_cpu_callback")
result = mhlo.CustomCallOp(
[result_type],
callback_operands,
call_target_name=ir.StringAttr.get(call_target_name),
has_side_effect=ir.BoolAttr.get(has_side_effect),
api_version=i32_attr(2),
called_computations=ir.ArrayAttr.get([]),
backend_config=ir.StringAttr.get(str(callback_descriptor)),
operand_layouts=None,
result_layouts=None)
if sharding is not None:
set_sharding(result, sharding)
results = [
mhlo.GetTupleElementOp(result, i32_attr(i)).result
for i in range(len(result_types))
]
if token:
token, *results = results
return results, token, keepalive
# Lax ops missing MLIR lowerings.
# # TODO(b/203775215): these are missing from the cHLO dialect. Either add
# # them or port them to Python.
# lax.igamma_p,
# lax.igammac_p,
# lax.igamma_grad_a,
# lax.random_gamma_grad_p,
# lax.bessel_i0e_p,
# lax.bessel_i1e_p,
# lax.erf_inv_p,
# lax.regularized_incomplete_beta_p,
# # CHLO doesn't have a legalization for bf16 (b/203774470)
# lax.erf_p,
# lax.erfc_p,