rocm_jax/tests/random_test.py
jax authors 5691010d2f Copybara import of the project:
--
d42fffd849a4bac0c0c11a3346c93f07f8c64c44 by Jake VanderPlas <jakevdp@google.com>:

JaxTestCase: set numpy_rank_promotion='raise' by default
PiperOrigin-RevId: 427896974
2022-02-10 19:08:29 -08:00

1396 lines
55 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from unittest import SkipTest, skipIf
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import scipy.linalg
import scipy.special
import scipy.stats
import jax
from jax import core
from jax import dtypes
from jax import grad
from jax import lax
from jax import numpy as jnp
from jax import prng
from jax import random
from jax._src import test_util as jtu
from jax import vmap
from jax.interpreters import xla
import jax._src.random
from jax.config import config
config.parse_flags_with_absl()
float_dtypes = jtu.dtypes.all_floating
complex_dtypes = jtu.dtypes.complex
int_dtypes = jtu.dtypes.all_integer
uint_dtypes = jtu.dtypes.all_unsigned
def _prng_key_as_array(key):
# TODO(frostig): remove once we upgrade to always enable_custom_prng
return key.unsafe_raw_array() if config.jax_enable_custom_prng else key
PRNG_IMPLS = [('threefry2x32', prng.threefry_prng_impl),
('rbg', prng.rbg_prng_impl),
('unsafe_rbg', prng.unsafe_rbg_prng_impl)]
@jtu.with_config(jax_numpy_rank_promotion="raise")
class PrngTest(jtu.JaxTestCase):
def testThreefry2x32(self):
# We test the hash by comparing to known values provided in the test code of
# the original reference implementation of Threefry. For the values, see
# https://github.com/DEShawResearch/Random123-Boost/blob/65e3d874b67aa7b3e02d5ad8306462f52d2079c0/libs/random/test/test_threefry.cpp#L30-L32
def result_to_hex(result):
return tuple([hex(x.copy()).rstrip("L") for x in result])
expected = ("0x6b200159", "0x99ba4efe")
result = prng.threefry_2x32(np.uint32([0, 0]), np.uint32([0, 0]))
self.assertEqual(expected, result_to_hex(result))
expected = ("0x1cb996fc", "0xbb002be7")
result = prng.threefry_2x32(np.uint32([-1, -1]), np.uint32([-1, -1]))
self.assertEqual(expected, result_to_hex(result))
expected = ("0xc4923a9c", "0x483df7a0")
result = prng.threefry_2x32(
np.uint32([0x13198a2e, 0x03707344]),
np.uint32([0x243f6a88, 0x85a308d3]))
self.assertEqual(expected, result_to_hex(result))
def testThreefry2x32Large(self):
n = 10000000
result = prng.threefry_2x32(
(np.uint32(0x13198a2e), np.uint32(0x03707344)),
jnp.concatenate([
jnp.full((n,), 0x243f6a88, jnp.uint32),
jnp.full((n,), 0x85a308d3, jnp.uint32)
]))
np.testing.assert_equal(result[:n], np.full((n,), 0xc4923a9c, dtype=np.uint32))
np.testing.assert_equal(result[n:], np.full((n,), 0x483df7a0, dtype=np.uint32))
def testThreefry2x32Empty(self):
# Regression test for an op-by-op crash for empty arrays in CUDA mode.
with jax.disable_jit():
result = prng.threefry_2x32(
(np.uint32(0x13198a2e), np.uint32(0x03707344)),
jnp.ones((10, 0,), jnp.uint32))
np.testing.assert_equal(result, np.zeros((10, 0,), dtype=np.uint32))
def testNoOpByOpUnderHash(self):
def fail(*args, **kwargs): assert False
apply_primitive, xla.apply_primitive = xla.apply_primitive, fail
try:
_ = prng.threefry_2x32(np.zeros(2, np.uint32), np.arange(10, dtype=np.uint32))
finally:
xla.apply_primitive = apply_primitive
def testRngRandomBits(self):
# Test specific outputs to ensure consistent random values between JAX versions.
key = random.PRNGKey(1701)
bits8 = jax._src.random._random_bits(key, 8, (3,))
expected8 = np.array([216, 115, 43], dtype=np.uint8)
self.assertArraysEqual(bits8, expected8)
bits16 = jax._src.random._random_bits(key, 16, (3,))
expected16 = np.array([41682, 1300, 55017], dtype=np.uint16)
self.assertArraysEqual(bits16, expected16)
bits32 = jax._src.random._random_bits(key, 32, (3,))
expected32 = np.array([56197195, 4200222568, 961309823], dtype=np.uint32)
self.assertArraysEqual(bits32, expected32)
with jtu.ignore_warning(category=UserWarning, message="Explicitly requested dtype.*"):
bits64 = jax._src.random._random_bits(key, 64, (3,))
if config.x64_enabled:
expected64 = np.array([3982329540505020460, 16822122385914693683,
7882654074788531506], dtype=np.uint64)
else:
expected64 = np.array([676898860, 3164047411, 4010691890], dtype=np.uint32)
self.assertArraysEqual(bits64, expected64)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_" + name, "prng_name": name}
for name, _ in PRNG_IMPLS))
def testRngRandomBitsShapeDtype(self, prng_name):
# Like testRngRandomBits, but only meant to exercise random_bits
# on every PRNG implementation. Instead of values, only checks
# that shapes/dtypes are as expected.
with jax.default_prng_impl(prng_name):
key = random.PRNGKey(1701)
bits8 = jax._src.random._random_bits(key, 8, (3,))
self.assertEqual(bits8.shape, (3,))
self.assertEqual(bits8.dtype, np.dtype('uint8'))
bits16 = jax._src.random._random_bits(key, 16, (3,))
self.assertEqual(bits16.shape, (3,))
self.assertEqual(bits16.dtype, np.dtype('uint16'))
bits32 = jax._src.random._random_bits(key, 32, (3,))
self.assertEqual(bits32.shape, (3,))
self.assertEqual(bits32.dtype, np.dtype('uint32'))
with jtu.ignore_warning(category=UserWarning, message="Explicitly requested dtype.*"):
bits64 = jax._src.random._random_bits(key, 64, (3,))
expected_dtype = np.dtype('uint64' if config.x64_enabled else 'uint32')
self.assertEqual(bits64.shape, (3,))
self.assertEqual(bits64.dtype, expected_dtype)
def testRngRandomBitsViewProperty(self):
# TODO: add 64-bit if it ever supports this property.
# TODO: will this property hold across endian-ness?
N = 10
key = random.PRNGKey(1701)
nbits = [8, 16, 32]
rand_bits = [jax._src.random._random_bits(key, n, (N * 64 // n,))
for n in nbits]
rand_bits_32 = np.array([np.array(r).view(np.uint32) for r in rand_bits])
assert np.all(rand_bits_32 == rand_bits_32[0])
def testPRNGValues(self):
# Test to ensure consistent random values between JAX versions
k = random.PRNGKey(0)
self.assertEqual(random.randint(k, (3, 3), 0, 8).dtype,
dtypes.canonicalize_dtype(jnp.int_))
if config.x64_enabled:
self.assertAllClose(
random.randint(k, (3, 3), 0, 8, dtype='int64'),
np.array([[7, 2, 6],
[2, 1, 0],
[6, 7, 7]], dtype='int64'))
self.assertAllClose(
random.randint(k, (3, 3), 0, 8, dtype='int32'),
np.array([[2, 1, 3],
[6, 1, 5],
[6, 3, 4]], dtype='int32'))
self.assertAllClose(
_prng_key_as_array(random.split(k, 4)),
np.array([[2285895361, 1501764800],
[1518642379, 4090693311],
[ 433833334, 4221794875],
[ 839183663, 3740430601]], dtype='uint32'))
self.assertAllClose(
_prng_key_as_array(random.fold_in(k, 4)),
np.array([2285895361, 433833334], dtype='uint32'))
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "seed={seed}_type={type}_jit={jit}".format(**dct), **dct} for dct in [
{"seed": 0, "type": int, "jit": True, "key": [0, 0]},
{"seed": 0, "type": int, "jit": False, "key": [0, 0]},
{"seed": 1, "type": np.int32, "jit": True, "key": [0, 1]},
{"seed": 1, "type": np.int32, "jit": False, "key": [0, 1]},
{"seed": 2, "type": np.uint32, "jit": True, "key": [0, 2]},
{"seed": 2, "type": np.uint32, "jit": False, "key": [0, 2]},
{"seed": 3, "type": np.int64, "jit": True, "key": [0, 3]},
{"seed": 3, "type": np.int64, "jit": False, "key": [0, 3]},
{"seed": -1, "type": int, "jit": True, "key": [4294967295, 4294967295] if config.x64_enabled else [0, 4294967295]},
{"seed": -1, "type": int, "jit": False, "key": [4294967295, 4294967295] if config.x64_enabled else [0, 4294967295]},
{"seed": -2, "type": np.int32, "jit": True, "key": [0, 4294967294]},
{"seed": -2, "type": np.int32, "jit": False, "key": [0, 4294967294]},
{"seed": -3, "type": np.int64, "jit": True, "key": [4294967295, 4294967293] if config.x64_enabled else [0, 4294967293]},
{"seed": -3, "type": np.int64, "jit": False, "key": [4294967295, 4294967293] if config.x64_enabled else [0, 4294967293]},
{"seed": np.iinfo(np.int32).max + 100, "type": int, "jit": True, "key": [0, 2147483747]},
{"seed": np.iinfo(np.int32).max + 100, "type": int, "jit": False, "key": [0, 2147483747]},
{"seed": np.iinfo(np.int32).max + 101, "type": np.uint32, "jit": True, "key": [0, 2147483748]},
{"seed": np.iinfo(np.int32).max + 101, "type": np.uint32, "jit": False, "key": [0, 2147483748]},
{"seed": np.iinfo(np.int32).min - 100, "type": int, "jit": True, "key": [4294967295, 2147483548] if config.x64_enabled else [0, 2147483548]},
{"seed": np.iinfo(np.int32).min - 100, "type": int, "jit": False, "key": [4294967295, 2147483548] if config.x64_enabled else [0, 2147483548]},
{"seed": np.iinfo(np.int32).min - 101, "type": np.int64, "jit": True, "key": [4294967295, 2147483547] if config.x64_enabled else [0, 2147483547]},
{"seed": np.iinfo(np.int32).min - 101, "type": np.int64, "jit": False, "key": [4294967295, 2147483547] if config.x64_enabled else [0, 2147483547]},
]
))
def test_prng_seeds_and_keys(self, seed, type, jit, key):
if (jit and type is int and not config.x64_enabled and
(seed < np.iinfo('int32').min or seed > np.iinfo('int32').max)):
self.skipTest("Expected failure: integer out of range for jit.")
seed = type(seed)
if jit:
actual = _prng_key_as_array(jax.jit(random.PRNGKey)(seed))
else:
actual = _prng_key_as_array(random.PRNGKey(seed))
expected = jnp.array(key, dtype=jnp.uint32)
self.assertArraysEqual(actual, expected)
def test_default_prng_selection(self):
if not config.jax_enable_custom_prng:
self.skipTest("test requires config.jax_enable_custom_prng")
for name, impl in PRNG_IMPLS:
with jax.default_prng_impl(name):
self.assertIs(random.default_prng_impl(), impl)
key = random.PRNGKey(42)
self.assertIs(key.impl, impl)
k1, k2 = random.split(key, 2)
self.assertIs(k1.impl, impl)
self.assertIs(k2.impl, impl)
def test_default_prng_selection_without_custom_prng_mode(self):
if config.jax_enable_custom_prng:
self.skipTest("test requires that config.jax_enable_custom_prng is False")
for name, impl in PRNG_IMPLS:
with jax.default_prng_impl(name):
self.assertIs(random.default_prng_impl(), impl)
key = random.PRNGKey(42)
self.assertEqual(key.shape, impl.key_shape)
k1, k2 = random.split(key, 2)
self.assertEqual(k1.shape, impl.key_shape)
self.assertEqual(k2.shape, impl.key_shape)
def test_explicit_threefry2x32_key(self):
if not config.jax_enable_custom_prng:
self.skipTest("test requires config.jax_enable_custom_prng")
key = random.threefry2x32_key(42)
self.assertIs(key.impl, prng.threefry_prng_impl)
def test_explicit_rbg_key(self):
if not config.jax_enable_custom_prng:
self.skipTest("test requires config.jax_enable_custom_prng")
key = random.rbg_key(42)
self.assertIs(key.impl, prng.rbg_prng_impl)
def test_explicit_unsafe_rbg_key(self):
if not config.jax_enable_custom_prng:
self.skipTest("test requires config.jax_enable_custom_prng")
key = random.unsafe_rbg_key(42)
self.assertIs(key.impl, prng.unsafe_rbg_prng_impl)
def test_key_array_indexing_0d(self):
if not config.jax_enable_custom_prng:
self.skipTest("test requires config.jax_enable_custom_prng")
key = random.PRNGKey(1701)
self.assertEqual(key.shape, ())
self.assertEqual(key[None].shape, (1,))
self.assertRaisesRegex(IndexError, 'Too many indices for PRNGKeyArray.*',
lambda: key[0])
def test_key_array_indexing_nd(self):
if not config.jax_enable_custom_prng:
self.skipTest("test requires config.jax_enable_custom_prng")
keys = vmap(vmap(random.PRNGKey))(jnp.arange(6).reshape((2, 3)))
self.assertEqual(keys.shape, (2, 3))
self.assertEqual(keys[0, 0].shape, ())
self.assertEqual(keys[0, 1].shape, ())
self.assertEqual(keys[0].shape, (3,))
self.assertEqual(keys[1, :].shape, (3,))
self.assertEqual(keys[:, 1].shape, (2,))
self.assertEqual(keys[None].shape, (1, 2, 3))
self.assertEqual(keys[None, None].shape, (1, 1, 2, 3))
self.assertEqual(keys[None, :, None].shape, (1, 2, 1, 3))
self.assertEqual(keys[None, None, None, 0, None, None, None, 1].shape,
(1,) * 6)
self.assertEqual(keys[..., 1:, None].shape, (2, 2, 1))
self.assertEqual(keys[None, 0, ..., 1, None].shape, (1, 1))
self.assertRaisesRegex(IndexError, 'Too many indices for PRNGKeyArray.*',
lambda: keys[0, 1, 2])
self.assertRaisesRegex(IndexError, 'Too many indices for PRNGKeyArray.*',
lambda: keys[0, 1, None, 2])
@jtu.with_config(jax_numpy_rank_promotion="raise")
class LaxRandomTest(jtu.JaxTestCase):
def _CheckCollisions(self, samples, nbits):
fail_prob = 0.01 # conservative bound on statistical fail prob by Chebyshev
nitems = len(samples)
nbins = 2 ** nbits
nexpected = nbins * (1 - ((nbins - 1) / nbins) ** nitems)
ncollisions = len(np.unique(samples))
sq_percent_deviation = ((ncollisions - nexpected) / nexpected) ** 2
self.assertLess(sq_percent_deviation, 1 / np.sqrt(nexpected * fail_prob))
def _CheckKolmogorovSmirnovCDF(self, samples, cdf):
fail_prob = 0.01 # conservative bound on statistical fail prob by Kolmo CDF
self.assertGreater(scipy.stats.kstest(samples, cdf).pvalue, fail_prob)
def _CheckChiSquared(self, samples, pmf):
alpha = 0.01 # significance level, threshold for p-value
# scipy.stats.chisquare requires the sum of expected and actual to
# match; this is only the case if we compute the expected frequency
# at *all* nonzero values of the pmf. We don't know this a priori,
# so we add extra values past the largest observed value. The number
# below is empirically enough to get full coverage for the current set
# of tests. If a new test is added where this is not enough, chisquare()
# below will error due to the sums of the inputs not matching.
extra_values = 100
actual_freq = np.bincount(samples, minlength=samples.max() + extra_values)
values = np.arange(len(actual_freq))
expected_freq = pmf(values) * samples.size
valid = expected_freq > 0
actual_freq = actual_freq[valid]
expected_freq = expected_freq[valid]
_, p_value = scipy.stats.chisquare(actual_freq, expected_freq)
self.assertGreater(
p_value, alpha,
msg=f'Failed chi-squared test with p={p_value}.\n'
'Expected vs. actual frequencies:\n'
f'{expected_freq}\n{actual_freq}')
def seed_prng(self, seed):
return random.threefry2x32_key(seed)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in jtu.dtypes.floating))
def testNumpyAndXLAAgreeOnFloatEndianness(self, dtype):
bits_dtype = np.uint32 if jnp.finfo(dtype).bits == 32 else np.uint64
numpy_bits = np.array(1., dtype).view(bits_dtype)
xla_bits = jax.jit(
lambda: lax.bitcast_convert_type(np.array(1., dtype), bits_dtype))()
self.assertEqual(numpy_bits, xla_bits)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in float_dtypes))
def testRngUniform(self, dtype):
key = self.seed_prng(0)
rand = lambda key: random.uniform(key, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckCollisions(samples, jnp.finfo(dtype).nmant)
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.uniform().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in int_dtypes + uint_dtypes))
def testRngRandint(self, dtype):
lo = 5
hi = 10
key = self.seed_prng(0)
rand = lambda key: random.randint(key, (10000,), lo, hi, dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self.assertTrue(np.all(lo <= samples))
self.assertTrue(np.all(samples < hi))
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in float_dtypes))
def testNormal(self, dtype):
key = self.seed_prng(0)
rand = lambda key: random.normal(key, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.norm().cdf)
def testNormalBfloat16(self):
# Passing bfloat16 as dtype string.
# https://github.com/google/jax/issues/6813
res_bfloat16_str = random.normal(self.seed_prng(0), dtype='bfloat16')
res_bfloat16 = random.normal(self.seed_prng(0), dtype=jnp.bfloat16)
self.assertAllClose(res_bfloat16, res_bfloat16_str)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in complex_dtypes))
def testNormalComplex(self, dtype):
key = self.seed_prng(0)
rand = lambda key: random.normal(key, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(jnp.real(samples), scipy.stats.norm(scale=1/np.sqrt(2)).cdf)
self._CheckKolmogorovSmirnovCDF(jnp.imag(samples), scipy.stats.norm(scale=1/np.sqrt(2)).cdf)
self.assertEqual(dtype, samples.dtype)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in float_dtypes))
def testTruncatedNormal(self, dtype):
key = self.seed_prng(0)
rand = lambda key: random.truncated_normal(key, -0.3, 0.3, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
min_val = np.min(uncompiled_samples)
max_val = np.max(uncompiled_samples)
self.assertTrue(min_val > -0.3)
self.assertTrue(max_val < 0.3)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.truncnorm(-0.3, 0.3).cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in jtu.dtypes.floating + jtu.dtypes.integer))
def testShuffle(self, dtype):
key = self.seed_prng(0)
x = np.arange(100).astype(dtype)
rand = lambda key: random.shuffle(key, x)
crand = jax.jit(rand)
with self.assertWarns(FutureWarning):
perm1 = rand(key)
with self.assertWarns(FutureWarning):
perm2 = crand(key)
self.assertAllClose(perm1, perm2)
self.assertFalse(np.all(perm1 == x)) # seems unlikely!
self.assertAllClose(np.sort(perm1), x, check_dtypes=False)
@parameterized.named_parameters(jtu.cases_from_list(
dict(
testcase_name=
f"_{np.dtype(dtype).name}_input_range_or_shape={input_range_or_shape}"
f"_shape={shape}_replace={replace}_weighted={weighted}_axis={axis}",
dtype=dtype, input_range_or_shape=input_range_or_shape,
shape=shape, replace=replace, weighted=weighted, axis=axis)
for dtype in jtu.dtypes.floating + jtu.dtypes.integer
for shape in [(), (5,), (4, 5)]
for replace in [True, False]
for weighted in [True, False]
for input_range_or_shape in [100, (10, 10), (10, 5, 2), 1, (1, 5)]
for is_range in [type(input_range_or_shape) is int]
for ndim in [1 if is_range else len(input_range_or_shape)]
for axis in range(-ndim, ndim or 1)
for ninputs in [input_range_or_shape if is_range else input_range_or_shape[axis]]
if replace or np.prod(shape) <= ninputs))
def testChoice(self, dtype, input_range_or_shape, shape, replace, weighted, axis):
# This is the function API that we test against (note that self.rng().choice differs)
np_choice = np.random.default_rng(0).choice
key = self.seed_prng(0)
is_range = type(input_range_or_shape) is int
x = (input_range_or_shape if is_range else
self.rng().permutation(jnp.arange(np.prod(
input_range_or_shape), dtype=dtype)).reshape(input_range_or_shape))
N = x if is_range else x.shape[axis]
p = None if not weighted else (np.arange(N) + 1) / np.sum(np.arange(N) + 1)
rand = lambda key, x: random.choice(key, x, shape, replace, p, axis)
sample = rand(key, x)
if not is_range:
self.assertEqual(dtype, sample.dtype)
np_shape = np.shape(np_choice(x, shape or None, replace, p, axis))
self.assertEqual(np_shape, sample.shape)
if not replace and shape:
def lsort(x):
if not np.prod(x.shape): return x
ind = np.lexsort(np.swapaxes(x, axis, -1).reshape((-1, x.shape[axis])))
return jnp.take(x, ind, axis)
self.assertArraysEqual(lsort(sample), lsort(np.unique(sample, axis=axis)))
self.assertArraysEqual(sample, rand(key, np.array(x)))
self.assertArraysEqual(sample, jax.jit(rand, static_argnames=
'x' if is_range else None)(key, x))
@parameterized.named_parameters(jtu.cases_from_list(
dict(
testcase_name=f"_dtype={dtype}_range_or_shape={range_or_shape}"
f"_axis={axis}_independent={independent}",
dtype=dtype, range_or_shape=range_or_shape, axis=axis, independent=independent)
for dtype in jtu.dtypes.floating + jtu.dtypes.integer
for range_or_shape in [0, 1, 100, (0,), (1,), (100,),
(10, 10), (10, 5, 2), (0, 5), (1, 5)]
for ndim in [1 if type(range_or_shape) is int else len(range_or_shape)]
for axis in range(-ndim, ndim or 1)
for independent in [True, False]))
def testPermutation(self, dtype, range_or_shape, axis, independent):
key = self.seed_prng(0)
is_range = type(range_or_shape) is int
x = (range_or_shape if is_range else
self.rng().permutation(jnp.arange(
np.prod(range_or_shape), dtype=dtype)).reshape(range_or_shape))
shape = ((range_or_shape,) if is_range else range_or_shape)
x_ = np.copy(x)
rand = lambda key, x: random.permutation(key, x, axis, independent=independent)
perm = rand(key, x)
if shape[axis] >= 10:
self.assertFalse(np.all(perm == x)) # seems unlikely!
arr = np.arange(x) if is_range else x
def lsort(x):
if not np.prod(x.shape): return x
ind = np.lexsort(np.swapaxes(x, axis, -1).reshape((-1, x.shape[axis])))
return jnp.take(x, ind, axis)
if not independent:
self.assertArraysEqual(lsort(arr), lsort(perm), check_dtypes=not is_range)
if independent and (arr.shape[axis] > 4) and (arr.size // arr.shape[axis] > 4):
# Check for independent shuffling if there are >4 vectors of size >4.
# Chance of false positive is 1 in (5!)^4
with self.assertRaises(AssertionError):
self.assertArraysEqual(lsort(arr), lsort(perm), check_dtypes=not is_range)
self.assertArraysEqual(x_, x)
self.assertArraysEqual(perm, rand(key, np.array(x)))
self.assertArraysEqual(perm, jax.jit(rand, static_argnames=
'x' if is_range else None)(key, x))
def testPermutationErrors(self):
key = self.seed_prng(0)
with self.assertRaises(ValueError):
random.permutation(key, 10, axis=3)
with self.assertRaises(TypeError):
random.permutation(key, 10.)
with self.assertRaises(core.ConcretizationTypeError):
jax.jit(random.permutation)(key, 10)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_p={}_dtype={}".format(p, np.dtype(dtype).name),
"p": p, "dtype": dtype}
for p in [0.1, 0.5, 0.9]
for dtype in jtu.dtypes.floating))
def testBernoulli(self, p, dtype):
key = self.seed_prng(0)
p = np.array(p, dtype=dtype)
rand = lambda key, p: random.bernoulli(key, p, (10000,))
crand = jax.jit(rand)
uncompiled_samples = rand(key, p)
compiled_samples = crand(key, p)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckChiSquared(samples, scipy.stats.bernoulli(p).pmf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_p={}_{}_{}".format(p, np.dtype(dtype).name, sample_shape),
"p": p, "axis": axis, "dtype": dtype, 'sample_shape': sample_shape}
for (p, axis) in [
([.25] * 4, -1),
([.1, .2, .3, .4], -1),
([[.5, .5], [.1, .9]], 1),
([[.5, .1], [.5, .9]], 0),
]
for sample_shape in [(10000,), (5000, 2)]
for dtype in jtu.dtypes.floating))
def testCategorical(self, p, axis, dtype, sample_shape):
key = self.seed_prng(0)
p = np.array(p, dtype=dtype)
logits = np.log(p) - 42 # test unnormalized
out_shape = tuple(np.delete(logits.shape, axis))
shape = sample_shape + out_shape
rand = partial(random.categorical, shape=shape, axis=axis)
crand = jax.jit(rand)
uncompiled_samples = rand(key, logits)
compiled_samples = crand(key, logits)
if axis < 0:
axis += len(logits.shape)
for samples in [uncompiled_samples, compiled_samples]:
assert samples.shape == shape
samples = jnp.reshape(samples, (10000,) + out_shape)
if len(p.shape[:-1]) > 0:
ps = np.transpose(p, (1, 0)) if axis == 0 else p
for cat_samples, cat_p in zip(samples.transpose(), ps):
pmf = lambda x: np.where(x < len(cat_p), cat_p[np.minimum(len(cat_p) - 1, x)], 0.0)
self._CheckChiSquared(cat_samples, pmf=pmf)
else:
pmf = lambda x: np.where(x < len(p), p[np.minimum(len(p) - 1, x)], 0.0)
self._CheckChiSquared(samples, pmf=pmf)
def testBernoulliShape(self):
key = self.seed_prng(0)
with jax.numpy_rank_promotion('allow'):
x = random.bernoulli(key, np.array([0.2, 0.3]), shape=(3, 2))
assert x.shape == (3, 2)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_a={}_b={}_dtype={}".format(a, b, np.dtype(dtype).name),
"a": a, "b": b, "dtype": dtype}
for a in [0.2, 5.]
for b in [0.2, 5.]
for dtype in [np.float64])) # NOTE: KS test fails with float32
def testBeta(self, a, b, dtype):
if not config.x64_enabled:
raise SkipTest("skip test except on X64")
key = self.seed_prng(0)
rand = lambda key, a, b: random.beta(key, a, b, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key, a, b)
compiled_samples = crand(key, a, b)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.beta(a, b).cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in float_dtypes))
def testCauchy(self, dtype):
key = self.seed_prng(0)
rand = lambda key: random.cauchy(key, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.cauchy().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_alpha={}_dtype={}".format(alpha, np.dtype(dtype).name),
"alpha": alpha, "dtype": dtype}
for alpha in [
np.array([0.2, 1., 5.]),
]
for dtype in jtu.dtypes.floating))
@jtu.skip_on_devices("tpu") # TODO(mattjj): slow compilation times
def testDirichlet(self, alpha, dtype):
key = self.seed_prng(0)
rand = lambda key, alpha: random.dirichlet(key, alpha, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key, alpha)
compiled_samples = crand(key, alpha)
for samples in [uncompiled_samples, compiled_samples]:
self.assertAllClose(samples.sum(-1), np.ones(10000, dtype=dtype))
alpha_sum = sum(alpha)
for i, a in enumerate(alpha):
self._CheckKolmogorovSmirnovCDF(samples[..., i], scipy.stats.beta(a, alpha_sum - a).cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in float_dtypes))
def testExponential(self, dtype):
key = self.seed_prng(0)
rand = lambda key: random.exponential(key, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.expon().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_a={}_dtype={}".format(a, np.dtype(dtype).name),
"a": a, "dtype": dtype}
for a in [0.1, 1., 10.]
for dtype in jtu.dtypes.floating))
def testGamma(self, a, dtype):
key = self.seed_prng(0)
rand = lambda key, a: random.gamma(key, a, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key, a)
compiled_samples = crand(key, a)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.gamma(a).cdf)
def testGammaShape(self):
key = self.seed_prng(0)
x = random.gamma(key, np.array([0.2, 0.3]), shape=(3, 2))
assert x.shape == (3, 2)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_a={}".format(alpha), "alpha": alpha}
for alpha in [1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4]))
def testGammaGrad(self, alpha):
rng = self.seed_prng(0)
alphas = np.full((100,), alpha)
z = random.gamma(rng, alphas)
actual_grad = jax.grad(lambda x: random.gamma(rng, x).sum())(alphas)
eps = 0.01 * alpha / (1.0 + np.sqrt(alpha))
cdf_dot = (scipy.stats.gamma.cdf(z, alpha + eps)
- scipy.stats.gamma.cdf(z, alpha - eps)) / (2 * eps)
with np.errstate(over='ignore'):
pdf = scipy.stats.gamma.pdf(z, alpha)
expected_grad = -cdf_dot / pdf
self.assertAllClose(actual_grad, expected_grad, check_dtypes=True,
rtol=2e-2 if jtu.device_under_test() == "tpu" else 7e-4)
def testGammaGradType(self):
# Regression test for https://github.com/google/jax/issues/2130
key = self.seed_prng(0)
a = jnp.array(1., dtype=jnp.float32)
b = jnp.array(3., dtype=jnp.float32)
f = lambda x, y: random.gamma(key=key, a=x, dtype=jnp.float32) / y
# Should not crash with a type error.
jax.vjp(f, a, b)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_lam={}_dtype={}".format(lam, np.dtype(dtype).name),
"lam": lam, "dtype": np.dtype(dtype)}
for lam in [0.5, 3, 9, 11, 50, 500]
for dtype in [np.int16, np.int32, np.int64]))
def testPoisson(self, lam, dtype):
key = self.seed_prng(0)
rand = lambda key, lam: random.poisson(key, lam, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key, lam)
compiled_samples = crand(key, lam)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckChiSquared(samples, scipy.stats.poisson(lam).pmf)
# TODO(shoyer): determine error bounds for moments more rigorously (e.g.,
# based on the central limit theorem).
self.assertAllClose(samples.mean(), lam, rtol=0.01, check_dtypes=False)
self.assertAllClose(samples.var(), lam, rtol=0.03, check_dtypes=False)
def testPoissonBatched(self):
key = self.seed_prng(1)
lam = jnp.concatenate([2 * jnp.ones(10000), 20 * jnp.ones(10000)])
samples = random.poisson(key, lam, shape=(20000,))
self._CheckChiSquared(samples[:10000], scipy.stats.poisson(2.0).pmf)
self._CheckChiSquared(samples[10000:], scipy.stats.poisson(20.0).pmf)
def testPoissonWithoutShape(self):
key = self.seed_prng(1)
lam = 2 * jnp.ones(10000)
samples = random.poisson(key, lam)
self._CheckChiSquared(samples, scipy.stats.poisson(2.0).pmf)
def testPoissonShape(self):
key = self.seed_prng(0)
x = random.poisson(key, np.array([2.0, 20.0]), shape=(3, 2))
assert x.shape == (3, 2)
def testPoissonZeros(self):
key = self.seed_prng(0)
lam = jnp.concatenate([jnp.zeros(10), 20 * jnp.ones(10)])
samples = random.poisson(key, lam, shape=(2, 20))
self.assertArraysEqual(samples[:, :10], jnp.zeros_like(samples[:, :10]))
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in jtu.dtypes.floating))
def testGumbel(self, dtype):
key = self.seed_prng(0)
rand = lambda key: random.gumbel(key, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.gumbel_r().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in float_dtypes))
def testLaplace(self, dtype):
key = self.seed_prng(0)
rand = lambda key: random.laplace(key, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.laplace().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dtype={}".format(np.dtype(dtype).name), "dtype": dtype}
for dtype in float_dtypes))
def testLogistic(self, dtype):
key = self.seed_prng(0)
rand = lambda key: random.logistic(key, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key)
compiled_samples = crand(key)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.logistic().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_b={}_dtype={}".format(b, np.dtype(dtype).name),
"b": b, "dtype": dtype}
for b in [0.1, 1., 10.]
for dtype in jtu.dtypes.floating))
def testPareto(self, b, dtype):
key = self.seed_prng(0)
rand = lambda key, b: random.pareto(key, b, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key, b)
compiled_samples = crand(key, b)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.pareto(b).cdf)
def testParetoShape(self):
key = self.seed_prng(0)
with jax.numpy_rank_promotion('allow'):
x = random.pareto(key, np.array([0.2, 0.3]), shape=(3, 2))
assert x.shape == (3, 2)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_df={}_dtype={}".format(df, np.dtype(dtype).name),
"df": df, "dtype": dtype}
for df in [0.1, 1., 10.]
for dtype in jtu.dtypes.floating))
@jtu.skip_on_devices("cpu", "tpu") # TODO(phawkins): slow compilation times
def testT(self, df, dtype):
key = self.seed_prng(0)
rand = lambda key, df: random.t(key, df, (10000,), dtype)
crand = jax.jit(rand)
uncompiled_samples = rand(key, df)
compiled_samples = crand(key, df)
for samples in [uncompiled_samples, compiled_samples]:
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.t(df).cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dim={}_dtype={}_method={}".format(
dim, np.dtype(dtype), method),
"dim": dim, "dtype": dtype, "method": method}
for dim in [1, 3, 5]
for dtype in float_dtypes
for method in ['svd', 'eigh', 'cholesky']))
def testMultivariateNormal(self, dim, dtype, method):
r = self.rng()
mean = r.randn(dim)
cov_factor = r.randn(dim, dim)
cov = np.dot(cov_factor, cov_factor.T) + dim * np.eye(dim)
key = self.seed_prng(0)
rand = partial(random.multivariate_normal, mean=mean, cov=cov,
shape=(10000,), method=method)
crand = jax.jit(rand)
with jax.numpy_rank_promotion('allow'):
uncompiled_samples = np.asarray(rand(key), np.float64)
compiled_samples = np.asarray(crand(key), np.float64)
inv_scale = scipy.linalg.lapack.dtrtri(np.linalg.cholesky(cov), lower=True)[0]
for samples in [uncompiled_samples, compiled_samples]:
centered = samples - mean
whitened = np.einsum('nj,ij->ni', centered, inv_scale)
# This is a quick-and-dirty multivariate normality check that tests that a
# uniform mixture of the marginals along the covariance matrix's
# eigenvectors follow a standard normal distribution.
self._CheckKolmogorovSmirnovCDF(whitened.ravel(), scipy.stats.norm().cdf)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dim={}_mean_batch_size={}_cov_batch_size={}_shape={}_method={}"\
.format(dim, mean_batch_size, cov_batch_size, shape, method),
"dim": dim,
"mean_batch_size": mean_batch_size,
"cov_batch_size": cov_batch_size,
"shape": shape, "method": method}
for dim in [1, 2, 4]
for mean_batch_size in [(), (3,), (2, 3)]
for cov_batch_size in [(), (3,), (2, 3)]
for shape in [(), (1,), (5,)]
for method in ['cholesky', 'svd', 'eigh']))
def testMultivariateNormalShapes(self, dim, mean_batch_size, cov_batch_size,
shape, method):
r = self.rng()
key = self.seed_prng(0)
eff_batch_size = mean_batch_size \
if len(mean_batch_size) > len(cov_batch_size) else cov_batch_size
mean = r.randn(*(mean_batch_size + (dim,)))
cov_factor = r.randn(*(cov_batch_size + (dim, dim)))
cov = np.einsum('...ij,...kj->...ik', cov_factor, cov_factor)
cov += 1e-3 * np.eye(dim)
shape = shape + eff_batch_size
with jax.numpy_rank_promotion('allow'):
samples = random.multivariate_normal(key, mean, cov, shape=shape, method=method)
assert samples.shape == shape + (dim,)
def testMultivariateNormalCovariance(self):
# test code based on https://github.com/google/jax/issues/1869
N = 100000
cov = jnp.array([[ 0.19, 0.00, -0.13, 0.00],
[ 0.00, 0.29, 0.00, -0.23],
[ -0.13, 0.00, 0.39, 0.00],
[ 0.00, -0.23, 0.00, 0.49]])
mean = jnp.zeros(4)
out_np = self.rng().multivariate_normal(mean, cov, N)
key = self.seed_prng(0)
with jax.numpy_rank_promotion('allow'):
out_jnp = random.multivariate_normal(key, mean=mean, cov=cov, shape=(N,))
var_np = out_np.var(axis=0)
var_jnp = out_jnp.var(axis=0)
self.assertAllClose(var_np, var_jnp, rtol=1e-2, atol=1e-2,
check_dtypes=False)
var_np = np.cov(out_np, rowvar=False)
var_jnp = np.cov(out_jnp, rowvar=False)
self.assertAllClose(var_np, var_jnp, rtol=1e-2, atol=1e-2,
check_dtypes=False)
def testIssue222(self):
x = random.randint(self.seed_prng(10003), (), 0, 0)
assert x == 0
def testFoldIn(self):
key = self.seed_prng(0)
keys = [_prng_key_as_array(random.fold_in(key, i)) for i in range(10)]
assert np.unique(keys, axis=0).shape[0] == 10
def testFoldInBig(self):
key = self.seed_prng(0)
seeds = [2 ** 32 - 2, 2 ** 32 - 1]
keys = [_prng_key_as_array(random.fold_in(key, seed)) for seed in seeds]
assert np.unique(keys, axis=0).shape[0] == 2
def testStaticShapeErrors(self):
if config.jax_disable_jit:
raise SkipTest("test only relevant when jit enabled")
@jax.jit
def feature_map(n, d, sigma=1.0, seed=123):
key = self.seed_prng(seed)
W = random.normal(key, (d, n)) / sigma
w = random.normal(key, (d, )) / sigma
b = 2 * jnp.pi * random.uniform(key, (d, ))
phi = lambda x, t: jnp.sqrt(2.0 / d) * jnp.cos(jnp.matmul(W, x) + w*t + b)
return phi
self.assertRaisesRegex(TypeError, 'Shapes must be 1D.*',
lambda: feature_map(5, 3))
def testIssue756(self):
key = self.seed_prng(0)
w = random.normal(key, ())
self.assertEqual(w.dtype, dtypes.canonicalize_dtype(jnp.float_))
def testIssue1789(self):
def f(x):
return random.gamma(self.seed_prng(0), x)
grad(lambda x: jnp.sum(vmap(f)(x)))(jnp.ones(2))
def testDtypeErrorMessage(self):
with self.assertRaisesRegex(ValueError, r"dtype argument to.*"):
random.normal(self.seed_prng(0), (), dtype=jnp.int32)
def testRandomBroadcast(self):
"""Issue 4033"""
# test for broadcast issue in https://github.com/google/jax/issues/4033
key = self.seed_prng(0)
shape = (10, 2)
with jax.numpy_rank_promotion('allow'):
x1 = random.uniform(key, shape, minval=jnp.zeros(2), maxval=jnp.ones(2))
x2 = random.randint(key, shape, jnp.array([0, 1]), jnp.array([1, 2]))
assert x1.shape == shape
assert x2.shape == shape
def testMaxwellSample(self):
num_samples = 10**5
rng = self.seed_prng(0)
rand = lambda x: random.maxwell(x, (num_samples, ))
crand = jax.jit(rand)
loc = jtu.to_default_dtype(scipy.stats.maxwell.mean())
std = jtu.to_default_dtype(scipy.stats.maxwell.std())
uncompiled_samples = rand(rng)
compiled_samples = crand(rng)
for samples in [uncompiled_samples, compiled_samples]:
# Check first and second moments.
self.assertEqual((num_samples,), samples.shape)
self.assertAllClose(np.mean(samples), loc, atol=0., rtol=0.1)
self.assertAllClose(np.std(samples), std, atol=0., rtol=0.1)
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.maxwell().cdf)
@parameterized.named_parameters(
('test1', 4.0, 1.0),
('test2', 2.0, 3.0))
def testWeibullSample(self, concentration, scale):
num_samples = 10**5
rng = self.seed_prng(0)
rand = lambda x: random.weibull_min(x, scale, concentration, (num_samples,))
crand = jax.jit(rand)
loc = jtu.to_default_dtype(scipy.stats.weibull_min.mean(c=concentration, scale=scale))
std = jtu.to_default_dtype(scipy.stats.weibull_min.std(c=concentration, scale=scale))
uncompiled_samples = rand(rng)
compiled_samples = crand(rng)
for samples in [uncompiled_samples, compiled_samples]:
# Check first and second moments.
self.assertEqual((num_samples,), samples.shape)
self.assertAllClose(np.mean(samples), loc, atol=0., rtol=0.1)
self.assertAllClose(np.std(samples), std, atol=0., rtol=0.1)
self._CheckKolmogorovSmirnovCDF(samples, scipy.stats.weibull_min(
c=concentration, scale=scale).cdf)
@parameterized.named_parameters(
('test1', 4.0, 1.0),
('test2', 2.0, 3.0))
def testDoublesidedMaxwellSample(self, loc, scale):
num_samples = 10**5
rng = self.seed_prng(0)
rand = lambda key: random.double_sided_maxwell(
rng, loc, scale, (num_samples,))
crand = jax.jit(rand)
mean = loc
std = np.sqrt(3.) * scale
uncompiled_samples = rand(rng)
compiled_samples = crand(rng)
# Compute the double sided maxwell CDF through the one sided maxwell cdf.
# This is done as follows:
# P(DSM <= x) = P (loc + scale * radamacher_sample * one_sided_sample <=x) =
# P (radamacher_sample * one_sided_sample <= (x - loc) / scale) =
# 1/2 P(one_sided_sample <= (x - loc) / scale)
# + 1/2 P( - one_sided_sample <= (x - loc) / scale) =
# 1/2 P(one_sided_sample <= (x - loc) / scale)
# + 1/2 P(one_sided_sample >= - (x - loc) / scale) =
# 1/2 CDF_one_maxwell((x - loc) / scale))
# + 1/2 (1 - CDF_one_maxwell(- (x - loc) / scale)))
def double_sided_maxwell_cdf(x, loc, scale):
pos = scipy.stats.maxwell().cdf((x - loc) / scale)
neg = (1 - scipy.stats.maxwell().cdf((-x + loc) / scale))
return (pos + neg) / 2
for samples in [uncompiled_samples, compiled_samples]:
# Check first and second moments.
self.assertEqual((num_samples,), samples.shape)
self.assertAllClose(samples.mean(), jtu.to_default_dtype(mean), atol=0., rtol=0.1)
self.assertAllClose(samples.std(), jtu.to_default_dtype(std), atol=0., rtol=0.1)
self._CheckKolmogorovSmirnovCDF(
samples, lambda x: double_sided_maxwell_cdf(x, loc, scale))
def testRadamacher(self):
rng = self.seed_prng(0)
num_samples = 10**5
rand = lambda x: random.rademacher(x, (num_samples,))
crand = jax.jit(rand)
uncompiled_samples = rand(rng)
compiled_samples = crand(rng)
for samples in [uncompiled_samples, compiled_samples]:
unique_values, counts = np.unique(samples, return_counts=True)
assert len(unique_values) == 2
assert len(counts) == 2
self.assertAllClose(
counts[0] / num_samples, 0.5, rtol=1e-02, atol=1e-02)
self.assertAllClose(
counts[1] / num_samples, 0.5, rtol=1e-02, atol=1e-02)
def testChoiceShapeIsNotSequenceError(self):
key = self.seed_prng(0)
with self.assertRaises(TypeError):
random.choice(key, 5, 2, replace=False)
with self.assertRaises(TypeError):
random.choice(key, 5, 2, replace=True)
def test_eval_shape_big_random_array(self):
def f(x):
return random.normal(self.seed_prng(x), (int(1e12),))
with jax.enable_checks(False): # check_jaxpr will materialize array
jax.eval_shape(f, 0) # doesn't error
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": f"_seed={seed}_type={type}", "seed": seed, "type": type}
for type in ["int", "np.array", "jnp.array"]
for seed in [-1, 0, 1, (1 << 32) - 1, (1 << 63) - 1, np.uint64((1 << 64) - 1)]))
def test_prng_jit_invariance(self, seed, type):
if type == "int" and seed == (1 << 64) - 1:
self.skipTest("Expected failure: Python int too large.")
if not config.x64_enabled and seed > np.iinfo(np.int32).max:
self.skipTest("Expected failure: Python int too large.")
type = {"int": int, "np.array": np.array, "jnp.array": jnp.array}[type]
args_maker = lambda: [type(seed)]
make_prng = lambda seed: _prng_key_as_array(self.seed_prng(seed))
self._CompileAndCheck(make_prng, args_maker)
def test_prng_errors(self):
seed = np.iinfo(np.int64).max + 1
with self.assertRaises(OverflowError):
self.seed_prng(seed)
with self.assertRaises(OverflowError):
jax.jit(self.seed_prng)(seed)
def test_random_split_doesnt_device_put_during_tracing(self):
key = _prng_key_as_array(self.seed_prng(1)).block_until_ready()
with jtu.count_device_put() as count:
jax.jit(random.split)(key)
self.assertEqual(count[0], 1) # 1 for the argument device_put
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": f"_dtype={dtype}", "dtype": dtype}
for dtype in int_dtypes + uint_dtypes))
def test_randint_bounds(self, dtype):
min = np.iinfo(dtype).min
max = np.iinfo(dtype).max
key = self.seed_prng(1701)
shape = (10,)
if np.iinfo(dtype).bits < np.iinfo(dtypes.canonicalize_dtype(int)).bits:
expected = random.randint(key, shape, min, max, dtype)
self.assertArraysEqual(expected, random.randint(key, shape, min - 12345, max + 12345, dtype))
else:
self.assertRaises(OverflowError, random.randint, key, shape, min - 12345, max + 12345, dtype)
def test_randint_out_of_range(self):
key = self.seed_prng(0)
r = random.randint(key, (10,), 255, 256, np.uint8)
self.assertAllClose(r, jnp.full_like(r, 255))
r = random.randint(key, (1000,), -128, 128, np.int8)
self.assertGreater((r == -128).sum(), 0)
self.assertGreater((r == 127).sum(), 0)
r = random.randint(key, (1000,), -1000, 1000, np.uint8)
self.assertGreater((r == 0).sum(), 0)
self.assertGreater((r == 255).sum(), 0)
threefry_seed = jax._src.prng.threefry_seed
threefry_split = jax._src.prng.threefry_split
threefry_random_bits = jax._src.prng.threefry_random_bits
threefry_fold_in = jax._src.prng.threefry_fold_in
def _double_threefry_seed(seed):
int_t = seed.dtype.type if hasattr(seed, 'dtype') else type(seed)
s1, s2 = seed ^ int_t(1), seed ^ int_t(3)
return jnp.vstack([threefry_seed(s1),
threefry_seed(s2)])
def _double_threefry_split(key, num):
split0 = threefry_split(key[0], num)
split1 = threefry_split(key[1], num)
merge = jnp.vstack([jnp.expand_dims(split0.T, axis=0),
jnp.expand_dims(split1.T, axis=0)])
return merge.transpose((2, 0, 1))
def _double_threefry_random_bits(key, bit_width, shape):
bits0 = threefry_random_bits(key[0], bit_width, shape)
bits1 = threefry_random_bits(key[1], bit_width, shape)
return bits0 * bits1
def _double_threefry_fold_in(key, data):
return jnp.vstack([threefry_fold_in(key[0], data),
threefry_fold_in(key[1], data)])
double_threefry_prng_impl = prng.PRNGImpl(
key_shape=(2, 2),
seed=_double_threefry_seed,
split=_double_threefry_split,
random_bits=_double_threefry_random_bits,
fold_in=_double_threefry_fold_in)
@skipIf(not config.jax_enable_custom_prng,
'custom PRNG tests require config.jax_enable_custom_prng')
@jtu.with_config(jax_numpy_rank_promotion="raise")
class LaxRandomWithCustomPRNGTest(LaxRandomTest):
def seed_prng(self, seed):
return prng.seed_with_impl(double_threefry_prng_impl, seed)
def test_split_shape(self):
key = self.seed_prng(73)
keys = random.split(key, 10)
self.assertEqual(keys.shape, (10,))
def test_vmap_fold_in_shape(self):
key = self.seed_prng(73)
keys = vmap(lambda i: random.fold_in(key, i))(jnp.arange(3))
self.assertEqual(keys.shape, (3,))
def test_cannot_add(self):
key = self.seed_prng(73)
self.assertRaisesRegex(
TypeError, r'unsupported operand type\(s\) for \+*',
lambda: key + 47)
@skipIf(np.__version__ == "1.21.0",
"https://github.com/numpy/numpy/issues/19305")
def test_grad_of_prng_key(self):
key = self.seed_prng(73)
jax.grad(lambda x: 1., allow_int=True)(key) # does not crash
@skipIf(not config.jax_enable_custom_prng,
'custom PRNG tests require config.jax_enable_custom_prng')
@jtu.with_config(jax_numpy_rank_promotion="raise")
class LaxRandomWithRBGPRNGTest(LaxRandomTest):
def seed_prng(self, seed):
return random.rbg_key(seed)
def test_split_shape(self):
key = self.seed_prng(73)
keys = random.split(key, 10)
self.assertEqual(keys.shape, (10,))
def test_vmap_fold_in_shape(self):
key = self.seed_prng(73)
keys = vmap(lambda i: random.fold_in(key, i))(jnp.arange(3))
self.assertEqual(keys.shape, (3,))
def test_vmap_split_not_mapped_key(self):
key = self.seed_prng(73)
single_split_key = random.split(key)
vmapped_keys = vmap(lambda _: random.split(key))(jnp.zeros(3,))
self.assertEqual(vmapped_keys.shape, (3, 2))
for vk in vmapped_keys:
self.assertArraysEqual(vk.unsafe_raw_array(),
single_split_key.unsafe_raw_array())
def test_vmap_split_mapped_key(self):
key = self.seed_prng(73)
mapped_keys = random.split(key, num=3)
forloop_keys = [random.split(k) for k in mapped_keys]
vmapped_keys = vmap(random.split)(mapped_keys)
self.assertEqual(vmapped_keys.shape, (3, 2))
for fk, vk in zip(forloop_keys, vmapped_keys):
self.assertArraysEqual(fk.unsafe_raw_array(),
vk.unsafe_raw_array())
def test_vmap_random_bits(self):
rand_fun = lambda key: random.randint(key, (), 0, 100)
key = self.seed_prng(73)
mapped_keys = random.split(key, num=3)
forloop_rand_nums = [rand_fun(k) for k in mapped_keys]
rand_nums = vmap(rand_fun)(mapped_keys)
self.assertEqual(rand_nums.shape, (3,))
self.assertArraysEqual(rand_nums, jnp.array(forloop_rand_nums))
def test_cannot_add(self):
key = self.seed_prng(73)
self.assertRaisesRegex(
TypeError, r'unsupported operand type\(s\) for \+*',
lambda: key + 47)
@skipIf(np.__version__ == "1.21.0",
"https://github.com/numpy/numpy/issues/19305")
def test_grad_of_prng_key(self):
key = self.seed_prng(73)
jax.grad(lambda x: 1., allow_int=True)(key) # does not crash
def test_random_split_doesnt_device_put_during_tracing(self):
return # this test doesn't apply to the RBG PRNG
def test_randint_out_of_range(self):
# TODO(mattjj): enable this test if/when RngBitGenerator supports it
raise SkipTest('8-bit types not supported with RBG PRNG')
class LaxRandomWithUnsafeRBGPRNGTest(LaxRandomWithRBGPRNGTest):
def seed_prng(self, seed):
return prng.seed_with_impl(prng.unsafe_rbg_prng_impl, seed)
@skipIf(not config.jax_enable_custom_prng,
'custom PRNG tests require config.jax_enable_custom_prng')
class JnpWithPRNGKeyArrayTest(jtu.JaxTestCase):
def test_reshape(self):
key = random.PRNGKey(123)
keys = random.split(key, 4)
keys = jnp.reshape(keys, (2, 2))
self.assertEqual(keys.shape, (2, 2))
def test_tile(self):
key = random.PRNGKey(123)
keys = jnp.tile(key, 3)
self.assertEqual(keys.shape, (3,))
def test_concatenate(self):
key = random.PRNGKey(123)
keys = random.split(key, 2)
keys = jnp.concatenate([keys, keys, keys], axis=0)
self.assertEqual(keys.shape, (3, 2))
def test_broadcast_to(self):
key = random.PRNGKey(123)
keys = jnp.broadcast_to(key, (3,))
self.assertEqual(keys.shape, (3,))
def test_broadcast_arrays(self):
key = random.PRNGKey(123)
keys = jax.random.split(key, 3)
key, _ = jnp.broadcast_arrays(key, keys)
self.assertEqual(key.shape, (3,))
def test_append(self):
key = random.PRNGKey(123)
keys = jnp.append(key, key)
self.assertEqual(keys.shape, (2, 1))
def test_ravel(self):
key = random.PRNGKey(123)
keys = jax.random.split(key, 4)
keys = jnp.reshape(keys, (2, 2))
keys = jnp.ravel(keys)
self.assertEqual(keys.shape, (4,))
def _sampler_unimplemented_with_custom_prng(*args, **kwargs):
raise SkipTest('sampler only implemented for default RNG')
for test_prefix in [
'testBeta',
'testDirichlet',
'testGamma',
'testGammaGrad',
'testGammaGradType',
'testGammaShape',
'testIssue1789',
'testPoisson',
'testPoissonBatched',
'testPoissonShape',
'testPoissonZeros',
'testT',
]:
for attr in dir(LaxRandomTest):
if attr.startswith(test_prefix):
setattr(LaxRandomWithCustomPRNGTest, attr,
_sampler_unimplemented_with_custom_prng)
setattr(LaxRandomWithRBGPRNGTest, attr,
_sampler_unimplemented_with_custom_prng)
setattr(LaxRandomWithUnsafeRBGPRNGTest, attr,
_sampler_unimplemented_with_custom_prng)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())