rocm_jax/tests/export_test.py
George Necula b65c1b293b [jax2tf] First step to enable multi-platform native lowering
Enable experiments with jax2tf native serialization for
multiple platforms. This feature is not yet fully functional
but we need this change to enable further testing.

Cleanup some of the places that are specific to single-platform
serialization, e.g., `lowering_platform`, and generalize
them to multiple platforms (`lowering_platforms`).
2023-10-16 07:01:23 -07:00

848 lines
36 KiB
Python

# Copyright 2023 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import contextlib
import functools
import logging
import math
import re
from typing import Sequence
import unittest
from absl.testing import absltest
import jax
from jax import numpy as jnp
from jax import tree_util
from jax.experimental.export import export
from jax.experimental import pjit
from jax.sharding import Mesh
from jax.sharding import PartitionSpec as P
from jax._src import config
from jax._src import core
from jax._src import test_util as jtu
from jax._src import xla_bridge as xb
from jax._src.interpreters import mlir
from jax._src.lib import version as jaxlib_version
from jax._src.lib.mlir.dialects import hlo
import numpy as np
config.parse_flags_with_absl()
prev_xla_flags = None
def setUpModule():
global prev_xla_flags
# This will control the CPU devices. On TPU we always have 2 devices
prev_xla_flags = jtu.set_host_platform_device_count(2)
# Reset to previous configuration in case other test modules will be run.
def tearDownModule():
prev_xla_flags()
# A primitive for testing multi-platform lowering. Takes one argument and
# adds a different value to it: cpu=2., tpu=3., cuda=.4, rocm=5.
_testing_multi_platform_p = core.Primitive("testing_multi_platform")
_testing_multi_platform_to_add = dict(cpu=2., tpu=3., cuda=4., rocm=5.)
@_testing_multi_platform_p.def_abstract_eval
def _testing_multi_platform_abstract_eval(xaval: core.AbstractValue):
assert xaval.dtype == np.float32 # type: ignore
return xaval
def _testing_multi_platform_lowering(ctx: mlir.LoweringRuleContext,
x: mlir.Value,
*,
platform: str) -> Sequence[mlir.Value]:
to_add = _testing_multi_platform_to_add[platform]
to_add_value = mlir.broadcast_in_dim(ctx,
mlir.ir_constant(np.float32(to_add)),
ctx.avals_in[0],
broadcast_dimensions=())
return mlir.hlo.AddOp(x, to_add_value).results
# Register a default rule for cuda, to test the default-platform rule selection.
mlir.register_lowering(_testing_multi_platform_p,
functools.partial(_testing_multi_platform_lowering,
platform="cuda"))
for platform in ["cpu", "tpu", "rocm"]:
mlir.register_lowering(_testing_multi_platform_p,
functools.partial(_testing_multi_platform_lowering,
platform=platform),
platform=platform)
def _testing_multi_platform_func(x):
return _testing_multi_platform_p.bind(x)
def _testing_multi_platform_fun_expected(x,
platform: str | None = None):
return x + _testing_multi_platform_to_add[
xb.canonicalize_platform(platform or jtu.device_under_test())
]
class JaxExportTest(jtu.JaxTestCase):
def override_serialization_version(self, version_override: int):
version = config.jax_serialization_version.value
if version != version_override:
self.enter_context(config.jax_serialization_version(version_override))
logging.info(
"Using JAX serialization version %s",
config.jax_serialization_version.value)
@classmethod
def setUpClass(cls):
# Find the available platforms
cls.platforms = []
for backend in ["cpu", "gpu", "tpu"]:
try:
jax.devices(backend)
except RuntimeError:
continue
cls.platforms.append(backend)
super(JaxExportTest, cls).setUpClass()
def setUp(self):
super().setUp()
# Run tests with the maximum supported version by default
self.override_serialization_version(
export.maximum_supported_serialization_version)
def test_basic_export_only(self):
def my_fun(x):
return jnp.sin(x)
exp = export.export(my_fun)(jax.ShapeDtypeStruct((4,), dtype=np.float32))
self.assertEqual("my_fun", exp.fun_name)
self.assertEqual((export.default_lowering_platform(),),
exp.lowering_platforms)
self.assertEqual(tree_util.tree_flatten(((1,), {}))[1], exp.in_tree)
self.assertEqual((core.ShapedArray((4,), dtype=np.float32),), exp.in_avals)
self.assertEqual((core.ShapedArray((4,), dtype=np.float32),), exp.out_avals)
def test_pytree_export_only(self):
a = np.arange(4, dtype=np.float32)
b = np.arange(6, dtype=np.float32)
def f(a_b_pair, *, a, b):
return (dict(res=a_b_pair, a=a, b=b), jnp.sin(a), jnp.cos(b))
exp = export.export(f, lowering_platforms=("cpu",))((a, b), a=a, b=b)
a_aval = core.ShapedArray(a.shape, a.dtype)
b_aval = core.ShapedArray(b.shape, b.dtype)
self.assertEqual(exp.lowering_platforms, ("cpu",))
args = ((a, b),)
kwargs = dict(a=a, b=b)
self.assertEqual(exp.in_tree, tree_util.tree_flatten((args, kwargs))[1])
self.assertEqual(exp.in_avals, (a_aval, b_aval, a_aval, b_aval))
self.assertEqual(exp.out_tree, tree_util.tree_flatten(f(*args, **kwargs))[1])
self.assertEqual(exp.out_avals, (a_aval, b_aval, a_aval, b_aval, a_aval, b_aval))
def test_poly_export_only(self):
a = np.arange(12, dtype=np.float32).reshape((3, 4))
def f(a, b): # a: f32[2w,h] b: f32[w,h]
return jnp.concatenate([a, b], axis=0)
exp = export.export(f)(
export.poly_spec(a.shape, a.dtype, "(2*w, h)"),
export.poly_spec(a.shape, a.dtype, "(w, h)"))
self.assertEqual("(2*w, h)", str(exp.in_avals[0].shape))
self.assertEqual("(w, h)", str(exp.in_avals[1].shape))
self.assertEqual("(3*w, h)", str(exp.out_avals[0].shape))
def test_poly_pytree_export_only(self):
a = np.arange(12, dtype=np.float32).reshape((3, 4))
def f(a0, a1, *, ak):
return jnp.concatenate([a0, a1, ak], axis=0)
a_poly_spec = export.poly_spec(a.shape, a.dtype, "(w, h)")
exp = export.export(f)(a_poly_spec, a_poly_spec, ak=a_poly_spec)
self.assertEqual("(w, h)", str(exp.in_avals[0].shape))
self.assertEqual("(3*w, h)", str(exp.out_avals[0].shape))
def test_basic(self):
f = jnp.sin
x = np.arange(4, dtype=np.float32)
exp_f = export.export(f)(x)
f1 = export.call_exported(exp_f)
self.assertAllClose(f(x), f1(x))
def test_call_exported_lambda(self):
# When we export a lambda, the exported.fun_name is not a valid MLIR function name
f = lambda x: jnp.sin(x)
x = np.arange(4, dtype=np.float32)
exp_f = export.export(f)(x)
f1 = export.call_exported(exp_f)
self.assertAllClose(f(x), f1(x))
def test_call_twice_exported(self):
def f(x): return jnp.sin(x)
x = np.arange(4, dtype=np.float32)
@jax.jit
def f1(x):
exp_f = export.export(f)(x)
return export.call_exported(exp_f)(x) + export.call_exported(exp_f)(x)
self.assertAllClose(2. * f(x), f1(x))
def test_unused_args(self):
f = lambda x, y: jnp.sin(x)
x = np.arange(4, dtype=np.float32)
y = np.arange(6, dtype=np.float32)
exp_f = export.export(f)(x, y)
f1 = export.call_exported(exp_f)
self.assertAllClose(f(x, y), f1(x, y))
def test_pytree(self):
a = np.arange(4, dtype=np.float32)
b = np.arange(6, dtype=np.float32)
def f(a_b_pair, a, b):
return (dict(res=a_b_pair, a=a, b=b), jnp.sin(a), jnp.cos(b))
exp_f = export.export(f)((a, b), a=a, b=b)
f1 = export.call_exported(exp_f)
self.assertAllClose(f((a, b), a=a, b=b),
f1((a, b), a=a, b=b))
def test_error_wrong_intree(self):
def f(a_b_pair, *, c):
return jnp.sin(a_b_pair[0]) + jnp.cos(a_b_pair[1]) + c
a = b = c = np.arange(4, dtype=np.float32)
exp_f = export.export(f)((a, b), c=c)
with self.assertRaisesRegex(
ValueError,
"The invocation args and kwargs must have the same pytree structure"):
export.call_exported(exp_f)(a, b, c=(a, b))
def test_error_wrong_avals(self):
def f(a, *, b): # a: f32[4] and b: f32[4]
return jnp.sin(a) + jnp.cos(b)
f32_4 = np.arange(4, dtype=np.float32)
exp_f = export.export(f)(f32_4, b=f32_4)
with self.assertRaisesRegex(ValueError,
r"Shape mismatch for args\[0\].shape\[0\]"):
export.call_exported(exp_f)(np.arange(6, dtype=np.float32), b=f32_4)
with self.assertRaisesRegex(ValueError,
r"Shape mismatch for kwargs\['b'\].shape\[0\]"):
export.call_exported(exp_f)(f32_4, b=np.arange(6, dtype=np.float32))
with self.assertRaisesRegex(ValueError,
r"Rank mismatch for args\[0\]"):
export.call_exported(exp_f)(f32_4.reshape((1, 4)), b=f32_4)
with self.assertRaisesRegex(ValueError,
r"Dtype mismatch for args\[0\]"):
export.call_exported(exp_f)(f32_4.astype(np.float16), b=f32_4)
@jtu.parameterized_filterable(
testcase_name=lambda kw: kw["platform"],
kwargs=[dict(platform=p)
for p in ("cpu", "cuda", "rocm", "tpu")])
def test_error_wrong_platform(self, platform):
a = np.arange(4, dtype=np.float32)
exp_f = export.export(jnp.sin, lowering_platforms=(platform,))(a)
if xb.canonicalize_platform(jtu.device_under_test()) == platform:
raise unittest.SkipTest("Uninteresting scenario")
with self.assertRaisesRegex(
ValueError, "The exported function .* was lowered for platform"):
export.call_exported(exp_f)(a)
# Now try with the platform check disabled
exp_f_no_platform_check = export.export(
jnp.sin, lowering_platforms=(platform,),
disabled_checks=[export.DisabledSafetyCheck.platform()])(a)
res = export.call_exported(exp_f_no_platform_check)(a)
self.assertAllClose(res, jnp.sin(a))
@jtu.parameterized_filterable(
testcase_name=lambda kw: kw["dialect"],
kwargs=[dict(dialect=dialect)
for dialect in ("mhlo", "stablehlo")]
)
def test_error_disallowed_custom_call(self, dialect):
# If we use hlo.custom_call or mhlo.custom_call we detect
# invalid custom call targets.
# Set up a primitive with custom lowering rules
test_primitive = core.Primitive("_test_primitive_disallowed_custom_call")
test_primitive.def_abstract_eval(lambda in_aval: in_aval)
def test_primitive_lowering(ctx, arg):
from jax._src.lib.mlir.dialects import mhlo
op = dict(stablehlo=hlo.CustomCallOp, mhlo=mhlo.CustomCallOp)[dialect]
return op([arg.type], [arg], "disallowed_call_target").results
mlir.register_lowering(test_primitive, test_primitive_lowering)
self.addCleanup(lambda: mlir.register_lowering(test_primitive, None))
a = np.arange(3, dtype=np.float32)
with self.assertRaisesRegex(ValueError,
"Cannot serialize code with custom calls whose targets .*"):
export.export(
lambda a: a + test_primitive.bind(a)
)(a)
# Now try again with the safety check disabled
exp = export.export(
lambda a: a + test_primitive.bind(a),
disabled_checks=[export.DisabledSafetyCheck.custom_call("disallowed_call_target")]
)(a)
self.assertIn("disallowed_call_target", exp.mlir_module())
def test_grad(self):
f = lambda x: jnp.sum(jnp.sin(x))
x = np.arange(4, dtype=np.float32)
exp_f = export.export(f)(x)
f1 = export.call_exported(exp_f)
self.assertAllClose(jax.grad(f)(x), jax.grad(f1)(x))
def test_higher_order_grad(self):
f = lambda x: x ** 3
x = np.float32(4.)
exp_f = export.export(f)(x)
f1 = export.call_exported(exp_f)
self.assertAllClose(jax.grad(f)(x),
jax.grad(f1)(x))
self.assertAllClose(jax.grad(jax.grad(f))(x),
jax.grad(jax.grad(f1))(x))
self.assertAllClose(jax.grad(jax.grad(jax.grad(f)))(x),
jax.grad(jax.grad(jax.grad(f1)))(x))
def test_pytree_vjp(self):
def f(a_b_pair, *, a, b):
return (dict(res=a_b_pair, a=2. * a, b=3. * b),
jnp.sin(4. * a))
a = np.arange(4, dtype=np.float32)
b = np.arange(6, dtype=np.float32)
exp_f = export.export(f)((a, b), a=a, b=b)
out_ct = f((a, b), a=a, b=b) # The output has the right structure as the cotangent
def f1_jax(a, b): # For VJP, make a function without kwargs
res = f((a, b), a=a, b=b)
return res
def f1_exp(a, b): # For VJP, make a function without kwargs
res = export.call_exported(exp_f)((a, b), a=a, b=b)
return res
jax_vjp = jax.vjp(f1_jax, a, b)[1](out_ct)
exp_vjp = jax.vjp(f1_exp, a, b)[1](out_ct)
self.assertAllClose(jax_vjp, exp_vjp)
def test_roundtrip(self):
def f1(x):
return jnp.sin(x)
a = np.arange(4, dtype=np.float32)
exp_f1 = export.export(f1)(a)
def f2(x):
res1 = export.call_exported(exp_f1)(x)
res2 = export.call_exported(exp_f1)(res1)
return jnp.cos(res2)
exp_f2 = export.export(f2)(a)
self.assertAllClose(jnp.cos(jnp.sin(jnp.sin(a))),
export.call_exported(exp_f2)(a))
@jtu.parameterized_filterable(
kwargs=[
dict(v=v)
for v in range(export.minimum_supported_serialization_version - 1,
export.maximum_supported_serialization_version + 2)])
def test_shape_poly_basic_versions(self, v: int):
self.override_serialization_version(v)
with contextlib.ExitStack() as e:
if not (export.minimum_supported_serialization_version <= v
<= export.maximum_supported_serialization_version):
e.enter_context(self.assertRaisesRegex(
ValueError,
f"The requested jax_serialization version {v} is outside the range of supported versions"))
exp = export.export(jnp.sin)(
export.poly_spec((3, 4), np.float32, "w, h"))
# Peek at the module
module_str = exp.mlir_module()
self.assertEqual(config.jax_serialization_version.value >= 7,
"shape_assertion" in module_str)
self.assertIn("jax.uses_shape_polymorphism = true",
module_str)
dim_vars = re.findall(
r"(%arg\d):\s*tensor<i..>\s*{jax.dimension_variable = true}",
module_str)
self.assertEqual(["%arg0", "%arg1"], dim_vars,
f"Found {dim_vars} in {module_str}")
x = np.arange(30, dtype=np.float32).reshape((5, 6))
res = export.call_exported(exp)(x)
self.assertAllClose(res, np.sin(x))
# A function is exported with f32[poly_spec] and is called with different arg
# shapes. We use export.call_exported and we also run the shape check
# module.
@jtu.parameterized_filterable(
testcase_name=lambda kw:f"poly_spec={kw['poly_spec']}_arg_shape={kw['arg_shape']}", # type: ignore
kwargs=[
dict(poly_spec="3,4,12", arg_shape=(3, 4, 12)),
dict(poly_spec="3,4,12", arg_shape=(3, 4, 13),
# The shape check module does not test constant dimensions
expect_error=re.escape(
r"Shape mismatch for args[0].shape[2] (expected same constant)")),
dict(poly_spec="3,4,6*a", arg_shape=(3, 4, 12)),
dict(poly_spec="3,a,a+8", arg_shape=(3, 4, 12)),
dict(poly_spec="3,4,a+1", arg_shape=(3, 4, 1),
expect_error=re.escape(
"Expected value >= 1 for dimension variable 'a'. "
"Using the following polymorphic shapes specifications: args[0].shape = (3, 4, a + 1). "
"Obtained dimension variables: 'a' = 0"
)),
dict(poly_spec="3,4,6*a", arg_shape=(3, 4, 13),
expect_error=re.escape(
"Division had remainder 1 when computing the value of 'a'"
)),
dict(poly_spec="3,a,a+8", arg_shape=(3, 4, 13),
expect_error=re.escape(
"Found inconsistency between dimension size "
"args[0].shape[2] (= 13) and the specification 'a + 8' (= 12)"
)),
])
def test_poly_shape_checks(
self, poly_spec="3,a,a+8",
arg_shape=(3, 4, 12), arg_dtype=np.float32,
expect_error=None): # If given, error from running the exported module
def f(x): # x: f32[poly_spec]
return jnp.reshape(x, (-1, x.shape[1]))
disabled_checks = ()
exp_f = export.export(f, disabled_checks=disabled_checks)(
export.poly_spec((3, 4, 12), np.float32, poly_spec))
self.assertEqual(exp_f.uses_shape_polymorphism, poly_spec != "3,4,12")
arg = np.arange(np.prod(arg_shape),
dtype=arg_dtype).reshape(arg_shape) # arg : f32[3,4,12]
with contextlib.ExitStack() as stack:
if expect_error is not None:
stack.push(self.assertRaisesRegex(Exception, expect_error))
assert core.is_constant_shape(arg.shape)
res = export.call_exported(exp_f)(arg)
if not expect_error:
self.assertAllClose(res, f(arg))
# An inner function is exported with polymorphic shapes inner_poly_spec, and
# is called from an outer function, which is exported with outer_poly_spec.
@jtu.parameterized_filterable(
testcase_name=lambda kw:f"inner={kw['inner_poly_spec']}_outer={kw['outer_poly_spec']}", # type: ignore
#one_containing="",
# By default arg_shape = (3, 4, 12) for both the outer function and the inner
# The inner function is exported for f32.
kwargs=[
# Both inner and outer are static shapes
dict(inner_poly_spec="3,4,12", outer_poly_spec="3,4,12"),
# Inner has poly shapes but outer has static shapes. When we call inner
# we do the shape constraint checking
dict(inner_poly_spec="3,a,a+b", outer_poly_spec="3,4,12"),
dict(inner_poly_spec="3,4,3*a", outer_poly_spec="3,4,12"),
dict(inner_poly_spec="3,a,a", outer_poly_spec="3,4,12",
expect_error_outer_exp=re.escape(
"Found inconsistency between dimension size "
"args[0].shape[2] (= 12) and the specification 'a' (= 4)")),
dict(inner_poly_spec="3,4,5*a", outer_poly_spec="3,4,12",
expect_error_outer_exp=re.escape(
"Division had remainder 2 when computing the value of 'a'")),
dict(inner_poly_spec="3,4,12+a", outer_poly_spec="3,4,12",
expect_error_outer_exp=re.escape(
"Expected value >= 1 for dimension variable 'a'. "
"Using the following polymorphic shapes specifications: args[0].shape = (3, 4, a + 12). "
"Obtained dimension variables: 'a' = 0 from specification "
"'a + 12' for dimension args[0].shape[2] (= 12)")),
# Both inner and outer have poly shapes.
dict(inner_poly_spec="3,a,b", outer_poly_spec="3,4,c"),
dict(inner_poly_spec="3,4,3*a", outer_poly_spec="3,4,6*c"),
dict(inner_poly_spec="3,a,a+8", outer_poly_spec="3,c+2,c+10"),
dict(inner_poly_spec="3,a,a+b", outer_poly_spec="3,4,c",
expect_error_outer_exp=re.escape(
"Expected value >= 1 for dimension variable 'b'. "
"Using the following polymorphic shapes specifications: args[0].shape = (3, a, a + b). "
"Obtained dimension variables: 'a' = 4 from specification "
"'a' for dimension args[0].shape[1] (= 4), "
"'b' = c + -4 from specification 'a + b' for dimension args[0].shape[2] (= c),")),
dict(inner_poly_spec="3,a,a", outer_poly_spec="3,4,c",
expect_error_outer_exp=re.escape(
"Found inconsistency between dimension size "
"args[0].shape[2] (= c) and the specification 'a' (= 4)")),
dict(inner_poly_spec="3,a,a", arg_shape=(3, 4),
outer_poly_spec="3,c",
expect_error_outer_exp=r"Rank mismatch for args\[0\]"),
dict(inner_poly_spec="3,a,a+b", arg_dtype=np.int32,
outer_poly_spec="3,c,d",
expect_error_outer_exp=r"Dtype mismatch for args\[0\]"),
dict(inner_poly_spec="3,4,5*a", outer_poly_spec="3,4,c",
expect_error_outer_exp=re.escape(
"Division had remainder mod(c, 5) when computing the value of 'a'")),
dict(inner_poly_spec="3,a,a+b", outer_poly_spec="3,c,c",
expect_error_outer_exp=re.escape(
"Expected value >= 1 for dimension variable 'b'. "
"Using the following polymorphic shapes specifications: args[0].shape = (3, a, a + b). "
"Obtained dimension variables: 'a' = c from "
"specification 'a' for dimension args[0].shape[1] (= c), "
"'b' = 0 from specification 'a + b' for dimension args[0].shape[2] (= c)")),
dict(inner_poly_spec="3,a,a+b", outer_poly_spec="c,4,12",
expect_error_outer_exp=re.escape(
"Shape mismatch for args[0].shape[0] (expected same constant)")),
dict(inner_poly_spec="3,4,5*a", outer_poly_spec="3,4,25*c",
expect_error_run=re.escape(
"Division had remainder 12 when computing the value of 'c'")),
dict(inner_poly_spec="3,a,b", outer_poly_spec="3,c+4,12",
expect_error_run=re.escape(
"Expected value >= 1 for dimension variable 'c'. "
"Using the following polymorphic shapes specifications: args[0].shape = (3, c + 4, 12). "
"Obtained dimension variables: 'c' = 0")),
dict(inner_poly_spec="3,a,a", outer_poly_spec="3,a,a",
expect_error_run=re.escape(
"Found inconsistency between dimension size "
"args[0].shape[2] (= 12) and the specification 'a' (= 4)")),
])
def test_poly_shape_checks_nested(
self, inner_poly_spec="3,4,5*a",
arg_shape=(3, 4, 12), arg_dtype=np.float32,
outer_poly_spec="3,4,25*c",
expect_error_outer_exp=None,
expect_error_run=None):
# Polymorphic export called with static or polymorphic shapes
def inner(x): # x: inner_poly_spec
return jnp.reshape(x, (-1, x.shape[1]))
arg = np.arange(np.prod(arg_shape),
dtype=arg_dtype).reshape(arg_shape) # x : f32[3,4,12]
inner_exp = export.export(inner)(
export.poly_spec((3, 4, 12), np.float32, inner_poly_spec))
self.assertEqual(inner_exp.uses_shape_polymorphism,
(inner_poly_spec != "3,4,12"))
def outer(x): # x: outer_poly_spec
# Use an addition to test that the shapes are refined properly for the
# result of the call_exported.
return export.call_exported(inner_exp)(x) + inner(x)
with contextlib.ExitStack() as stack:
if expect_error_outer_exp is not None:
stack.push(self.assertRaisesRegex(ValueError, expect_error_outer_exp))
# Call it after exporting again, with polymorphic shapes
outer_exp = export.export(outer)(
export.poly_spec(arg.shape, arg.dtype, outer_poly_spec))
if expect_error_outer_exp is not None:
return
self.assertEqual(outer_exp.uses_shape_polymorphism,
(inner_poly_spec != "3,4,12" or outer_poly_spec != "3,4,12"))
with contextlib.ExitStack() as stack:
if expect_error_run is not None:
stack.push(self.assertRaisesRegex(Exception, expect_error_run))
res = export.call_exported(outer_exp)(arg)
if expect_error_run is not None:
return
self.assertAllClose(2. * inner(arg), res)
# Tests details of the shape constraints errors
# This test exists also in shape_poly_test.py. Here we test the
# call_exported error reporting.
@jtu.parameterized_filterable(
testcase_name=lambda kw: kw["shape"], # assume "shape" is unique
kwargs=[
dict(shape=(8, 2, 9), # a = 2, b = 3, c = 4
poly_spec="(a + 2*b, a, a + b + c)"),
dict(shape=(2, 2, 6), # a = 2, b = 0, c = 4
poly_spec="(a + 2*b, a, a + b + c)",
expect_error=(
"Input shapes do not match the polymorphic shapes specification. "
"Expected value >= 1 for dimension variable 'b'. "
"Using the following polymorphic shapes specifications: args[0].shape = (a + 2*b, a, a + b + c). "
"Obtained dimension variables: 'a' = 2 from specification 'a' for dimension args[0].shape[1] (= 2), "
"'b' = 0 from specification 'a + 2*b' for dimension args[0].shape[0] (= 2), . "
"Please see https://github.com/google/jax/blob/main/jax/experimental/jax2tf/README.md#shape-assertion-errors for more details."
)),
dict(shape=(3, 2, 6), # a = 2, b = 0.5, c = 4 - b is not integer
poly_spec="(a + 2*b, a, a + b + c)",
expect_error=(
"Input shapes do not match the polymorphic shapes specification. "
"Division had remainder 1 when computing the value of 'b'. "
"Using the following polymorphic shapes specifications: args[0].shape = (a + 2*b, a, a + b + c). "
"Obtained dimension variables: 'a' = 2 from specification 'a' for dimension args[0].shape[1] (= 2), . "
"Please see https://github.com/google/jax/blob/main/jax/experimental/jax2tf/README.md#shape-assertion-errors for more details."
)),
dict(shape=(8, 2, 6), # a = 2, b = 3 - inconsistency
poly_spec="(a + 2*b, a, a + b)",
expect_error=(
"Input shapes do not match the polymorphic shapes specification. "
"Found inconsistency between dimension size args[0].shape[0] (= 8) and the specification 'a + 2*b' (= 10). "
"Using the following polymorphic shapes specifications: args[0].shape = (a + 2*b, a, a + b). "
"Obtained dimension variables: 'a' = 2 from specification 'a' for dimension args[0].shape[1] (= 2), "
"'b' = 4 from specification 'a + b' for dimension args[0].shape[2] (= 6), . "
"Please see https://github.com/google/jax/blob/main/jax/experimental/jax2tf/README.md#shape-assertion-errors for more details."
)),
dict(shape=(7, 2, 36), # a = 2, b = 3, c = 6 - cannot solve c
poly_spec="(2 * a + b, a, c * c)",
expect_error=(
"Cannot solve for values of dimension variables {'c'}. "
"We can only solve linear uni-variate constraints. "
"Using the following polymorphic shapes specifications: args[0].shape = (2*a + b, a, c^2). "
"Unprocessed specifications: 'c^2' for dimension size args[0].shape[2]. "
"Please see https://github.com/google/jax/blob/main/jax/experimental/jax2tf/README.md#dimension-variables-must-be-solvable-from-the-input-shapes for more details."
)),
])
def test_shape_constraints_errors(self, *,
shape, poly_spec: str, expect_error: str | None = None):
def f_jax(x): # x: f32[a + 2*b, a, a + b + c]
return 0.
if shape == (8, 2, 6) and jaxlib_version <= (0, 4, 14):
raise unittest.SkipTest("Test requires jaxlib >= 0.4.14")
x = np.arange(math.prod(shape), dtype=np.float32).reshape(shape)
with contextlib.ExitStack() as stack:
if expect_error is not None:
stack.push(self.assertRaisesRegex(Exception, re.escape(expect_error)))
exp = export.export(f_jax)(
export.poly_spec(x.shape, x.dtype, poly_spec))
export.call_exported(exp)(x)
def test_with_sharding(self):
nr_devices = 2
if len(jax.devices()) < nr_devices:
self.skipTest("Need at least 2 devices")
export_devices = jax.devices()[0:nr_devices]
export_mesh = Mesh(export_devices, axis_names=("x",))
a = np.arange(16 * 4, dtype=np.float32).reshape((16, 4))
@functools.partial(
jax.jit,
in_shardings=(jax.sharding.NamedSharding(export_mesh, P("x", None),),),
out_shardings=jax.sharding.NamedSharding(export_mesh, P(None, "x")))
def f_jax(b): # b: f32[16 // DEVICES, 4]
return b * 2.
res_native = f_jax(a)
exp = export.export(f_jax)(a)
run_devices = export_devices[::-1] # We can use other devices
run_mesh = Mesh(run_devices, "y")
a_device = jax.device_put(a, jax.sharding.NamedSharding(run_mesh, P()))
expected_re = re.compile(
# The top-level input it replicated
r"func.func .* @main\(%arg0: tensor<16x4xf32> {mhlo.sharding = \"{replicated}\"}\).*"
# We apply the in_shardings for f_jax
r".*custom_call @Sharding\(%arg0\) {mhlo.sharding = \"{devices=\[2,1\]<=\[2\]}\"}.*"
r"%1 = .*call @call_exported_f_jax.*"
# We apply the out_shardings for f_jax
r".*custom_call @Sharding\(%1\) {mhlo.sharding = \"{devices=\[1,2\]<=\[2\]}\"}.*",
re.DOTALL)
hlo = jax.jit(export.call_exported(exp)).lower(a_device).as_text()
self.assertRegex(hlo, expected_re)
res_exported = export.call_exported(exp)(a_device)
self.assertAllClose(res_native, res_exported)
# Test error reporting
with self.assertRaisesRegex(
NotImplementedError,
"Exported module .* was lowered for 2 devices and is called in a context with 1 device"):
_ = export.call_exported(exp)(a)
with self.assertRaisesRegex(
NotImplementedError,
"Exported module .* was lowered for 2 devices and is called in a context with 1 device"):
mesh1 = Mesh(jax.devices()[0:1], axis_names=("x",))
_ = jax.jit(
export.call_exported(exp),
in_shardings=(jax.sharding.NamedSharding(mesh1, P("x", None)),)
)(a)
@jtu.parameterized_filterable(
kwargs=[
dict(testcase_name=f"_in_shardings={in_shardings}_out_shardings={out_shardings}",
in_shardings=in_shardings, out_shardings=out_shardings)
for in_shardings in ("missing", None, "P")
for out_shardings in ("missing", None, "P")
])
def test_grad_with_sharding(self, in_shardings="P", out_shardings=None):
if len(jax.devices()) < 2:
self.skipTest("Test requires at least 2 devices")
x_shape = (10, 20)
x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape)
def f_jax(x): # x: f32[10,20] -> f32[20,10]
return jnp.sin(x.T)
pjit_kwargs = {}
if in_shardings != "missing":
pjit_kwargs["in_shardings"] = (P(None, "x") if in_shardings == "P" else None)
if out_shardings != "missing":
pjit_kwargs["out_shardings"] = (P("x", None) if out_shardings == "P" else None)
f_jax = pjit.pjit(f_jax, **pjit_kwargs)
with Mesh(jax.devices()[:2], "x"):
exp = export.export(f_jax)(x)
exp_vjp = exp.vjp()
vjp_module_str = str(exp_vjp.mlir_module())
if in_shardings == "P":
primal_in_sharding = "{devices=[1,2]<=[2]}"
else:
primal_in_sharding = "{replicated}"
if out_shardings == "P":
primal_out_sharding = "{devices=[2,1]<=[2]}"
else:
primal_out_sharding = "{replicated}"
main = re.search(
r"func.func public @main\(%arg0: tensor<10x20xf32> {mhlo.sharding = \"([^\"]+)\""
r".*%arg1: tensor<20x10xf32> {mhlo.sharding = \"([^\"]+)\""
# result
r".* -> \(tensor<10x20xf32>.*mhlo.sharding = \"([^\"]+)\"",
vjp_module_str)
self.assertEqual(
main.groups(),
(primal_in_sharding, primal_out_sharding, primal_in_sharding))
# Custom calls for the primal input shape
primal_in_calls = re.findall(
r"custom_call @Sharding.* {mhlo.sharding = \"(.+)\"} : .*tensor<10x20xf32>",
vjp_module_str)
self.assertTrue(
all(s == primal_in_sharding for s in primal_in_calls),
primal_in_calls
)
# Custom calls for the primal output shape
primal_out_calls = re.findall(
r"custom_call @Sharding.* {mhlo.sharding = \"(.+)\"} : .*tensor<20x10xf32>",
vjp_module_str)
self.assertTrue(
all(s == primal_out_sharding for s in primal_out_calls),
primal_in_calls
)
def test_multi_platform(self):
x = np.arange(8, dtype=np.float32)
exp = export.export(_testing_multi_platform_func,
lowering_platforms=("cpu", "tpu", "cuda"))(x)
self.assertEqual(exp.lowering_platforms, ("cpu", "tpu", "cuda"))
module_str = str(exp.mlir_module())
expected_main_re = (
r"@main\("
r"%arg0: tensor<i..> {jax.platform_index = true}.*, "
r"%arg1: tensor<8xf32>.* ->")
self.assertRegex(module_str, expected_main_re)
self.assertIn("jax.uses_shape_polymorphism = true",
module_str)
# Call with argument placed on different plaforms
for platform in self.__class__.platforms:
x_device = jax.device_put(x, jax.devices(platform)[0])
res_exp = export.call_exported(exp)(x_device)
self.assertAllClose(
res_exp,
_testing_multi_platform_fun_expected(x, platform=platform))
def test_multi_platform_nested(self):
x = np.arange(5, dtype=np.float32)
exp = export.export(_testing_multi_platform_func,
lowering_platforms=("cpu", "tpu", "cuda"))(x)
self.assertEqual(exp.lowering_platforms, ("cpu", "tpu", "cuda"))
# Now serialize the call to the exported using a different sequence of
# lowering platforms, but included in the lowering platforms for the
# nested exported.
exp2 = export.export(export.call_exported(exp),
lowering_platforms=("cpu", "cuda"))(x)
# Call with argument placed on different plaforms
for platform in self.__class__.platforms:
if platform == "tpu": continue
x_device = jax.device_put(x, jax.devices(platform)[0])
res_exp = export.call_exported(exp2)(x_device)
self.assertAllClose(
res_exp,
_testing_multi_platform_fun_expected(x, platform=platform))
def test_multi_platform_nested_inside_single_platform_export(self):
x = np.arange(5, dtype=np.float32)
exp = export.export(_testing_multi_platform_func,
lowering_platforms=("cpu", "tpu", "cuda"))(x)
self.assertEqual(exp.lowering_platforms, ("cpu", "tpu", "cuda"))
# Now serialize the call for the current platform.
exp2 = export.export(export.call_exported(exp))(x)
module_str = str(exp2.mlir_module())
self.assertIn("jax.uses_shape_polymorphism = true",
module_str)
res2 = export.call_exported(exp2)(x)
self.assertAllClose(res2, _testing_multi_platform_fun_expected(x))
def test_multi_platform_and_poly(self):
if jtu.test_device_matches(["gpu"]):
# The export is not applicable to GPU
raise unittest.SkipTest("Not intended for running on GPU")
exp = export.export(lambda x: jnp.reshape(_testing_multi_platform_func(x), (-1,)),
lowering_platforms=("cpu", "tpu"))(
export.poly_spec((5, 6), np.float32, "b1, b2")
)
x = np.arange(12, dtype=np.float32).reshape((3, 4))
res = export.call_exported(exp)(x)
self.assertAllClose(res, _testing_multi_platform_fun_expected(x).reshape((-1,)))
# Now serialize the call to the exported
exp2 = export.export(export.call_exported(exp))(x)
res2 = export.call_exported(exp2)(x)
self.assertAllClose(res2, _testing_multi_platform_fun_expected(x).reshape((-1,)))
def test_multi_platform_and_sharding(self):
export_devices = jax.devices()[0:2]
export_mesh = Mesh(export_devices, axis_names=("x",))
a = np.arange(16 * 4, dtype=np.float32).reshape((16, 4))
@functools.partial(
jax.jit,
in_shardings=(jax.sharding.NamedSharding(export_mesh, P("x", None),),),
out_shardings=jax.sharding.NamedSharding(export_mesh, P(None, "x")))
def f_jax(b): # b: f32[16 // DEVICES, 4]
return b * 2.
res_native = f_jax(a)
exp = export.export(f_jax,
lowering_platforms=("cpu", "tpu", "cuda"))(a)
# Call with argument placed on different plaforms
for platform in self.__class__.platforms:
run_devices = jax.devices(platform)[0:len(export_devices)]
if len(run_devices) != len(export_devices):
continue
run_mesh = Mesh(run_devices, ("x",))
a_device = jax.device_put(a, jax.sharding.NamedSharding(run_mesh, None))
res_exp = export.call_exported(exp)(a_device)
self.assertArraysAllClose(res_native, res_exp)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())