mirror of
https://github.com/ROCm/jax.git
synced 2025-04-17 12:26:07 +00:00

We expose 3 modes: * `SpecifiedLayout`: User specifies the `minor_to_major` field of the layout. Tiling not exposed yet. * `DefaultLayout`: PJRT chooses the layout. It defaults to the current behavior. * `AUTO`: Compiler chooses the layout. This field is not a layout per se. It's a request to get the layout from the compiler. This field cannot be on an Array or other data types. It can only be on jit. Public API coming soon. Co-authored-by: Roy Frostig <frostig@google.com> PiperOrigin-RevId: 582692036
548 lines
20 KiB
Python
548 lines
20 KiB
Python
# Copyright 2018 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Primitive dispatch and jit dispatch.
|
|
from __future__ import annotations
|
|
|
|
import atexit
|
|
from collections.abc import Iterator, Sequence
|
|
import contextlib
|
|
import dataclasses
|
|
from functools import partial
|
|
import itertools
|
|
import time
|
|
from typing import Any, Callable, NamedTuple
|
|
import logging
|
|
import threading
|
|
|
|
import numpy as np
|
|
|
|
import jax
|
|
from jax._src import basearray
|
|
from jax._src import config
|
|
from jax._src import core
|
|
from jax._src import dtypes
|
|
from jax._src import linear_util as lu
|
|
from jax._src import api_util
|
|
from jax._src import tree_util
|
|
from jax._src import source_info_util
|
|
from jax._src import traceback_util
|
|
from jax._src import util
|
|
from jax._src import xla_bridge as xb
|
|
from jax._src.interpreters import ad
|
|
from jax._src.interpreters import batching
|
|
from jax._src.interpreters import mlir
|
|
from jax._src.interpreters import xla
|
|
from jax._src.interpreters import pxla
|
|
from jax._src.lib import xla_client as xc
|
|
from jax._src.lib import xla_extension_version
|
|
from jax._src.monitoring import record_event_duration_secs
|
|
from jax._src.partition_spec import PartitionSpec
|
|
from jax._src.sharding import Sharding
|
|
from jax._src.sharding_impls import (
|
|
PmapSharding, SingleDeviceSharding, NamedSharding, XLACompatibleSharding,
|
|
UNSPECIFIED, GSPMDSharding, TransferToMemoryKind)
|
|
|
|
|
|
JAXPR_TRACE_EVENT = "/jax/core/compile/jaxpr_trace_duration"
|
|
JAXPR_TO_MLIR_MODULE_EVENT = "/jax/core/compile/jaxpr_to_mlir_module_duration"
|
|
BACKEND_COMPILE_EVENT = "/jax/core/compile/backend_compile_duration"
|
|
|
|
traceback_util.register_exclusion(__file__)
|
|
|
|
xe = xc._xla
|
|
|
|
Backend = xe.Client
|
|
Device = xc.Device
|
|
|
|
CompileOptions = xc.CompileOptions
|
|
|
|
map, unsafe_map = util.safe_map, map
|
|
zip, unsafe_zip = util.safe_zip, zip
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# This flag is set on exit; no logging should be attempted
|
|
_on_exit = False
|
|
|
|
### op-by-op execution
|
|
|
|
class _ArgSpec(NamedTuple):
|
|
aval: core.AbstractValue
|
|
sharding: XLACompatibleSharding | None
|
|
|
|
|
|
def _arg_spec(x: Any) -> _ArgSpec:
|
|
from jax._src import pjit
|
|
|
|
aval = xla.abstractify(x)
|
|
try:
|
|
if isinstance(x.sharding, PmapSharding):
|
|
return _ArgSpec(aval, None)
|
|
return _ArgSpec(aval, (pjit.to_gspmd_sharding(x.sharding, x.ndim) # type: ignore
|
|
if x._committed else None))
|
|
except:
|
|
return _ArgSpec(aval, None)
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class OrigShardings:
|
|
shardings: Sequence[GSPMDSharding | None]
|
|
|
|
def __hash__(self):
|
|
return hash(tuple(s for s in self.shardings))
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, OrigShardings):
|
|
return False
|
|
return all(getattr(s, "_original_sharding", s) == getattr(o, "_original_sharding", o)
|
|
for s, o in zip(self.shardings, other.shardings))
|
|
|
|
|
|
def apply_primitive(prim, *args, **params):
|
|
"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""
|
|
from jax._src import pjit
|
|
|
|
try:
|
|
in_avals, in_shardings = util.unzip2([_arg_spec(a) for a in args])
|
|
in_tree = tree_util.tree_structure(args)
|
|
compiled_fun = xla_primitive_callable(
|
|
prim, in_avals, in_tree, OrigShardings(in_shardings), **params)
|
|
except pxla.DeviceAssignmentMismatchError as e:
|
|
fails, = e.args
|
|
# TODO(yashkatariya): Thread through a signature_fun via every primitive
|
|
# using apply_primitive so that the error message has the right argument
|
|
# name instead of `args[0]`, etc.
|
|
arg_names = api_util._arg_names(prim.impl, args, {}, (), ())
|
|
msg = pjit._device_assignment_mismatch_error(
|
|
prim.name, fails, args, 'jit', arg_names)
|
|
raise ValueError(msg) from None
|
|
|
|
return compiled_fun(*args)
|
|
|
|
|
|
@util.cache()
|
|
def xla_primitive_callable(
|
|
prim: core.Primitive, in_avals: tuple[core.AbstractValue, ...], in_tree,
|
|
orig_in_shardings: OrigShardings, **params,
|
|
) -> Callable:
|
|
def prim_fun(*args):
|
|
out = prim.bind(*args, **params)
|
|
if prim.multiple_results:
|
|
return out
|
|
else:
|
|
return out,
|
|
donated_invars = (False,) * len(in_avals)
|
|
wrapped_fun = lu.wrap_init(prim_fun)
|
|
flat_fun, out_tree = api_util.flatten_fun_nokwargs(wrapped_fun, in_tree)
|
|
computation = sharded_lowering(
|
|
flat_fun, prim.name, donated_invars, keep_unused=False,
|
|
inline=True, in_avals=in_avals, in_shardings=orig_in_shardings.shardings,
|
|
lowering_parameters=mlir.LoweringParameters())
|
|
compiled = computation.compile()
|
|
if xla_extension_version >= 192:
|
|
if config.disable_jit.value:
|
|
call = compiled.unsafe_call
|
|
else:
|
|
call = compiled.create_cpp_call_for_apply_primitive(out_tree())
|
|
if call is None:
|
|
call = compiled.unsafe_call
|
|
else:
|
|
call = compiled.unsafe_call
|
|
if not prim.multiple_results:
|
|
return lambda *args, **kw: call(*args, **kw)[0]
|
|
else:
|
|
return call
|
|
|
|
|
|
def sharded_lowering(
|
|
fun: lu.WrappedFun, name: str, donated_invars: Sequence[bool],
|
|
keep_unused: bool, inline: bool, in_avals: tuple[core.AbstractValue, ...],
|
|
in_shardings: Sequence[Sharding | None],
|
|
lowering_parameters: mlir.LoweringParameters
|
|
) -> pxla.MeshComputation:
|
|
in_shardings_unspec = [UNSPECIFIED if i is None else i for i in in_shardings]
|
|
|
|
# Pass in a singleton `UNSPECIFIED` for out_shardings because we don't know
|
|
# the number of output avals at this stage. lower_sharding_computation will
|
|
# apply it to all out_avals.
|
|
return pxla.lower_sharding_computation(
|
|
fun, 'jit', name, in_shardings_unspec, UNSPECIFIED, donated_invars,
|
|
in_avals, keep_unused=keep_unused, inline=inline,
|
|
devices_from_context=None, lowering_parameters=lowering_parameters,
|
|
in_layouts=(None,) * len(in_avals), out_layouts=None)
|
|
|
|
|
|
def simple_impl(prim):
|
|
prim.def_impl(partial(apply_primitive, prim))
|
|
|
|
RuntimeToken = Any
|
|
|
|
class RuntimeTokenSet(threading.local):
|
|
"""See docstring for effect.py module for the calling convention for tokens."""
|
|
|
|
# For each ordered effect, the token returned by the last dispatched
|
|
# computation, sharded over the devices in that computation.
|
|
current_tokens: dict[core.Effect, jax.Array]
|
|
|
|
# For each device, the runtime token returned by the last dispatched
|
|
# computation on that device.
|
|
output_runtime_tokens: dict[Device, RuntimeToken]
|
|
|
|
def __init__(self):
|
|
self.current_tokens = {}
|
|
self.output_runtime_tokens = {}
|
|
|
|
def get_token_input(self, eff: core.Effect,
|
|
devices: list[Device]) -> jax.Array:
|
|
tok = self.current_tokens.get(eff, np.zeros(0, np.bool_))
|
|
s = NamedSharding(pxla.Mesh(devices, axis_names=["dev"]),
|
|
PartitionSpec([]))
|
|
s = jax.sharding.GSPMDSharding.get_replicated(devices)
|
|
indices = tuple(
|
|
s.addressable_devices_indices_map(tok.shape).values())
|
|
sharded_tok = pxla.shard_args(devices, [indices], [s], [tok])[0]
|
|
self.current_tokens[eff] = sharded_tok
|
|
return sharded_tok
|
|
|
|
def set_token_result(self, eff: core.Effect, token: jax.Array):
|
|
self.current_tokens[eff] = token
|
|
|
|
def set_output_runtime_token(self, device: Device, token: RuntimeToken):
|
|
# We're free to clobber the previous output token because on each
|
|
# device we have a total ordering of computations. Only the token
|
|
# from the latest computation matters.
|
|
self.output_runtime_tokens[device] = token
|
|
|
|
def clear(self):
|
|
self.current_tokens = {}
|
|
self.output_runtime_tokens = {}
|
|
|
|
def block_until_ready(self):
|
|
for token in self.current_tokens.values():
|
|
token.block_until_ready()
|
|
for token in self.output_runtime_tokens.values():
|
|
token.block_until_ready()
|
|
self.clear()
|
|
|
|
runtime_tokens: RuntimeTokenSet = RuntimeTokenSet()
|
|
|
|
@atexit.register
|
|
def wait_for_tokens():
|
|
runtime_tokens.block_until_ready()
|
|
|
|
|
|
def is_single_device_sharding(sharding: Sharding) -> bool:
|
|
# Special case PmapSharding here because PmapSharding maps away an axis
|
|
# and needs to be handled separately.test_pjit_single_device_sharding_add
|
|
return len(sharding.device_set) == 1 and not isinstance(sharding, PmapSharding)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def log_elapsed_time(fmt: str, fun_name: str, event: str | None = None):
|
|
if _on_exit:
|
|
yield
|
|
else:
|
|
log_priority = logging.WARNING if config.log_compiles.value else logging.DEBUG
|
|
start_time = time.time()
|
|
yield
|
|
elapsed_time = time.time() - start_time
|
|
if logger.isEnabledFor(log_priority):
|
|
logger.log(log_priority, fmt.format(
|
|
fun_name=fun_name, elapsed_time=elapsed_time))
|
|
if event is not None:
|
|
record_event_duration_secs(event, elapsed_time)
|
|
|
|
|
|
def should_tuple_args(num_args: int, platform: str) -> bool:
|
|
# CPU and GPU do not need tuples as they use host-side data structures that
|
|
# do not have small bounds.
|
|
# TPU only needs a tuple for very long lists
|
|
if platform == "tpu":
|
|
return num_args > 2000
|
|
else:
|
|
return False
|
|
|
|
def jaxpr_has_primitive(jaxpr: core.Jaxpr, prim_name: str) -> bool:
|
|
"""Whether there is a primitive given by user anywhere inside a Jaxpr."""
|
|
for eqn in jaxpr.eqns:
|
|
if prim_name in eqn.primitive.name:
|
|
return True
|
|
for subjaxpr in core.subjaxprs(jaxpr):
|
|
if jaxpr_has_primitive(subjaxpr, prim_name):
|
|
return True
|
|
return False
|
|
|
|
|
|
class SourceInfo(NamedTuple):
|
|
source_info: str
|
|
eqn_name: str
|
|
|
|
|
|
def jaxpr_shardings(
|
|
jaxpr: core.Jaxpr,
|
|
) -> Iterator[tuple[XLACompatibleSharding, SourceInfo]]:
|
|
from jax._src import pjit
|
|
from jax.experimental import shard_map
|
|
|
|
for eqn in jaxpr.eqns:
|
|
if eqn.primitive is pjit.sharding_constraint_p:
|
|
source_info = SourceInfo(source_info_util.summarize(eqn.source_info),
|
|
eqn.primitive.name)
|
|
yield (eqn.params['sharding'], source_info)
|
|
elif eqn.primitive is pjit.pjit_p:
|
|
source_info = SourceInfo(source_info_util.summarize(eqn.source_info),
|
|
eqn.primitive.name)
|
|
yield from ((i, source_info) for i in eqn.params['in_shardings'])
|
|
yield from ((o, source_info) for o in eqn.params['out_shardings'])
|
|
elif eqn.primitive is shard_map.shard_map_p:
|
|
source_info = SourceInfo(source_info_util.summarize(eqn.source_info),
|
|
eqn.primitive.name)
|
|
def _names_to_pspec(names):
|
|
ndmin = max(names) + 1 if names else 0
|
|
return PartitionSpec(*(names.get(i) for i in range(ndmin)))
|
|
yield from ((NamedSharding(eqn.params['mesh'], _names_to_pspec(names)), source_info)
|
|
for names in [*eqn.params['in_names'], *eqn.params['out_names']])
|
|
elif eqn.primitive is device_put_p:
|
|
s = eqn.params['device']
|
|
if isinstance(s, XLACompatibleSharding) and s.memory_kind is not None:
|
|
source_info = SourceInfo(source_info_util.summarize(eqn.source_info),
|
|
eqn.primitive.name)
|
|
yield (s, source_info)
|
|
for subjaxpr in core.subjaxprs(jaxpr):
|
|
yield from jaxpr_shardings(subjaxpr)
|
|
|
|
|
|
def jaxpr_has_bints(jaxpr: core.Jaxpr) -> bool:
|
|
return (any(type(v.aval.dtype) is core.bint for v in jaxpr.invars
|
|
if isinstance(v.aval, core.UnshapedArray)) or
|
|
any(_is_bint_axis_size(d)
|
|
for j in itertools.chain([jaxpr], core.subjaxprs(jaxpr))
|
|
for e in j.eqns for v in e.outvars
|
|
if isinstance(v.aval, core.DShapedArray) for d in v.aval.shape))
|
|
|
|
def _is_bint_axis_size(d: core.AxisSize) -> bool:
|
|
if isinstance(d, core.DArray):
|
|
assert not d.shape
|
|
return type(d.dtype) is core.bint
|
|
elif isinstance(d, core.Var):
|
|
return (isinstance(d.aval, core.DShapedArray) and
|
|
type(d.aval.dtype) is core.bint)
|
|
return False
|
|
|
|
|
|
# We can optionally set a Jaxpr rewriter that can be applied just before
|
|
# compilation. This mechanism is used for compiling id_tap, we can
|
|
# remove it once we bring the id_tap implementation into the core.
|
|
outfeed_rewriter: Callable[[core.Jaxpr], core.Jaxpr] | None = None
|
|
def apply_outfeed_rewriter(jaxpr: core.Jaxpr) -> core.Jaxpr:
|
|
if outfeed_rewriter is not None:
|
|
return outfeed_rewriter(jaxpr)
|
|
else:
|
|
return jaxpr
|
|
|
|
|
|
def check_arg(arg: Any):
|
|
if not (isinstance(arg, core.Tracer) or core.valid_jaxtype(arg)):
|
|
raise TypeError(f"Argument '{arg}' of type {type(arg)} is not a valid "
|
|
"JAX type.")
|
|
|
|
|
|
def jaxpr_replicas(jaxpr: core.Jaxpr) -> int:
|
|
"""The number of replicas needed for a jaxpr.
|
|
|
|
For a eqn, multiply the `axis_size` with the `jaxpr_replicas` of the
|
|
subjaxprs. For a list of eqns, take the maximum number of replicas.
|
|
"""
|
|
return max(unsafe_map(_eqn_replicas, jaxpr.eqns), default=1)
|
|
|
|
# TODO(mattjj): this function assumes that only pmap has a parameter named
|
|
# axis_size, and that it corresponds to cross-replica mapping
|
|
def _eqn_replicas(eqn: core.JaxprEqn) -> int:
|
|
call_jaxpr = eqn.params.get("call_jaxpr")
|
|
if call_jaxpr:
|
|
return eqn.params.get('axis_size', 1) * jaxpr_replicas(call_jaxpr)
|
|
elif eqn.primitive in xla.initial_style_primitives:
|
|
return _initial_style_primitive_replicas(eqn.params)
|
|
else:
|
|
return 1
|
|
|
|
def _initial_style_primitive_replicas(params: dict[str, Any]) -> int:
|
|
return max(core.traverse_jaxpr_params(jaxpr_replicas, params).values(),
|
|
default=1)
|
|
|
|
def needs_check_special() -> bool:
|
|
return config.debug_infs.value or config.debug_nans.value
|
|
|
|
def check_special(name: str, bufs: Sequence[basearray.Array]) -> None:
|
|
if needs_check_special():
|
|
for buf in bufs:
|
|
_check_special(name, buf.dtype, buf)
|
|
|
|
def _check_special(name: str, dtype: np.dtype, buf: basearray.Array) -> None:
|
|
if dtypes.issubdtype(dtype, np.inexact):
|
|
if config.debug_nans.value and np.any(np.isnan(np.asarray(buf))):
|
|
raise FloatingPointError(f"invalid value (nan) encountered in {name}")
|
|
if config.debug_infs.value and np.any(np.isinf(np.asarray(buf))):
|
|
raise FloatingPointError(f"invalid value (inf) encountered in {name}")
|
|
|
|
|
|
def _put_x(x, s: Sharding, aval: core.AbstractValue, committed: bool):
|
|
result_handler = pxla.global_aval_to_result_handler(aval, s, committed, False)
|
|
map_ = s.devices_indices_map(aval.shape) # type: ignore
|
|
return result_handler(pxla.shard_arg(x, list(map_), list(map_.values()), s))
|
|
|
|
def _override_get_device_assignment(sharding, *args, **kwargs):
|
|
da = sharding._device_assignment
|
|
return xb.get_device_backend(da[0]), da
|
|
|
|
def _identity_fn(x):
|
|
return x
|
|
|
|
def _mcjax_reshard(x, target_sharding):
|
|
from jax._src import api, array
|
|
|
|
inp_sharding = x.sharding
|
|
|
|
if inp_sharding._device_assignment == target_sharding._device_assignment:
|
|
return api.jit(_identity_fn, out_shardings=target_sharding)(x)
|
|
|
|
if inp_sharding.device_set != target_sharding.device_set:
|
|
inp_ids = [d.id for d in inp_sharding._device_assignment]
|
|
inp_plat = inp_sharding._device_assignment[0].platform.upper()
|
|
target_ids = [d.id for d in target_sharding._device_assignment]
|
|
target_plat = target_sharding._device_assignment[0].platform.upper()
|
|
raise ValueError("Input and target sharding should have the same set of "
|
|
f"devices. Got input's device set ids: {inp_ids} on "
|
|
f"platform {inp_plat} and target sharding's device set "
|
|
f"ids: {target_ids} on platform {target_plat}")
|
|
|
|
old_hlo_sharding = inp_sharding._to_xla_hlo_sharding(x.ndim)
|
|
if old_hlo_sharding.is_replicated():
|
|
new_hlo_sharding = old_hlo_sharding
|
|
else:
|
|
permute_order = np.vectorize(target_sharding._device_assignment.index,
|
|
otypes=[int])(inp_sharding._device_assignment)
|
|
# Unfortunately need to fallback to V1 sharding here.
|
|
new_op_sharding = old_hlo_sharding.to_proto()
|
|
new_op_sharding.iota_reshape_dims = []
|
|
new_op_sharding.iota_transpose_perm = []
|
|
new_op_sharding.tile_assignment_devices = np.take(
|
|
old_hlo_sharding.tile_assignment_devices(), permute_order
|
|
)
|
|
new_hlo_sharding = xc.HloSharding.from_proto(new_op_sharding)
|
|
|
|
new_x = array.make_array_from_single_device_arrays(
|
|
x.shape,
|
|
GSPMDSharding(target_sharding._device_assignment, new_hlo_sharding),
|
|
x._arrays,
|
|
)
|
|
|
|
_orig_get_and_check_device_assignment = pxla._get_and_check_device_assignment.fn
|
|
pxla._get_and_check_device_assignment.fn = partial(
|
|
_override_get_device_assignment, target_sharding)
|
|
try:
|
|
return api.jit(_identity_fn, out_shardings=target_sharding)(new_x)
|
|
finally:
|
|
pxla._get_and_check_device_assignment.fn = _orig_get_and_check_device_assignment
|
|
|
|
|
|
def _device_put_impl(
|
|
x,
|
|
device: Device | Sharding | None = None,
|
|
src: Device | Sharding | None = None):
|
|
from jax._src import array
|
|
|
|
if (isinstance(device, TransferToMemoryKind) or
|
|
isinstance(src, TransferToMemoryKind)):
|
|
raise ValueError(
|
|
"TransferToMemoryKind argument to jax.device_put can only be used"
|
|
" inside jax.jit. If you are using device_put outside jax.jit, then"
|
|
" please provide a concrete Sharding with memory_kind.")
|
|
|
|
try:
|
|
aval = xla.abstractify(x)
|
|
except TypeError as err:
|
|
raise TypeError(
|
|
f"Argument '{x}' of type {type(x)} is not a valid JAX type") from err
|
|
|
|
if isinstance(device, Sharding):
|
|
s = device
|
|
if getattr(x, 'sharding', None) == s:
|
|
return x
|
|
if (not s.is_fully_addressable and # type: ignore
|
|
isinstance(x, array.ArrayImpl) and not x.is_fully_addressable):
|
|
# This has to be XLACompatible because _mcjax_reshard will run a
|
|
# XLA computation.
|
|
assert isinstance(s, XLACompatibleSharding)
|
|
return _mcjax_reshard(x, s)
|
|
if not s.is_fully_addressable: # type: ignore
|
|
# TODO(yashkatariya,mattjj): Link to a doc about McJAX and jax.Array.
|
|
raise ValueError(
|
|
"device_put's second argument must be a Device or a Sharding which"
|
|
f" represents addressable devices, but got {s}. You are probably"
|
|
" trying to use device_put in multi-controller JAX which is not"
|
|
" supported. Please use jax.make_array_from_single_device_arrays API"
|
|
" or pass device or Sharding which represents addressable devices.")
|
|
return _put_x(x, s, aval, True)
|
|
|
|
# Only `Device` exists below. `Sharding` instance is handled above.
|
|
if isinstance(x, array.ArrayImpl):
|
|
if not x.is_fully_addressable:
|
|
raise ValueError(
|
|
"device_put's first argument must be a fully addressable array, but "
|
|
f"got value with devices {x.devices()}")
|
|
if device is None:
|
|
return x
|
|
elif is_single_device_sharding(x.sharding):
|
|
return pxla.batched_device_put(aval, SingleDeviceSharding(device), [x],
|
|
[device])
|
|
|
|
sh = SingleDeviceSharding(pxla._get_default_device()
|
|
if device is None else device)
|
|
return _put_x(x, sh, aval, device is not None)
|
|
|
|
|
|
device_put_p = core.Primitive('device_put')
|
|
device_put_p.def_impl(_device_put_impl)
|
|
device_put_p.def_abstract_eval(lambda x, device=None, src=None: x)
|
|
|
|
def device_put_transpose_rule(ct, _, device, src):
|
|
return [device_put_p.bind(ct, device=src, src=device)]
|
|
ad.deflinear2(device_put_p, device_put_transpose_rule)
|
|
batching.defvectorized(device_put_p)
|
|
|
|
def _tpu_device_put_lowering(ctx, x, *, device, src):
|
|
if (isinstance(device, (XLACompatibleSharding, TransferToMemoryKind)) and
|
|
device.memory_kind is not None):
|
|
aval, = ctx.avals_in
|
|
out_aval, = ctx.avals_out
|
|
x = mlir.wrap_with_memory_kind(x, device.memory_kind, out_aval)
|
|
if isinstance(device, XLACompatibleSharding):
|
|
x = mlir.wrap_with_sharding_op(
|
|
ctx, x, out_aval, device._to_xla_hlo_sharding(aval.ndim).to_proto())
|
|
return [x]
|
|
return [x]
|
|
mlir.register_lowering(device_put_p, _tpu_device_put_lowering, platform='tpu')
|
|
|
|
|
|
def _common_device_put_lowering(ctx, x, *, device, src):
|
|
if (isinstance(device, (XLACompatibleSharding, TransferToMemoryKind)) and
|
|
device.memory_kind is not None):
|
|
raise NotImplementedError(
|
|
"Passing memory_kind to device_put via Shardings is not supported on"
|
|
f" platforms {ctx.module_context.platforms}")
|
|
return [x]
|
|
mlir.register_lowering(device_put_p, _common_device_put_lowering)
|