mirror of
https://github.com/ROCm/jax.git
synced 2025-04-28 03:46:06 +00:00

We aren't supporting eigenvectors for now because eigenvectors are not uniquely determined by the input matrix, they're only determined up to 'gauge' (that is multiplication by a complex scalar with absolute value 1). Note, this means that second derivatives aren't supported, because they involve differentiating the eigvals jvp, which itself depends on eigenvectors.
501 lines
18 KiB
Python
501 lines
18 KiB
Python
# Copyright 2018 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
import textwrap
|
|
import operator
|
|
from typing import Tuple, Union, cast
|
|
|
|
from jax import jit, custom_jvp
|
|
from jax import lax
|
|
from jax import ops
|
|
from jax._src.lax import linalg as lax_linalg
|
|
from jax import dtypes
|
|
from .util import _wraps
|
|
from . import lax_numpy as jnp
|
|
from jax.util import canonicalize_axis
|
|
|
|
_T = lambda x: jnp.swapaxes(x, -1, -2)
|
|
_H = lambda x: jnp.conjugate(jnp.swapaxes(x, -1, -2))
|
|
|
|
|
|
def _promote_arg_dtypes(*args):
|
|
"""Promotes `args` to a common inexact type."""
|
|
def _to_inexact_type(type):
|
|
return type if jnp.issubdtype(type, jnp.inexact) else jnp.float_
|
|
inexact_types = [_to_inexact_type(jnp._dtype(arg)) for arg in args]
|
|
dtype = dtypes.canonicalize_dtype(jnp.result_type(*inexact_types))
|
|
args = [lax.convert_element_type(arg, dtype) for arg in args]
|
|
if len(args) == 1:
|
|
return args[0]
|
|
else:
|
|
return args
|
|
|
|
|
|
@_wraps(np.linalg.cholesky)
|
|
def cholesky(a):
|
|
a = _promote_arg_dtypes(jnp.asarray(a))
|
|
return lax_linalg.cholesky(a)
|
|
|
|
|
|
@_wraps(np.linalg.svd)
|
|
def svd(a, full_matrices=True, compute_uv=True):
|
|
a = _promote_arg_dtypes(jnp.asarray(a))
|
|
return lax_linalg.svd(a, full_matrices, compute_uv)
|
|
|
|
|
|
@_wraps(np.linalg.matrix_power)
|
|
def matrix_power(a, n):
|
|
a = _promote_arg_dtypes(jnp.asarray(a))
|
|
|
|
if a.ndim < 2:
|
|
raise TypeError("{}-dimensional array given. Array must be at least "
|
|
"two-dimensional".format(a.ndim))
|
|
if a.shape[-2] != a.shape[-1]:
|
|
raise TypeError("Last 2 dimensions of the array must be square")
|
|
try:
|
|
n = operator.index(n)
|
|
except TypeError as err:
|
|
raise TypeError("exponent must be an integer, got {}".format(n)) from err
|
|
|
|
if n == 0:
|
|
return jnp.broadcast_to(jnp.eye(a.shape[-2], dtype=a.dtype), a.shape)
|
|
elif n < 0:
|
|
a = inv(a)
|
|
n = np.abs(n)
|
|
|
|
if n == 1:
|
|
return a
|
|
elif n == 2:
|
|
return a @ a
|
|
elif n == 3:
|
|
return (a @ a) @ a
|
|
|
|
z = result = None
|
|
while n > 0:
|
|
z = a if z is None else (z @ z)
|
|
n, bit = divmod(n, 2)
|
|
if bit:
|
|
result = z if result is None else (result @ z)
|
|
|
|
return result
|
|
|
|
|
|
@_wraps(np.linalg.matrix_rank)
|
|
def matrix_rank(M, tol=None):
|
|
M = _promote_arg_dtypes(jnp.asarray(M))
|
|
if M.ndim > 2:
|
|
raise TypeError("array should have 2 or fewer dimensions")
|
|
if M.ndim < 2:
|
|
return jnp.any(M != 0).astype(jnp.int32)
|
|
S = svd(M, full_matrices=False, compute_uv=False)
|
|
if tol is None:
|
|
tol = S.max() * np.max(M.shape) * jnp.finfo(S.dtype).eps
|
|
return jnp.sum(S > tol)
|
|
|
|
|
|
@custom_jvp
|
|
@_wraps(np.linalg.slogdet)
|
|
@jit
|
|
def slogdet(a):
|
|
a = _promote_arg_dtypes(jnp.asarray(a))
|
|
dtype = lax.dtype(a)
|
|
a_shape = jnp.shape(a)
|
|
if len(a_shape) < 2 or a_shape[-1] != a_shape[-2]:
|
|
msg = "Argument to slogdet() must have shape [..., n, n], got {}"
|
|
raise ValueError(msg.format(a_shape))
|
|
lu, pivot, _ = lax_linalg.lu(a)
|
|
diag = jnp.diagonal(lu, axis1=-2, axis2=-1)
|
|
is_zero = jnp.any(diag == jnp.array(0, dtype=dtype), axis=-1)
|
|
parity = jnp.count_nonzero(pivot != jnp.arange(a_shape[-1]), axis=-1)
|
|
if jnp.iscomplexobj(a):
|
|
sign = jnp.prod(diag / jnp.abs(diag), axis=-1)
|
|
else:
|
|
sign = jnp.array(1, dtype=dtype)
|
|
parity = parity + jnp.count_nonzero(diag < 0, axis=-1)
|
|
sign = jnp.where(is_zero,
|
|
jnp.array(0, dtype=dtype),
|
|
sign * jnp.array(-2 * (parity % 2) + 1, dtype=dtype))
|
|
logdet = jnp.where(
|
|
is_zero, jnp.array(-jnp.inf, dtype=dtype),
|
|
jnp.sum(jnp.log(jnp.abs(diag)), axis=-1))
|
|
return sign, jnp.real(logdet)
|
|
|
|
@slogdet.defjvp
|
|
def _slogdet_jvp(primals, tangents):
|
|
x, = primals
|
|
g, = tangents
|
|
if jnp.issubdtype(jnp._dtype(x), jnp.complexfloating):
|
|
raise NotImplementedError # TODO(pfau): make this work for complex types
|
|
sign, ans = slogdet(x)
|
|
sign_dot, ans_dot = jnp.zeros_like(sign), jnp.trace(solve(x, g), axis1=-1, axis2=-2)
|
|
return (sign, ans), (sign_dot, ans_dot)
|
|
|
|
|
|
def _cofactor_solve(a, b):
|
|
"""Equivalent to det(a)*solve(a, b) for nonsingular mat.
|
|
|
|
Intermediate function used for jvp and vjp of det.
|
|
This function borrows heavily from jax.numpy.linalg.solve and
|
|
jax.numpy.linalg.slogdet to compute the gradient of the determinant
|
|
in a way that is well defined even for low rank matrices.
|
|
|
|
This function handles two different cases:
|
|
* rank(a) == n or n-1
|
|
* rank(a) < n-1
|
|
|
|
For rank n-1 matrices, the gradient of the determinant is a rank 1 matrix.
|
|
Rather than computing det(a)*solve(a, b), which would return NaN, we work
|
|
directly with the LU decomposition. If a = p @ l @ u, then
|
|
det(a)*solve(a, b) =
|
|
prod(diag(u)) * u^-1 @ l^-1 @ p^-1 b =
|
|
prod(diag(u)) * triangular_solve(u, solve(p @ l, b))
|
|
If a is rank n-1, then the lower right corner of u will be zero and the
|
|
triangular_solve will fail.
|
|
Let x = solve(p @ l, b) and y = det(a)*solve(a, b).
|
|
Then y_{n}
|
|
x_{n} / u_{nn} * prod_{i=1...n}(u_{ii}) =
|
|
x_{n} * prod_{i=1...n-1}(u_{ii})
|
|
So by replacing the lower-right corner of u with prod_{i=1...n-1}(u_{ii})^-1
|
|
we can avoid the triangular_solve failing.
|
|
To correctly compute the rest of y_{i} for i != n, we simply multiply
|
|
x_{i} by det(a) for all i != n, which will be zero if rank(a) = n-1.
|
|
|
|
For the second case, a check is done on the matrix to see if `solve`
|
|
returns NaN or Inf, and gives a matrix of zeros as a result, as the
|
|
gradient of the determinant of a matrix with rank less than n-1 is 0.
|
|
This will still return the correct value for rank n-1 matrices, as the check
|
|
is applied *after* the lower right corner of u has been updated.
|
|
|
|
Args:
|
|
a: A square matrix or batch of matrices, possibly singular.
|
|
b: A matrix, or batch of matrices of the same dimension as a.
|
|
|
|
Returns:
|
|
det(a) and cofactor(a)^T*b, aka adjugate(a)*b
|
|
"""
|
|
a = _promote_arg_dtypes(jnp.asarray(a))
|
|
b = _promote_arg_dtypes(jnp.asarray(b))
|
|
a_shape = jnp.shape(a)
|
|
b_shape = jnp.shape(b)
|
|
a_ndims = len(a_shape)
|
|
if not (a_ndims >= 2 and a_shape[-1] == a_shape[-2]
|
|
and b_shape[-2:] == a_shape[-2:]):
|
|
msg = ("The arguments to _cofactor_solve must have shapes "
|
|
"a=[..., m, m] and b=[..., m, m]; got a={} and b={}")
|
|
raise ValueError(msg.format(a_shape, b_shape))
|
|
if a_shape[-1] == 1:
|
|
return a[0, 0], b
|
|
# lu contains u in the upper triangular matrix and l in the strict lower
|
|
# triangular matrix.
|
|
# The diagonal of l is set to ones without loss of generality.
|
|
lu, pivots, permutation = lax_linalg.lu(a)
|
|
dtype = lax.dtype(a)
|
|
batch_dims = lax.broadcast_shapes(lu.shape[:-2], b.shape[:-2])
|
|
x = jnp.broadcast_to(b, batch_dims + b.shape[-2:])
|
|
lu = jnp.broadcast_to(lu, batch_dims + lu.shape[-2:])
|
|
# Compute (partial) determinant, ignoring last diagonal of LU
|
|
diag = jnp.diagonal(lu, axis1=-2, axis2=-1)
|
|
parity = jnp.count_nonzero(pivots != jnp.arange(a_shape[-1]), axis=-1)
|
|
sign = jnp.array(-2 * (parity % 2) + 1, dtype=dtype)
|
|
# partial_det[:, -1] contains the full determinant and
|
|
# partial_det[:, -2] contains det(u) / u_{nn}.
|
|
partial_det = jnp.cumprod(diag, axis=-1) * sign[..., None]
|
|
lu = ops.index_update(lu, ops.index[..., -1, -1], 1.0 / partial_det[..., -2])
|
|
permutation = jnp.broadcast_to(permutation, batch_dims + (a_shape[-1],))
|
|
iotas = jnp.ix_(*(lax.iota(jnp.int32, b) for b in batch_dims + (1,)))
|
|
# filter out any matrices that are not full rank
|
|
d = jnp.ones(x.shape[:-1], x.dtype)
|
|
d = lax_linalg.triangular_solve(lu, d, left_side=True, lower=False)
|
|
d = jnp.any(jnp.logical_or(jnp.isnan(d), jnp.isinf(d)), axis=-1)
|
|
d = jnp.tile(d[..., None, None], d.ndim*(1,) + x.shape[-2:])
|
|
x = jnp.where(d, jnp.zeros_like(x), x) # first filter
|
|
x = x[iotas[:-1] + (permutation, slice(None))]
|
|
x = lax_linalg.triangular_solve(lu, x, left_side=True, lower=True,
|
|
unit_diagonal=True)
|
|
x = jnp.concatenate((x[..., :-1, :] * partial_det[..., -1, None, None],
|
|
x[..., -1:, :]), axis=-2)
|
|
x = lax_linalg.triangular_solve(lu, x, left_side=True, lower=False)
|
|
x = jnp.where(d, jnp.zeros_like(x), x) # second filter
|
|
|
|
return partial_det[..., -1], x
|
|
|
|
|
|
@custom_jvp
|
|
@_wraps(np.linalg.det)
|
|
def det(a):
|
|
sign, logdet = slogdet(a)
|
|
return sign * jnp.exp(logdet)
|
|
|
|
|
|
@det.defjvp
|
|
def _det_jvp(primals, tangents):
|
|
x, = primals
|
|
g, = tangents
|
|
y, z = _cofactor_solve(x, g)
|
|
return y, jnp.trace(z, axis1=-1, axis2=-2)
|
|
|
|
|
|
@_wraps(np.linalg.eig)
|
|
def eig(a):
|
|
a = _promote_arg_dtypes(jnp.asarray(a))
|
|
return lax_linalg.eig(a, compute_left_eigenvectors=False)
|
|
|
|
|
|
@_wraps(np.linalg.eigvals)
|
|
def eigvals(a):
|
|
return lax_linalg.eig(a, compute_left_eigenvectors=False,
|
|
compute_right_eigenvectors=False)[0]
|
|
|
|
|
|
@_wraps(np.linalg.eigh)
|
|
def eigh(a, UPLO=None, symmetrize_input=True):
|
|
if UPLO is None or UPLO == "L":
|
|
lower = True
|
|
elif UPLO == "U":
|
|
lower = False
|
|
else:
|
|
msg = "UPLO must be one of None, 'L', or 'U', got {}".format(UPLO)
|
|
raise ValueError(msg)
|
|
|
|
a = _promote_arg_dtypes(jnp.asarray(a))
|
|
v, w = lax_linalg.eigh(a, lower=lower, symmetrize_input=symmetrize_input)
|
|
return w, v
|
|
|
|
|
|
@_wraps(np.linalg.eigvalsh)
|
|
def eigvalsh(a, UPLO='L'):
|
|
w, _ = eigh(a, UPLO)
|
|
return w
|
|
|
|
|
|
@partial(custom_jvp, nondiff_argnums=(1,))
|
|
@_wraps(np.linalg.pinv, lax_description=textwrap.dedent("""\
|
|
It differs only in default value of `rcond`. In `numpy.linalg.pinv`, the
|
|
default `rcond` is `1e-15`. Here the default is
|
|
`10. * max(num_rows, num_cols) * jnp.finfo(dtype).eps`.
|
|
"""))
|
|
def pinv(a, rcond=None):
|
|
# Uses same algorithm as
|
|
# https://github.com/numpy/numpy/blob/v1.17.0/numpy/linalg/linalg.py#L1890-L1979
|
|
a = jnp.conj(a)
|
|
if rcond is None:
|
|
max_rows_cols = max(a.shape[-2:])
|
|
rcond = 10. * max_rows_cols * jnp.finfo(a.dtype).eps
|
|
rcond = jnp.asarray(rcond)
|
|
u, s, v = svd(a, full_matrices=False)
|
|
# Singular values less than or equal to ``rcond * largest_singular_value``
|
|
# are set to zero.
|
|
cutoff = rcond[..., jnp.newaxis] * jnp.amax(s, axis=-1, keepdims=True)
|
|
s = jnp.where(s > cutoff, s, jnp.inf)
|
|
res = jnp.matmul(_T(v), jnp.divide(_T(u), s[..., jnp.newaxis]))
|
|
return lax.convert_element_type(res, a.dtype)
|
|
|
|
|
|
@pinv.defjvp
|
|
def _pinv_jvp(rcond, primals, tangents):
|
|
# The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems
|
|
# Whose Variables Separate. Author(s): G. H. Golub and V. Pereyra. SIAM
|
|
# Journal on Numerical Analysis, Vol. 10, No. 2 (Apr., 1973), pp. 413-432.
|
|
# (via https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#Derivative)
|
|
a, = primals
|
|
a_dot, = tangents
|
|
p = pinv(a, rcond=rcond)
|
|
m, n = a.shape[-2:]
|
|
# TODO(phawkins): on TPU, we would need to opt into high precision here.
|
|
# TODO(phawkins): consider if this can be simplified in the Hermitian case.
|
|
p_dot = -p @ a_dot @ p
|
|
p_dot = p_dot + p @ _H(p) @ _H(a_dot) @ (jnp.eye(m, dtype=a.dtype) - a @ p)
|
|
p_dot = p_dot + (jnp.eye(n, dtype=a.dtype) - p @ a) @ _H(a_dot) @ _H(p) @ p
|
|
return p, p_dot
|
|
|
|
|
|
@_wraps(np.linalg.inv)
|
|
def inv(a):
|
|
if jnp.ndim(a) < 2 or a.shape[-1] != a.shape[-2]:
|
|
raise ValueError("Argument to inv must have shape [..., n, n], got {}."
|
|
.format(jnp.shape(a)))
|
|
return solve(
|
|
a, lax.broadcast(jnp.eye(a.shape[-1], dtype=lax.dtype(a)), a.shape[:-2]))
|
|
|
|
|
|
@partial(jit, static_argnums=(1, 2, 3))
|
|
def _norm(x, ord, axis: Union[None, Tuple[int, ...], int], keepdims):
|
|
x = _promote_arg_dtypes(jnp.asarray(x))
|
|
x_shape = jnp.shape(x)
|
|
ndim = len(x_shape)
|
|
|
|
if axis is None:
|
|
# NumPy has an undocumented behavior that admits arbitrary rank inputs if
|
|
# `ord` is None: https://github.com/numpy/numpy/issues/14215
|
|
if ord is None:
|
|
return jnp.sqrt(jnp.sum(jnp.real(x * jnp.conj(x)), keepdims=keepdims))
|
|
axis = tuple(range(ndim))
|
|
elif isinstance(axis, tuple):
|
|
axis = tuple(canonicalize_axis(x, ndim) for x in axis)
|
|
else:
|
|
axis = (canonicalize_axis(axis, ndim),)
|
|
|
|
num_axes = len(axis)
|
|
if num_axes == 1:
|
|
if ord is None or ord == 2:
|
|
return jnp.sqrt(jnp.sum(jnp.real(x * jnp.conj(x)), axis=axis,
|
|
keepdims=keepdims))
|
|
elif ord == jnp.inf:
|
|
return jnp.amax(jnp.abs(x), axis=axis, keepdims=keepdims)
|
|
elif ord == -jnp.inf:
|
|
return jnp.amin(jnp.abs(x), axis=axis, keepdims=keepdims)
|
|
elif ord == 0:
|
|
return jnp.sum(x != 0, dtype=jnp.finfo(lax.dtype(x)).dtype,
|
|
axis=axis, keepdims=keepdims)
|
|
elif ord == 1:
|
|
# Numpy has a special case for ord == 1 as an optimization. We don't
|
|
# really need the optimization (XLA could do it for us), but the Numpy
|
|
# code has slightly different type promotion semantics, so we need a
|
|
# special case too.
|
|
return jnp.sum(jnp.abs(x), axis=axis, keepdims=keepdims)
|
|
else:
|
|
abs_x = jnp.abs(x)
|
|
ord = lax._const(abs_x, ord)
|
|
out = jnp.sum(abs_x ** ord, axis=axis, keepdims=keepdims)
|
|
return jnp.power(out, 1. / ord)
|
|
|
|
elif num_axes == 2:
|
|
row_axis, col_axis = cast(Tuple[int, ...], axis)
|
|
if ord is None or ord in ('f', 'fro'):
|
|
return jnp.sqrt(jnp.sum(jnp.real(x * jnp.conj(x)), axis=axis,
|
|
keepdims=keepdims))
|
|
elif ord == 1:
|
|
if not keepdims and col_axis > row_axis:
|
|
col_axis -= 1
|
|
return jnp.amax(jnp.sum(jnp.abs(x), axis=row_axis, keepdims=keepdims),
|
|
axis=col_axis, keepdims=keepdims)
|
|
elif ord == -1:
|
|
if not keepdims and col_axis > row_axis:
|
|
col_axis -= 1
|
|
return jnp.amin(jnp.sum(jnp.abs(x), axis=row_axis, keepdims=keepdims),
|
|
axis=col_axis, keepdims=keepdims)
|
|
elif ord == jnp.inf:
|
|
if not keepdims and row_axis > col_axis:
|
|
row_axis -= 1
|
|
return jnp.amax(jnp.sum(jnp.abs(x), axis=col_axis, keepdims=keepdims),
|
|
axis=row_axis, keepdims=keepdims)
|
|
elif ord == -jnp.inf:
|
|
if not keepdims and row_axis > col_axis:
|
|
row_axis -= 1
|
|
return jnp.amin(jnp.sum(jnp.abs(x), axis=col_axis, keepdims=keepdims),
|
|
axis=row_axis, keepdims=keepdims)
|
|
elif ord in ('nuc', 2, -2):
|
|
x = jnp.moveaxis(x, axis, (-2, -1))
|
|
if ord == 2:
|
|
reducer = jnp.amax
|
|
elif ord == -2:
|
|
reducer = jnp.amin
|
|
else:
|
|
reducer = jnp.sum
|
|
y = reducer(svd(x, compute_uv=False), axis=-1)
|
|
if keepdims:
|
|
result_shape = list(x_shape)
|
|
result_shape[axis[0]] = 1
|
|
result_shape[axis[1]] = 1
|
|
y = jnp.reshape(y, result_shape)
|
|
return y
|
|
else:
|
|
raise ValueError("Invalid order '{}' for matrix norm.".format(ord))
|
|
else:
|
|
raise ValueError(
|
|
"Invalid axis values ({}) for jnp.linalg.norm.".format(axis))
|
|
|
|
@_wraps(np.linalg.norm)
|
|
def norm(x, ord=None, axis=None, keepdims=False):
|
|
return _norm(x, ord, axis, keepdims)
|
|
|
|
|
|
@_wraps(np.linalg.qr)
|
|
def qr(a, mode="reduced"):
|
|
if mode in ("reduced", "r", "full"):
|
|
full_matrices = False
|
|
elif mode == "complete":
|
|
full_matrices = True
|
|
else:
|
|
raise ValueError("Unsupported QR decomposition mode '{}'".format(mode))
|
|
a = _promote_arg_dtypes(jnp.asarray(a))
|
|
q, r = lax_linalg.qr(a, full_matrices)
|
|
if mode == "r":
|
|
return r
|
|
return q, r
|
|
|
|
|
|
@_wraps(np.linalg.solve)
|
|
@jit
|
|
def solve(a, b):
|
|
a, b = _promote_arg_dtypes(jnp.asarray(a), jnp.asarray(b))
|
|
return lax_linalg._solve(a, b)
|
|
|
|
|
|
@_wraps(np.linalg.lstsq, lax_description=textwrap.dedent("""\
|
|
It has two important differences:
|
|
|
|
1. In `numpy.linalg.lstsq`, the default `rcond` is `-1`, and warns that in the future
|
|
the default will be `None`. Here, the default rcond is `None`.
|
|
2. In `np.linalg.lstsq` the returned residuals are empty for low-rank or over-determined
|
|
solutions. Here, the residuals are returned in all cases, to make the function
|
|
compatible with jit. The non-jit compatible numpy behavior can be recovered by
|
|
passing numpy_resid=True.
|
|
|
|
The lstsq function does not currently have a custom JVP rule, so the gradient is
|
|
poorly behaved for some inputs, particularly for low-rank `a`.
|
|
"""))
|
|
def lstsq(a, b, rcond=None, *, numpy_resid=False):
|
|
# TODO: add lstsq to lax_linalg and implement this function via those wrappers.
|
|
# TODO: add custom jvp rule for more robust lstsq differentiation
|
|
a, b = _promote_arg_dtypes(a, b)
|
|
if a.shape[0] != b.shape[0]:
|
|
raise ValueError("Leading dimensions of input arrays must match")
|
|
b_orig_ndim = b.ndim
|
|
if b_orig_ndim == 1:
|
|
b = b[:, None]
|
|
if a.ndim != 2:
|
|
raise TypeError(
|
|
f"{a.ndim}-dimensional array given. Array must be two-dimensional")
|
|
if b.ndim != 2:
|
|
raise TypeError(
|
|
f"{b.ndim}-dimensional array given. Array must be one or two-dimensional")
|
|
m, n = a.shape
|
|
dtype = a.dtype
|
|
if rcond is None:
|
|
rcond = jnp.finfo(dtype).eps * max(n, m)
|
|
elif rcond < 0:
|
|
rcond = jnp.finfo(dtype).eps
|
|
u, s, vt = svd(a, full_matrices=False)
|
|
mask = s >= rcond * s[0]
|
|
rank = mask.sum()
|
|
safe_s = jnp.where(mask, s, 1)
|
|
s_inv = jnp.where(mask, 1 / safe_s, 0)[:, jnp.newaxis]
|
|
uTb = jnp.matmul(u.conj().T, b, precision=lax.Precision.HIGHEST)
|
|
x = jnp.matmul(vt.conj().T, s_inv * uTb, precision=lax.Precision.HIGHEST)
|
|
# Numpy returns empty residuals in some cases. To allow compilation, we
|
|
# default to returning full residuals in all cases.
|
|
if numpy_resid and (rank < n or m <= n):
|
|
resid = jnp.asarray([])
|
|
else:
|
|
b_estimate = jnp.matmul(a, x, precision=lax.Precision.HIGHEST)
|
|
resid = norm(b - b_estimate, axis=0) ** 2
|
|
if b_orig_ndim == 1:
|
|
x = x.ravel()
|
|
return x, resid, rank, s
|