rocm_jax/jax/experimental/shard_map.py

1991 lines
88 KiB
Python

# Copyright 2023 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections.abc import Callable, Hashable, Sequence
import enum
from functools import partial
import inspect
import itertools as it
from math import prod
import operator as op
from typing import Any, TypeVar, Union
import numpy as np
import jax
import jax.numpy as jnp
from jax.sharding import NamedSharding, PartitionSpec
from jax._src import ad_checkpoint
from jax._src import ad_util
from jax._src import callback
from jax._src import config
from jax._src import core
from jax._src import custom_derivatives
from jax._src import debugging
from jax._src import dispatch
from jax._src import dtypes
from jax._src import linear_util as lu
from jax._src import ops
from jax._src import pjit
from jax._src import prng
from jax._src import random
from jax._src import sharding_impls
from jax._src import source_info_util
from jax._src import traceback_util
from jax._src import util
from jax._src.core import Tracer
from jax._src.mesh import AbstractMesh, Mesh, AxisTypes, set_abstract_mesh
from jax._src.api import _shared_code_pmap, _prepare_pmap
from jax._src.lax import (lax, parallel as lax_parallel, slicing,
windowed_reductions, convolution, fft, linalg,
special, control_flow, ann)
from jax._src.extend import ffi
from jax._src.lib.mlir import ir
from jax._src.lib.mlir.dialects import sdy
from jax._src.util import (HashableFunction, HashablePartial, unzip2,
as_hashable_function, memoize, partition_list,
split_list, subs_list2)
from jax.api_util import flatten_fun_nokwargs, shaped_abstractify, argnums_partial
from jax._src.interpreters import batching
from jax._src.interpreters import mlir
from jax._src.interpreters import partial_eval as pe
from jax._src.interpreters import pxla
from jax._src.interpreters import ad
from jax.tree_util import (tree_map, tree_flatten, tree_unflatten,
tree_structure, tree_leaves, keystr)
from jax._src.tree_util import (broadcast_prefix, prefix_errors, PyTreeDef,
generate_key_paths, KeyPath)
from jax.experimental.multihost_utils import (host_local_array_to_global_array,
global_array_to_host_local_array)
P = PartitionSpec
map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip
traceback_util.register_exclusion(__file__)
# API
Specs = Any # PyTree[PartitionSpec]
AxisName = Hashable
@traceback_util.api_boundary
def shard_map(f: Callable, mesh: Mesh | AbstractMesh, in_specs: Specs,
out_specs: Specs, check_rep: bool = True,
auto: frozenset[AxisName] = frozenset()):
"""Map a function over shards of data.
Note:
``shard_map`` is an experimental API, and still subject to change. For an
introduction to sharded data, refer to :ref:`sharded-computation`. For a more
in-depth look at using ``shard_map``, refer to `SPMD multi-device parallelism with shard_map`_.
Args:
f: callable to be mapped. Each application of ``f``, or "instance" of ``f``,
takes as input a shard of the mapped-over arguments and produces a shard
of the output.
mesh: a ``jax.sharding.Mesh`` representing the array of devices over which
to shard the data and on which to execute instances of ``f``. The names of
the ``Mesh`` can be used in collective communication operations in ``f``.
This is typically created by a utility function like
:func:`jax.experimental.mesh_utils.create_device_mesh`.
in_specs: a pytree with :class:`~jax.sharding.PartitionSpec` instances as leaves,
with a tree structure that is a tree prefix of the args tuple to be mapped
over. Similar to :class:`~jax.sharding.NamedSharding`, each ``PartitionSpec``
represents how the corresponding argument (or subtree of arguments) should
be sharded along the named axes of ``mesh``. In each ``PartitionSpec``,
mentioning a ``mesh`` axis name at a position expresses sharding the
corresponding argument array axis along that positional axis; not
mentioning an axis name expresses replication. If an argument, or argument
subtree, has a corresponding spec of None, that argument is not sharded.
out_specs: a pytree with :class:`~jax.sharding.PartitionSpec` instances as leaves,
with a tree structure that is a tree prefix of the output of ``f``. Each
``PartitionSpec`` represents how the corresponding output shards should be
concatenated. In each ``PartitionSpec``, metioning a ``mesh`` axis name at
a position expresses concatenation of that mesh axis's shards along the
corresponding positional axis. Not mentioning a ``mesh`` axis name
expresses a promise that the output values are equal along that mesh axis,
and that rather than concatenating only a single value should be produced.
check_rep: If True (default) enable additional validity checks and automatic
differentiation optimizations. The validity checks concern whether any mesh
axis names not mentioned in ``out_specs`` are consistent with how the outputs
of ``f`` are replicated. Must be set False if using a Pallas kernel in ``f``.
auto: (experimental) an optional set of axis names from ``mesh`` over which we
do not shard the data or map the function, but rather we allow the
compiler to control sharding. These names cannot be used in ``in_specs``,
``out_specs``, or in communication collectives in ``f``.
Returns:
A callable that applies the input function ``f`` across data sharded according to
the ``mesh`` and ``in_specs``.
Examples:
For examples, refer to :ref:`sharded-computation` or `SPMD multi-device parallelism with shard_map`_.
.. _SPMD multi-device parallelism with shard_map: https://jax.readthedocs.io/en/latest/notebooks/shard_map.html
"""
return _shard_map(f, mesh, in_specs, out_specs, check_rep, auto)
def _shard_map(f: Callable, mesh: Mesh | AbstractMesh, in_specs: Specs,
out_specs: Specs | Callable[[], Specs],
check_rep: bool, auto: frozenset[AxisName]):
if not callable(f):
raise TypeError("shard_map requires a callable for its first argument, "
f"but got {f} of type {type(f)}.")
if not isinstance(mesh, (Mesh, AbstractMesh)):
raise TypeError("shard_map requires a `jax.sharding.Mesh` or a "
"`jax.sharding.AbstractMesh` instance for its "
f"second argument, but got {mesh} of type {type(mesh)}.")
if not auto.issubset(mesh.axis_names):
raise ValueError(f"shard_map requires auto={auto} to be a subset of "
f"mesh.axis_names={mesh.axis_names}")
_check_specs(SpecErrorType.input, in_specs, auto)
if not callable(out_specs):
_check_specs(SpecErrorType.out, out_specs, auto)
@util.wraps(f)
@traceback_util.api_boundary
def wrapped(*args):
fun = lu.wrap_init(f)
args_flat, in_tree = tree_flatten(args)
fun, out_tree = flatten_fun_nokwargs(fun, in_tree)
try: in_specs_flat = broadcast_prefix(in_specs, args,
is_leaf=lambda x: x is None)
except ValueError:
e, *_ = prefix_errors(in_specs, args)
raise e('shard_map in_specs') from None
dyn_argnums, in_specs_flat = unzip2((i, s) for i, s in enumerate(in_specs_flat)
if s is not None)
fun, args_flat = argnums_partial(fun, dyn_argnums, args_flat, False)
_check_specs_vs_args(f, mesh, in_tree, in_specs, dyn_argnums, in_specs_flat, args_flat)
in_names_flat = tuple(map(_canonicalize_spec, in_specs_flat))
@memoize
def out_names_thunk():
if callable(out_specs):
out_specs_ = out_specs()
_check_specs(SpecErrorType.out, out_specs_, auto)
else:
out_specs_ = out_specs
dummy = tree_unflatten(out_tree(), [object()] * out_tree().num_leaves)
try: out_specs_flat = broadcast_prefix(out_specs_, dummy)
except ValueError:
e, *_ = prefix_errors(out_specs_, dummy)
raise e('shard_map out_specs') from None
return tuple(map(_canonicalize_spec, out_specs_flat))
if rewrite := check_rep:
fun = _efficient_transpose_rewrite(fun, mesh, in_names_flat, out_names_thunk)
try:
out_flat = shard_map_p.bind(
fun, *args_flat, mesh=mesh, in_names=in_names_flat,
out_names_thunk=out_names_thunk, check_rep=check_rep, rewrite=rewrite,
auto=auto)
except _SpecError as e:
fails, = e.args
if not callable(out_specs):
msg = _spec_rank_error(SpecErrorType.out, f, out_tree(), out_specs, fails)
if any(fail is not no_fail and not fail.shape for fail in fails):
msg += (" In particular, for rank 0 outputs which are not constant "
"over the mesh, add at least one (singleton) axis to them so "
"that they can be concatenated using out_specs.")
raise ValueError(msg) from None
except _RepError as e:
fails, = e.args
if not callable(out_specs):
msg = _inout_rep_error(f, mesh, out_tree(), out_specs, fails)
raise ValueError(msg) from None
return tree_unflatten(out_tree(), out_flat)
return wrapped
# Internally use AxisNames = dict[int, tuple[AxisName, ...]], not PartitionSpecs
AxisNames = dict[int, tuple[AxisName, ...]] # TODO(mattjj): make it hashable
def _canonicalize_spec(spec: PartitionSpec) -> AxisNames:
if isinstance(spec, PartitionSpec):
return {i: names if isinstance(names, tuple) else (names,)
for i, names in enumerate(spec) if names is not None}
else:
return spec
# Error checking and messages
SpecErrorType = enum.Enum('SpecErrorType', ['input', 'out'])
def _check_specs(error_type: SpecErrorType, specs: Any, auto) -> None:
if error_type == SpecErrorType.input and specs is None:
raise TypeError(
"shard_map in_specs argument must be a pytree of "
"`jax.sharding.PartitionSpec` instances, but it was None.\n"
"Instead of `in_specs=None`, did you mean `in_specs=P()`, "
"where `P = jax.sharding.PartitionSpec`?")
def check_spec(p):
if not isinstance(p, PartitionSpec):
return False
for names in p:
if not isinstance(names, tuple):
names = (names,)
for name in names:
if name in auto:
return False
return True
if all(check_spec(p) for p in tree_leaves(specs)): return
prefix = 'in' if error_type == SpecErrorType.input else 'out'
msgs = [f" {prefix}_specs{keystr(key)} is {x} of type {type(x).__name__}, "
for key, x in generate_key_paths(specs) if not isinstance(x, P)]
if not msgs:
for key, p in generate_key_paths(specs):
for names in p:
if not isinstance(names, tuple):
names = (names,)
for name in names:
if name in auto:
msgs.append(f" {prefix}_specs{keystr(key)} refers to {repr(name)}")
raise ValueError(
f"shard_map {prefix}_specs argument cannot refer to an axis "
f"marked auto ({auto}), but:\n\n"
+ '\n\n'.join(msgs) + '\n\n'
f"Check the {prefix}_specs values passed to shard_map.")
raise TypeError(
f"shard_map {prefix}_specs argument must be a pytree of "
f"`jax.sharding.PartitionSpec` instances, but:\n\n"
+ '\n\n'.join(msgs) + '\n\n'
f"Check the {prefix}_specs values passed to shard_map.")
class NoFail: pass
no_fail = NoFail()
def _check_specs_vs_args(
f: Callable, mesh: Mesh, in_tree: PyTreeDef, in_specs: Specs,
dyn_argnums: Sequence[int], in_specs_flat: Sequence[P],
xs: Sequence) -> None:
in_avals = map(shaped_abstractify, xs)
fail = [a if not len(p) <= a.ndim else no_fail
for p, a in zip(in_specs_flat, in_avals)]
if any(f is not no_fail for f in fail):
fail = _expand_fail(in_tree, dyn_argnums, fail)
msg = _spec_rank_error(SpecErrorType.input, f, in_tree, in_specs, fail)
raise ValueError(msg)
in_names_flat = tuple(map(_canonicalize_spec, in_specs_flat))
fail = [a if any(a.shape[d] % prod(mesh.shape[n] for n in ns)
for d, ns in names.items()) else no_fail
for a, names in zip(in_avals, in_names_flat)]
if any(f is not no_fail for f in fail):
fail = _expand_fail(in_tree, dyn_argnums, fail)
msg = _spec_divisibility_error(f, mesh, in_tree, in_specs, fail)
raise ValueError(msg)
def _expand_fail(in_tree: PyTreeDef, dyn_argnums: Sequence[int],
fail: Sequence[core.ShapedArray | NoFail]
) -> list[core.ShapedArray | NoFail]:
fail_: list[core.ShapedArray | NoFail] = [no_fail] * in_tree.num_leaves
for i, f in zip(dyn_argnums, fail):
fail_[i] = f
return fail_
def _spec_rank_error(
error_type: SpecErrorType, f: Callable, tree: PyTreeDef, specs: Specs,
fails: list[core.ShapedArray | NoFail]) -> str:
fun_name = getattr(f, '__name__', str(f))
if error_type == SpecErrorType.input:
prefix, base = 'in', 'args'
ba = _try_infer_args(f, tree)
else:
prefix, base = 'out', f'{fun_name}(*args)'
msgs = []
for (spec_key, spec), (fail_key, aval) in _iter_paths(tree, specs, fails):
extra = ""
if error_type == SpecErrorType.input and ba is not None:
arg_key, *_ = fail_key
if arg_key.idx < len(ba.arguments):
param_name = list(ba.arguments.keys())[arg_key.idx]
extra = (f", where {base}{arg_key} is bound to {fun_name}'s "
f"parameter '{param_name}',")
else:
param = list(ba.signature.parameters.values())[-1]
assert param.kind == inspect.Parameter.VAR_POSITIONAL
extra = (f", where {base}{arg_key} is the index "
f"{arg_key.idx - len(ba.signature.parameters) + 1} component "
f"of {fun_name}'s varargs parameter '{param.name}',")
msgs.append(
f"* {prefix}_specs{keystr(spec_key)} is {spec} which has length "
f"{len(spec)}, but "
f"{base}{keystr(fail_key)}{extra} has shape {aval.str_short()}, "
f"which has rank {aval.ndim} (and {aval.ndim} < {len(spec)})")
assert msgs
if len(msgs) == 1: msgs = [msgs[0][2:]] # remove the bullet point
msg = (f"shard_map applied to the function '{fun_name}' was given an "
f"{prefix}_specs entry which is too long to be compatible with the "
f"corresponding {prefix}put value from the function:\n\n"
+ '\n\n'.join(msgs) + '\n\n' +
f"Entries in {prefix}_specs must be of length no greater than the "
f"number of axes in the corresponding {prefix}put value.\n\n"
f"Either revise the spec to be shorter, or modify '{fun_name}' so "
f"that its {prefix}puts have sufficient rank.")
if any(not aval.ndim for _, (_, aval) in _iter_paths(tree, specs, fails)):
msg += (f"\n\nFor scalar values (rank 0), consider using an {prefix}_specs "
"entry of `P()`, where `P = jax.sharding.PartitionSpec`.")
return msg
def _spec_divisibility_error(
f: Callable, mesh: Mesh, tree: PyTreeDef, specs: Specs,
fails: list[core.ShapedArray | NoFail]) -> str:
ba = _try_infer_args(f, tree)
fun_name = getattr(f, '__name__', str(f))
msgs = []
for (spec_key, spec), (fail_key, aval) in _iter_paths(tree, specs, fails):
extra = ""
if ba is not None:
arg_key, *_ = fail_key
if arg_key.idx < len(ba.arguments):
param_name = list(ba.arguments.keys())[arg_key.idx]
extra = (f", where args{arg_key} is bound to {fun_name}'s "
f"parameter '{param_name}',")
else:
param = list(ba.signature.parameters.values())[-1]
assert param.kind == inspect.Parameter.VAR_POSITIONAL
extra = (f", where args{arg_key} is the index "
f"{arg_key.idx - len(ba.signature.parameters) + 1} component "
f"of {fun_name}'s varargs parameter '{param.name}',")
names = _canonicalize_spec(spec)
for d, ns in names.items():
if aval.shape[d] % prod(mesh.shape[n] for n in ns):
axis = f"axes {ns}" if len(ns) > 1 else f"axis '{ns[0]}'"
total = 'total ' if len(ns) > 1 else ''
sz = prod(mesh.shape[n] for n in ns)
msgs.append(
f"* args{keystr(fail_key)} of shape {aval.str_short()}{extra} "
f"corresponds to in_specs{keystr(spec_key)} of value {spec}, "
f"which maps array axis {d} (of size {aval.shape[d]}) to mesh "
f"{axis} (of {total}size {sz}), but {sz} does not evenly divide "
f"{aval.shape[d]}")
assert msgs
if len(msgs) == 1: msgs = [msgs[0][2:]] # remove the bullet point
msg = (f"shard_map applied to the function '{fun_name}' was given argument "
f"arrays with axis sizes that are not evenly divisible by the "
f"corresponding mesh axis sizes:\n\n"
f"The mesh given has shape {tuple(mesh.shape.values())} with "
f"corresponding axis names {mesh.axis_names}.\n\n"
+ '\n\n'.join(msgs) + '\n\n' +
f"Array arguments' axis sizes must be evenly divisible by the mesh "
f"axis or axes indicated by the corresponding elements of the "
f"argument's in_specs entry. Consider checking that in_specs are "
f"correct, and if so consider changing the mesh axis sizes or else "
f"padding the input and adapting '{fun_name}' appropriately.")
return msg
def _inout_rep_error(f: Callable, mesh: Mesh, tree: PyTreeDef, specs: Specs,
fails: list[set | NoFail]) -> str:
fun_name = getattr(f, '__name__', str(f))
msgs = []
for (spec_key, spec), (fail_key, rep) in _iter_paths(tree, specs, fails):
dst = _canonicalize_spec(spec)
unmentioned = _unmentioned(mesh, dst)
if len(unmentioned) > 1:
need_rep = ','.join(map(str, unmentioned))
got_rep = ','.join(map(str, rep))
diff = ','.join(map(str, [n for n in unmentioned if n not in rep]))
msgs.append(
f"* out_specs{keystr(spec_key)} is {spec} which implies that the "
f"corresponding output value is replicated across mesh axes "
f"{{{need_rep}}}, but could only infer replication over {{{got_rep}}}, "
f"which is missing the required axes {diff}")
else:
need_rep_, = unmentioned
msgs.append(
f"* out_specs{keystr(spec_key)} is {spec} which implies that the "
f"corresponding output value is replicated across mesh axis "
f"'{need_rep_}', but could not infer replication over any axes")
assert msgs
if len(msgs) == 1: msgs = [msgs[0][2:]] # remove the bullet point
msg = (f"shard_map applied to the function '{fun_name}' was given "
f"out_specs which require replication which can't be statically "
f"inferred given the mesh:\n\n"
f"The mesh given has shape {tuple(mesh.shape.values())} with "
f"corresponding axis names {mesh.axis_names}.\n\n"
+ '\n\n'.join(msgs) + '\n\n' +
"Check if these output values are meant to be replicated over those "
"mesh axes. If not, consider revising the corresponding out_specs "
"entries. If so, consider disabling the check by passing the "
"check_rep=False argument to shard_map.")
return msg
def _unmentioned(mesh: Mesh, names: AxisNames) -> list[AxisName]:
name_set = {n for ns in names.values() for n in ns}
return [n for n in mesh.axis_names if n not in name_set]
def _try_infer_args(f, tree):
dummy_args = tree_unflatten(tree, [False] * tree.num_leaves)
try:
return inspect.signature(f).bind(*dummy_args)
except (TypeError, ValueError):
return None
T = TypeVar('T')
def _iter_paths(tree: PyTreeDef, specs: Specs, fails: list[T | NoFail]
) -> list[tuple[tuple[KeyPath, P], tuple[KeyPath, T]]]:
failures = tree_unflatten(tree, fails)
failures_aug = generate_key_paths(failures)
specs_ = tree_unflatten(tree_structure(specs), generate_key_paths(specs))
leaf = lambda x: x is None or type(x) is tuple and len(x) == 2 and type(x[1]) is P
specs_aug = broadcast_prefix(specs_, failures, is_leaf=leaf)
return [(s, (fail_key, fail_data)) for s, (fail_key, fail_data)
in zip(specs_aug, failures_aug)
if s is not None and fail_data is not no_fail]
# Primitive
JaxType = Any
MaybeTracer = Union[JaxType, Tracer]
class ShardMapPrimitive(core.Primitive):
multiple_results = True
def bind_with_trace(self, trace, fun_and_args, params):
fun, *args = fun_and_args
return trace.process_shard_map(shard_map_p, fun, args, **params)
def get_bind_params(self, params):
new_params = dict(params)
jaxpr = new_params.pop('jaxpr')
subfun = lu.hashable_partial(lu.wrap_init(core.eval_jaxpr), jaxpr, ())
axes = new_params.pop('out_names')
new_params['out_names_thunk'] = HashableFunction(lambda: axes, closure=axes)
return [subfun], new_params
shard_map_p = ShardMapPrimitive('shard_map')
# Staging
def _shard_map_staging(
trace: pe.DynamicJaxprTrace, prim: core.Primitive, f: lu.WrappedFun,
in_tracers: Sequence[Any], *, mesh: Mesh,
in_names: tuple[AxisNames, ...],
out_names_thunk: Callable[[], tuple[AxisNames, ...]],
check_rep: bool,
rewrite: bool,
auto: frozenset,
) -> Sequence[pe.DynamicJaxprTracer]:
in_tracers = map(trace.to_jaxpr_tracer, in_tracers)
in_avals = [t.aval for t in in_tracers]
in_avals_ = map(partial(_shard_aval, mesh), in_names, in_avals)
with (core.extend_axis_env_nd(list(mesh.shape.items())),
set_abstract_mesh(pjit.get_abstract_mesh_from_avals(in_avals_))):
jaxpr, out_avals_, consts, () = pe.trace_to_jaxpr_dynamic(f, in_avals_)
_check_names(out_names_thunk(), out_avals_)
if check_rep:
in_rep = map(partial(_in_names_to_rep, mesh), in_names)
out_rep = _check_rep(mesh, jaxpr, in_rep)
_check_reps(mesh, out_names_thunk(), out_rep)
out_avals = map(_check_shapedarray, out_avals_)
out_avals = [_check_shapedarray(_unshard_aval(mesh, names, aval))
for names, aval in zip(out_names_thunk(), out_avals)]
source_info = source_info_util.current()
out_tracers = [pe.DynamicJaxprTracer(trace, a, source_info) for a in out_avals]
invars = map(trace.getvar, in_tracers)
constvars = map(trace.getvar, map(trace.to_jaxpr_tracer, consts))
outvars = map(trace.makevar, out_tracers)
in_names_staged = ({},) * len(consts) + tuple(in_names) # type: ignore
with core.extend_axis_env_nd(list(mesh.shape.items())):
jaxpr = pe.convert_constvars_jaxpr(jaxpr)
params = dict(mesh=mesh, in_names=in_names_staged,
out_names=tuple(out_names_thunk()), jaxpr=jaxpr,
check_rep=check_rep, rewrite=rewrite, auto=auto)
effs = core.filter_named_axis_effects(jaxpr.effects, mesh.axis_names)
eqn = pe.new_jaxpr_eqn([*constvars, *invars], outvars, prim, params,
effs, source_info)
trace.frame.add_eqn(eqn)
return out_tracers
pe.DynamicJaxprTrace.process_shard_map = _shard_map_staging
def _check_shapedarray(aval: core.AbstractValue) -> core.ShapedArray:
assert isinstance(aval, core.ShapedArray)
return aval
def _shard_aval(mesh: Mesh, names: AxisNames, aval: core.AbstractValue
) -> core.AbstractValue:
if type(aval) in core.shard_aval_handlers:
return core.shard_aval_handlers[type(aval)](mesh, names, aval)
raise NotImplementedError(f"Unsupported aval type: {type(aval)}")
def _unshard_aval(mesh: Mesh, names: AxisNames, aval: core.AbstractValue
) -> core.AbstractValue:
if type(aval) in core.unshard_aval_handlers:
return core.unshard_aval_handlers[type(aval)](mesh, names, aval)
else:
raise NotImplementedError(f"Unsupported aval type: {type(aval)}")
def _shard_shaped_array(mesh: Mesh, names: AxisNames, aval: core.AbstractValue
) -> core.AbstractValue:
assert isinstance(aval, core.ShapedArray)
new_shape = tuple(sz // prod(mesh.shape[n] for n in names.get(i, ()))
for i, sz in enumerate(aval.shape))
if config.sharding_in_types.value:
new_mesh = AbstractMesh(
mesh.shape_tuple, {AxisTypes.Collective: mesh.axis_names})
new_sharding = NamedSharding(new_mesh, P(*[None] * aval.ndim))
else:
new_sharding = None
return aval.update(shape=new_shape, sharding=new_sharding)
core.shard_aval_handlers[core.ShapedArray] = _shard_shaped_array
def _unshard_shaped_array(mesh: Mesh, names: AxisNames,
aval: core.AbstractValue,) -> core.AbstractValue:
assert isinstance(aval, core.ShapedArray)
new_shape = tuple(sz * prod(mesh.shape[n] for n in names.get(i, ()))
for i, sz in enumerate(aval.shape))
# TODO(yashkatariya): Reset the mesh properly based on the input avals if the
# mesh of shard_map specifies collective axes.
if config.sharding_in_types.value:
spec = _names_to_pspec(names)._normalized_spec(aval.ndim)
new_sharding = NamedSharding(AbstractMesh(mesh.shape_tuple), spec)
else:
new_sharding = None
return aval.update(shape=new_shape, sharding=new_sharding)
core.unshard_aval_handlers[core.ShapedArray] = _unshard_shaped_array
# Type-checking
RepType = Union[set[AxisName], None]
def _shard_map_typecheck(_, *in_atoms, jaxpr, mesh, in_names, out_names,
check_rep, rewrite, auto):
del auto # TODO(mattjj,parkers): check
for v, x, in_name in zip(jaxpr.invars, in_atoms, in_names):
if not core.typecompat(v.aval, _shard_aval(mesh, in_name, x.aval)):
raise core.JaxprTypeError("shard_map argument avals not compatible with "
"jaxpr binder avals and in_names")
with core.extend_axis_env_nd(tuple(mesh.shape.items())):
core.check_jaxpr(jaxpr)
if check_rep:
in_rep = map(partial(_in_names_to_rep, mesh), in_names)
out_rep = _check_rep(mesh, jaxpr, in_rep)
for rep, dst in zip(out_rep, out_names):
if not _valid_repeats(mesh, rep, dst):
raise core.JaxprTypeError("shard_map can't prove output is "
"sufficiently replicated")
out_avals_sharded = [x.aval for x in jaxpr.outvars]
out_avals = map(partial(_unshard_aval, mesh), out_names, out_avals_sharded)
effs = core.filter_named_axis_effects(jaxpr.effects, mesh.axis_names)
return out_avals, effs
core.custom_typechecks[shard_map_p] = _shard_map_typecheck
def _in_names_to_rep(mesh: Mesh, names: AxisNames) -> set[AxisName]:
return set(mesh.axis_names) - {n for ns in names.values() for n in ns}
def _check_rep(mesh: Mesh, jaxpr: core.Jaxpr, in_rep: Sequence[RepType]
) -> Sequence[RepType]:
env: dict[core.Var, RepType] = {}
def read(x: core.Atom) -> RepType:
return env[x] if type(x) is core.Var else None
def write(v: core.Var, val: RepType) -> None:
env[v] = val
map(write, jaxpr.constvars, [set(mesh.axis_names)] * len(jaxpr.constvars))
map(write, jaxpr.invars, in_rep)
last_used = core.last_used(jaxpr)
for e in jaxpr.eqns:
rule = _check_rules.get(e.primitive, partial(_rule_missing, e.primitive))
out_rep = rule(mesh, *map(read, e.invars), **e.params)
if e.primitive.multiple_results:
out_rep = [out_rep] * len(e.outvars) if type(out_rep) is set else out_rep
map(write, e.outvars, out_rep)
else:
write(e.outvars[0], out_rep)
core.clean_up_dead_vars(e, env, last_used)
return map(read, jaxpr.outvars)
def _valid_repeats(mesh: Mesh, rep: RepType, dst: AxisNames) -> bool:
return rep is None or set(_unmentioned(mesh, dst)).issubset(rep)
def _rule_missing(prim: core.Primitive, *_, **__):
raise NotImplementedError(
f"No replication rule for {prim}. As a workaround, pass the "
"`check_rep=False` argument to `shard_map`. To get this fixed, open an "
"issue at https://github.com/jax-ml/jax/issues")
# Lowering
def _shardy_shard_map_sharding(
ctx: mlir.LoweringRuleContext, mesh, auto, names, aval_in
) -> ir.Attribute:
axes = {name: i for i, ns in names.items() for name in ns}
ns = _make_scoped_manual_sharding(ctx, mesh, axes)
if dtypes.issubdtype(aval_in.dtype, dtypes.extended):
ns = sharding_impls.physical_sharding(aval_in, ns)
aval_in = core.physical_aval(aval_in)
sdy_sharding = ns._to_sdy_sharding(aval_in.ndim)
if auto:
for dim_sharding in sdy_sharding.dimension_shardings:
dim_sharding.is_closed = False
return sdy_sharding.build()
def _shard_map_lowering_shardy(
ctx, in_nodes, jaxpr, mesh, in_names, out_names, auto):
in_avals_ = [v.aval for v in jaxpr.invars]
if isinstance(ctx.module_context.axis_context, sharding_impls.SPMDAxisContext):
# Nested `ManualComputationOp`s cannot refer to axes that are already
# manual. So figure out what axes are free thus far and get the new axis
# context.
free_axes = frozenset(mesh.axis_names) - ctx.module_context.axis_context.manual_axes
new_axis_context = sharding_impls.SPMDAxisContext(mesh, free_axes - auto)
else:
new_axis_context = sharding_impls.SPMDAxisContext(
mesh, frozenset(mesh.axis_names) - auto)
sub_ctx = ctx.module_context.replace(axis_context=new_axis_context)
args = (*ctx.dim_var_values, *in_nodes)
manual_axes = sub_ctx.axis_context.manual_axes
mesh_shape = mesh.shape
manual_axes_size = np.prod([mesh_shape[a] for a in manual_axes])
if manual_axes_size == 1:
# No need for a `ManualComputationOp` if all manual axes are size 1.
with core.extend_axis_env_nd(tuple(mesh.shape.items())):
out_nodes, _ = mlir.jaxpr_subcomp(
sub_ctx, jaxpr, ctx.name_stack, mlir.TokenSet(), (), *args,
dim_var_values=ctx.dim_var_values)
return out_nodes
in_shardings = sdy.TensorShardingPerValueAttr.get(map(
partial(_shardy_shard_map_sharding, ctx, mesh, auto),
in_names, ctx.avals_in))
out_shardings = sdy.TensorShardingPerValueAttr.get(map(
partial(_shardy_shard_map_sharding, ctx, mesh, auto),
out_names, ctx.avals_out))
output_types = map(mlir.aval_to_ir_type, ctx.avals_out)
manual_computation_op = sdy.ManualComputationOp(
output_types, args, in_shardings, out_shardings,
sdy.ManualAxesAttr.get(
ir.ArrayAttr.get([ir.StringAttr.get(i) for i in manual_axes])))
block = ir.Block.create_at_start(
manual_computation_op.body, map(mlir.aval_to_ir_type, in_avals_))
with ir.InsertionPoint(block), core.extend_axis_env_nd(
tuple(mesh.shape.items())):
out_nodes_, _ = mlir.jaxpr_subcomp(
sub_ctx, jaxpr, ctx.name_stack, mlir.TokenSet(), (), *block.arguments,
dim_var_values=ctx.dim_var_values)
sdy.ReturnOp([ir.Value(x) for x in out_nodes_])
return manual_computation_op.results
def _shard_map_lowering(ctx, *in_nodes, jaxpr, mesh, in_names, out_names,
check_rep, rewrite, auto):
del check_rep, rewrite
if config.use_shardy_partitioner.value:
return _shard_map_lowering_shardy(
ctx, in_nodes, jaxpr, mesh, in_names, out_names, auto)
in_avals_ = [v.aval for v in jaxpr.invars]
out_avals_ = [x.aval for x in jaxpr.outvars]
in_nodes_ = map(partial(_xla_shard, ctx, mesh, auto), in_names, ctx.avals_in,
in_avals_, in_nodes)
new_axis_context = sharding_impls.SPMDAxisContext(
mesh, frozenset(mesh.axis_names) - auto
)
sub_ctx = ctx.module_context.replace(axis_context=new_axis_context)
with core.extend_axis_env_nd(tuple(mesh.shape.items())):
out_nodes_, tokens_out = mlir.call_lowering(
"shmap_body", ctx.name_stack, jaxpr, None, sub_ctx, in_avals_,
out_avals_, ctx.tokens_in, *in_nodes_, dim_var_values=ctx.dim_var_values,
arg_names=map(_pspec_mhlo_attrs, in_names, in_avals_),
result_names=map(_pspec_mhlo_attrs, out_names, out_avals_))
ctx.set_tokens_out(tokens_out)
return map(partial(_xla_unshard, ctx, mesh, auto), out_names, out_avals_,
ctx.avals_out, out_nodes_)
mlir.register_lowering(shard_map_p, _shard_map_lowering)
def _make_scoped_manual_sharding(ctx, mesh, axes):
axis_ctx = ctx.module_context.axis_context
if isinstance(axis_ctx, sharding_impls.SPMDAxisContext):
manual_axes = axis_ctx.manual_axes
else:
manual_axes = frozenset({})
return NamedSharding(
mesh, sharding_impls.array_mapping_to_axis_resources(axes), # pytype: disable=wrong-arg-types
_manual_axes=manual_axes)
def _xla_shard(ctx: mlir.LoweringRuleContext, mesh, auto, names,
aval_in, aval_out, x):
if prod([size for n, size in mesh.shape.items() if n not in auto]) == 1:
return x
manual_proto = pxla.manual_proto(aval_in, frozenset(mesh.axis_names) - auto, mesh)
axes = {name: i for i, ns in names.items() for name in ns}
ns = _make_scoped_manual_sharding(ctx, mesh, axes)
if dtypes.issubdtype(aval_in.dtype, dtypes.extended):
ns = sharding_impls.physical_sharding(aval_in, ns)
aval_in = core.physical_aval(aval_in)
shard_proto = ns._to_xla_hlo_sharding(aval_in.ndim).to_proto()
unspecified = set(range(aval_in.ndim)) if auto else set()
sx = mlir.wrap_with_sharding_op(ctx, x, aval_in, shard_proto,
unspecified_dims=unspecified)
return mlir.wrap_with_full_to_shard_op(ctx, sx, aval_out, manual_proto, unspecified)
def _xla_unshard(ctx: mlir.LoweringRuleContext, mesh, auto, names,
aval_in, aval_out, x):
if prod([size for n, size in mesh.shape.items() if n not in auto]) == 1:
return x
axes = {name: i for i, ns in names.items() for name in ns}
ns = _make_scoped_manual_sharding(ctx, mesh, axes)
if dtypes.issubdtype(aval_out.dtype, dtypes.extended):
ns = sharding_impls.physical_sharding(aval_out, ns)
aval_out = core.physical_aval(aval_out)
unspecified = set(range(aval_out.ndim)) if auto else set()
manual_proto = pxla.manual_proto(aval_in, frozenset(mesh.axis_names) - auto, mesh)
sx = mlir.wrap_with_sharding_op(ctx, x, aval_in, manual_proto, unspecified_dims=unspecified)
shard_proto = ns._to_xla_hlo_sharding(aval_out.ndim).to_proto()
return mlir.wrap_with_shard_to_full_op(ctx, sx, aval_out, shard_proto,
unspecified)
def _pspec_mhlo_attrs(names: AxisNames, aval: core.AbstractValue) -> str:
if isinstance(aval, core.ShapedArray):
return str(map(names.get, range(aval.ndim)))
return ''
# Eager evaluation
def get_mesh_from_args(args_flat, mesh):
for a in args_flat:
if hasattr(a, 'sharding') and isinstance(a.sharding, NamedSharding):
if a.sharding.mesh.shape_tuple != mesh.shape_tuple:
aval = shaped_abstractify(a)
raise ValueError(
f"Mesh shape of the input {a.sharding.mesh.shape_tuple} does not"
" match the mesh shape passed to shard_map "
f" {mesh.shape_tuple} for shape {aval.str_short()}")
mesh = a.sharding.mesh
if isinstance(mesh, AbstractMesh):
raise ValueError(
"Please pass `jax.Array`s with a `NamedSharding` as input to"
" `shard_map` when passing `AbstractMesh` to the mesh argument.")
assert isinstance(mesh, Mesh)
return mesh
def _shard_map_impl(trace, prim, fun, args, *, mesh, in_names, out_names_thunk,
check_rep, rewrite, auto):
if auto: raise NotImplementedError
del prim, auto
if isinstance(mesh, AbstractMesh):
mesh = get_mesh_from_args(args, mesh)
args = map(partial(_unmatch_spec, mesh), in_names, args)
in_rep = map(partial(_in_names_to_rep, mesh), in_names)
outs, out_rep = _run_shmap(fun, mesh, args, in_rep, check_rep)
out_avals = [core.mapped_aval(x.shape[0], 0, core.get_aval(x)) for x in outs]
_check_names(out_names_thunk(), out_avals) # pytype: disable=wrong-arg-types
if check_rep:
_check_reps(mesh, out_names_thunk(), out_rep)
pspecs = map(_names_to_pspec, out_names_thunk())
return map(partial(_match_spec, mesh, check_rep), pspecs, outs)
core.EvalTrace.process_shard_map = _shard_map_impl
def _run_shmap(f, mesh, args, reps, check_rep):
trace = ShardMapTrace(mesh, check_rep)
in_tracers = map(partial(ShardMapTracer, trace), reps, args)
with core.set_current_trace(trace):
with core.extend_axis_env_nd(mesh.shape.items()):
ans = f.call_wrapped(*in_tracers)
outs, out_rep = unzip2(map(trace.to_val_rep_pair, ans))
return outs, out_rep
def _names_to_pspec(names: AxisNames) -> PartitionSpec:
ndmin = max(names) + 1 if names else 0
unpack = lambda t: t[0] if t is not None and len(t) == 1 else t
return PartitionSpec(*(unpack(names.get(i)) for i in range(ndmin)))
def _unmatch_spec(mesh: Mesh, src: AxisNames, x: JaxType) -> JaxType:
with core.eval_context(), jax.disable_jit(False):
return jax.jit(HashablePartial(_unmatch, mesh, tuple(src.items())))(x)
def _unmatch(mesh, src_tup, x):
src = _names_to_pspec(dict(src_tup))
dst = P(mesh.axis_names)
return shard_map(_add_singleton, mesh, (src,), dst, check_rep=False)(x)
def _check_names(names: Sequence[AxisNames], avals: Sequence[core.ShapedArray]
) -> None:
fail = [a if n and not max(n) < a.ndim else no_fail
for n, a in zip(names, avals)]
if any(f is not no_fail for f in fail): raise _SpecError(fail)
class _SpecError(Exception): pass
def _check_reps(mesh, names, reps):
fail = [r if not _valid_repeats(mesh, r, n) else no_fail
for n, r in zip(names, reps)]
if any(f is not no_fail for f in fail): raise _RepError(fail)
class _RepError(Exception): pass
def _check_reps2(mesh, reps_dest, reps):
fail = [src if not dst.issubset(src) else no_fail
for dst, src in zip(reps_dest, reps)]
if any(f is not no_fail for f in fail): raise _RepError(fail)
def _match_spec(mesh: Mesh, check_rep: bool,
pspec: PartitionSpec, x: JaxType) -> JaxType:
fn = HashablePartial(_match, mesh, check_rep, pspec)
with core.eval_context(), jax.disable_jit(False):
return jax.jit(fn, out_shardings=NamedSharding(mesh, pspec))(x)
def _match(mesh, check_rep, pspec, x):
src = P(mesh.axis_names)
# TODO put back (?) needed for rep checking in eager? for now test rewrite
return shard_map(_rem_singleton, mesh, (src,), pspec, check_rep=False)(x)
def _rem_singleton(x): return x.reshape(x.shape[1:])
def _add_singleton(x): return x.reshape(1, *x.shape)
class ShardMapTrace(core.Trace):
mesh: Mesh
check: bool
def __init__(self, mesh, check):
self.mesh = mesh
self.check = check
def to_val_rep_pair(self, val):
if isinstance(val, ShardMapTracer):
return val.val, val.rep
elif isinstance(val, Tracer):
raise Exception("Shouldn't have any non-shard_map tracers")
else:
val_ = _unmatch_spec(self.mesh, {}, val)
return val_, None
def process_primitive(self, prim, tracers, params):
in_vals, in_rep = unzip2(map(self.to_val_rep_pair, tracers))
eager_rule = eager_rules.get(prim)
if eager_rule:
out_vals = eager_rule(self.mesh, *in_vals, **params)
else:
f = HashablePartial(_prim_applier, prim, tuple(params.items()), self.mesh)
with core.eval_context(), jax.disable_jit(False):
out_vals = jax.jit(f)(*in_vals)
rep_rule = _check_rules.get(prim, partial(_rule_missing, prim))
out_rep = rep_rule(self.mesh, *in_rep, **params) if self.check else set()
if prim.multiple_results:
out_rep = [out_rep] * len(out_vals) if type(out_rep) is set else out_rep
return map(partial(ShardMapTracer, self), out_rep, out_vals)
return ShardMapTracer(self, out_rep, out_vals)
def process_call(self, call_primitive, fun, tracers, params):
raise NotImplementedError(
f"Eager evaluation of `{call_primitive}` inside a `shard_map` isn't "
"yet supported. Put a `jax.jit` around the `shard_map`-decorated "
"function, and open a feature request at "
"https://github.com/jax-ml/jax/issues !")
def process_map(self, map_primitive, fun, tracers, params):
raise NotImplementedError(
"Eager evaluation of `pmap` inside a `shard_map` isn't yet supported."
"Put a `jax.jit` around the `shard_map`-decorated function, and open "
"a feature request at https://github.com/jax-ml/jax/issues !")
def process_custom_jvp_call(self, prim, fun, jvp, tracers, *, symbolic_zeros):
# Since ShardMapTrace is only used as a base main, we can drop the jvp.
if symbolic_zeros:
msg = ("custom_jvp symbolic_zeros support with shard_map is not "
"implemented; please open an issue at "
"https://github.com/jax-ml/jax/issues")
raise NotImplementedError(msg)
del prim, jvp, symbolic_zeros
in_vals, in_rep = unzip2(map(self.to_val_rep_pair, tracers))
out_vals, out_rep = _run_shmap(fun, self.mesh, in_vals, in_rep, self.check)
return map(partial(ShardMapTracer, self), out_rep, out_vals)
def process_custom_vjp_call(self, prim, fun, fwd, bwd, tracers, out_trees,
symbolic_zeros):
if symbolic_zeros:
msg = ("custom_vjp symbolic_zeros support with shard_map is not "
"implemented; please open an issue at "
"https://github.com/jax-ml/jax/issues")
raise NotImplementedError(msg)
del prim, fwd, bwd, out_trees, symbolic_zeros
in_vals, in_rep = unzip2(map(self.to_val_rep_pair, tracers))
out_vals, out_rep = _run_shmap(fun, self.mesh, in_vals, in_rep, self.check)
return map(partial(ShardMapTracer, self), out_rep, out_vals)
class ShardMapTracer(core.Tracer):
rep: RepType
val: JaxType
def __init__(self, trace, rep, val):
self._trace = trace
self.rep = rep
self.val = val
@property
def aval(self):
aval = core.get_aval(self.val)
return core.mapped_aval(self._trace.mesh.size, 0, aval)
def to_concrete_value(self):
if self.rep == set(self._trace.mesh.axis_names):
with core.eval_context():
return core.to_concrete_value(self.val[0])
else:
return None
def __str__(self) -> str:
with core.eval_context():
blocks = list(self.val)
mesh = self._trace.mesh
axis_names = f"({', '.join(map(str, mesh.axis_names))},)"
return '\n'.join(
f"On {device} at mesh coordinates {axis_names} = {idx}:\n{block}\n"
for (idx, device), block in zip(np.ndenumerate(mesh.devices), blocks))
__repr__ = __str__ # for debuggers, like `p x`
def _prim_applier(prim, params_tup, mesh, *args):
def apply(*args):
outs = prim.bind(*map(_rem_singleton, args), **dict(params_tup))
return tree_map(_add_singleton, outs)
spec = P(mesh.axis_names)
return shard_map(apply, mesh, spec, spec, False)(*args)
eager_rules: dict[core.Primitive, Callable] = {}
# TODO(mattjj): working around an apparent XLA or PjRt bug, remove eventually
def _debug_callback_eager_rule(mesh, *args, callback: Callable[..., Any],
effect: debugging.DebugEffect):
del effect
with core.eval_context():
all_blocks = zip(*map(list, args))
for (idx, device), blocks in zip(np.ndenumerate(mesh.devices), all_blocks):
callback(*blocks)
return []
eager_rules[debugging.debug_callback_p] = _debug_callback_eager_rule
def _device_put_eager_rule(mesh, *xs, srcs, devices, copy_semantics):
del mesh, srcs, copy_semantics
for device in devices:
if device is not None:
raise ValueError("device_put with explicit device not allowed within "
f"shard_map-decorated functions, but got device {device}")
return xs
eager_rules[dispatch.device_put_p] = _device_put_eager_rule
# New primitives for efficient transposition
# psum2_p is like psum_p except has a different transpose, so mostly copied:
psum2_p = core.Primitive('psum2')
psum2_p.multiple_results = True
psum2_p.def_impl(lax_parallel.psum_p.impl)
psum2_p.def_effectful_abstract_eval(lax_parallel.psum_p.abstract_eval)
mlir.register_lowering(psum2_p, mlir._lowerings[lax_parallel.psum_p])
batching.fancy_primitive_batchers[psum2_p] = \
partial(lax_parallel._batched_reduction_collective, psum2_p,
lambda v, axis_size: axis_size * v)
batching.skippable_batchers[psum2_p] = partial(lax_parallel._names_in_param, 'axes')
def _psum2_transpose_rule(cts, *args, axes, axis_index_groups):
del args
return pbroadcast_p.bind(*cts, axes=axes, axis_index_groups=axis_index_groups)
ad.deflinear2(psum2_p, _psum2_transpose_rule)
# pbroadcast_p is exactly the transpose of psum2_p
def pbroadcast(x, axis_name):
axes = (axis_name,) if not isinstance(axis_name, tuple) else axis_name
if not axis_name: return x
xs, treedef = tree_flatten(x)
ys = pbroadcast_p.bind(*xs, axes=axes, axis_index_groups=None)
return tree_unflatten(treedef, ys)
pbroadcast_p = core.Primitive('pbroadcast')
pbroadcast_p.multiple_results = True
pbroadcast_p.def_impl(lambda *args, axes, axis_index_groups: args)
pbroadcast_p.def_abstract_eval(lambda *args, axes, axis_index_groups: args)
mlir.register_lowering(pbroadcast_p, lambda ctx, *x, axes, axis_index_groups: x)
def _pbroadcast_batcher(vals_in, dims_in, *, axes, axis_index_groups):
if any(type(axis) is int for axis in axes): raise NotImplementedError
vals_out = pbroadcast_p.bind(*vals_in, axes=axes,
axis_index_groups=axis_index_groups)
return vals_out, dims_in
batching.primitive_batchers[pbroadcast_p] = _pbroadcast_batcher
ad.deflinear2(pbroadcast_p,
lambda cts, *_, axes, axis_index_groups:
psum2_p.bind(*cts, axes=axes, axis_index_groups=axis_index_groups))
# Rewrite rules and static replication checking for efficient transposition
_rewrite_rules: dict[core.Primitive, Callable] = {}
register_rewrite = lambda prim: lambda r: _rewrite_rules.setdefault(prim, r)
register_standard_rewrite = lambda prim: \
_rewrite_rules.setdefault(prim, partial(_standard_rewrite_rule, prim))
register_norewrite = lambda p: \
_rewrite_rules.setdefault(p, partial(_no_rewrite, p, _check_rules[p]))
_check_rules: dict[core.Primitive, Callable] = {}
register_check = lambda prim: lambda rule: _check_rules.setdefault(prim, rule)
register_standard_check = \
lambda prim: _check_rules.setdefault(prim, partial(_standard_check, prim))
def _no_rewrite(prim, rule, mesh, in_rep, *args, **params):
out_vals = prim.bind(*args,**params)
out_rep = rule(mesh, *in_rep, **params)
if prim.multiple_results:
out_rep_ = out_rep if type(out_rep) is list else [out_rep] * len(out_vals)
else:
out_vals, out_rep_ = [out_vals], [out_rep]
return out_vals, out_rep_
def _standard_rewrite_rule(prim, mesh, in_rep, *args, **params):
# The standard rewrite inserts pbroadcasts but doesn't change the primitive.
out_rep_ = set.intersection(*in_rep) if in_rep else set(mesh.axis_names)
args_ = [pbroadcast(x, tuple(n for n in src if n not in out_rep_))
if src - out_rep_ else x for x, src in zip(args, in_rep)]
out_vals_ = prim.bind(*args_, **params)
out_rep = [out_rep_] * len(out_vals_) if prim.multiple_results else [out_rep_]
out_vals = [out_vals_] if not prim.multiple_results else out_vals_
return out_vals, out_rep
def _standard_check(prim, mesh, *in_rep, **__):
# The standard check require args' and outputs' replications to be the same,
# except for Nones which correspond to constants.
in_rep_ = [r for r in in_rep if r is not None]
if in_rep_ and not in_rep_[:-1] == in_rep_[1:]:
raise Exception(f"Primitive {prim} requires argument replication types "
f"to match, but got {in_rep}. Please open an issue at "
"https://github.com/jax-ml/jax/issues and as a temporary "
"workaround pass the check_rep=False argument to shard_map")
return in_rep_[0] if in_rep_ else None
def register_standard_collective(prim):
register_check(prim)(partial(_standard_collective_check, prim))
register_rewrite(prim)(partial(_standard_collective_rewrite, prim))
def register_reduction_collective(prim):
register_check(prim)(partial(_reduction_collective_check, prim))
register_rewrite(prim)(partial(_reduction_collective_rewrite, prim))
def _standard_collective_check(prim, mesh, x_rep, *, axis_name, **params):
# The standard collective check is varying -> varying over axis_name.
del mesh, params
if x_rep is None or axis_name in x_rep:
raise Exception(f"Collective {prim} must be applied to a device-varying "
f"replication type, but got {x_rep} for collective acting "
f"over axis name {axis_name}. Please open an issue at "
"https://github.com/jax-ml/jax/issues and as a temporary "
"workaround pass the check_rep=False argument to shard_map")
return x_rep
def _standard_collective_rewrite(prim, mesh, in_rep, x, axis_name, **params):
# The standard collective rewrite may insert a pbroadcast on the input.
axis_name = (axis_name,) if not isinstance(axis_name, tuple) else axis_name
x_rep, = in_rep
axis_name_set = set(axis_name)
if pbroadcast_axis_name := axis_name_set & x_rep:
x = pbroadcast(x, tuple(pbroadcast_axis_name))
out_val = prim.bind(x, axis_name=axis_name, **params)
return [out_val], [x_rep - axis_name_set]
def _reduction_collective_check(prim, mesh, x_rep, *, axes, **params):
# The reduction collective check is varying -> replicated over axes.
del mesh, params
axes = (axes,) if not isinstance(axes, tuple) else axes
if x_rep is None or any(a in x_rep for a in axes):
raise Exception(f"Collective {prim} must be applied to a device-varying "
f"replication type, but got {x_rep} for collective acting "
f"over axis name {axes}. Please open an issue at "
"https://github.com/jax-ml/jax/issues and as a temporary "
"workaround pass the check_rep=False argument to shard_map")
return x_rep | set(axes)
def _reduction_collective_rewrite(prim, mesh, in_rep, x, axes, **params):
# The standard collective rewrite may insert a pbroadcast on the input.
axes = (axes,) if not isinstance(axes, tuple) else axes
x_rep, = in_rep
axes_set = set(axes)
if pbroadcast_axes := axes_set & x_rep:
x = pbroadcast(x, tuple(pbroadcast_axes))
out_val, = prim.bind(x, axes=axes, **params)
return [out_val], [x_rep | axes_set]
for o in it.chain(lax.__dict__.values(), slicing.__dict__.values(),
windowed_reductions.__dict__.values(),
special.__dict__.values(), convolution.__dict__.values(),
fft.__dict__.values(), linalg.__dict__.values(),
ops.__dict__.values(), ad_util.__dict__.values(),
prng.__dict__.values(), ann.__dict__.values(),
random.__dict__.values()):
if isinstance(o, core.Primitive):
register_standard_check(o)
register_standard_rewrite(o)
for p in [control_flow.loops.cumsum_p, control_flow.loops.cumlogsumexp_p,
control_flow.loops.cumprod_p, control_flow.loops.cummax_p,
control_flow.loops.cummin_p]:
register_standard_check(p)
register_standard_rewrite(p)
@register_check(lax_parallel.psum_p)
def _psum_check(_, *in_rep, axes, axis_index_groups):
assert False # should be rewritten away
@register_rewrite(lax_parallel.psum_p)
def _psum_rewrite(mesh, in_rep, *args, axes, axis_index_groups):
# Replace the psum with psum2, insert pbroadcasts on input, replicated output.
if axis_index_groups is not None: raise NotImplementedError
axes = (axes,) if not isinstance(axes, tuple) else axes
axes_ = set(axes)
out_rep = [r | axes_ for r in in_rep] # TODO determinism (and elsewhere)
args_ = [pbroadcast(x, tuple(n for n in mesh.axis_names if n in axes_ & src))
for x, src in zip(args, in_rep)]
out_val = psum2_p.bind(*args_, axes=axes, axis_index_groups=axis_index_groups)
return out_val, out_rep
@register_check(psum2_p)
def _psum2_check(mesh, *in_rep, axes, axis_index_groups):
assert type(axes) is tuple
if any(set(axes) & r for r in in_rep if r is not None):
raise Exception("Collective psum must be applied to a device-varying "
f"replication type, but got {in_rep} for collective acting "
f"over axis name {axes}. Please open an issue at "
"https://github.com/jax-ml/jax/issues, and as a temporary "
"workaround pass the check_rep=False argument to shard_map")
in_rep = tuple(set(mesh.axis_names) if r is None else r for r in in_rep)
return [r | set(axes) for r in in_rep]
register_norewrite(psum2_p)
@register_check(pbroadcast_p)
def _pbroadcast_check(mesh, *in_rep, axes, axis_index_groups):
assert type(axes) is tuple
if not all(r is None or set(axes) & r for r in in_rep):
raise Exception("Collective pbroadcast must be applied to a "
"non-device-varying "
f"replication type, but got {in_rep} for collective acting "
f"over axis name {axes}. Please open an issue at "
"https://github.com/jax-ml/jax/issues, and as a temporary "
"workaround pass the check_rep=False argument to shard_map")
in_rep = tuple(set(mesh.axis_names) if r is None else r for r in in_rep)
return [r - set(axes) for r in in_rep]
register_norewrite(pbroadcast_p)
register_standard_collective(lax_parallel.all_gather_p)
register_standard_collective(lax_parallel.all_to_all_p)
register_standard_collective(lax_parallel.ppermute_p)
register_standard_collective(lax_parallel.reduce_scatter_p)
register_reduction_collective(lax_parallel.pmin_p)
register_reduction_collective(lax_parallel.pmax_p)
@register_check(lax_parallel.axis_index_p)
def _axis_index_check(mesh, *, axis_name):
axis_name = (axis_name,) if not type(axis_name) is tuple else axis_name
return set(mesh.shape) - set(axis_name)
register_norewrite(lax_parallel.axis_index_p)
@register_rewrite(pjit.pjit_p)
def _pjit_rewrite(mesh, in_rep, *args, jaxpr, **kwargs):
jaxpr_, out_rep = _replication_rewrite_nomatch(mesh, jaxpr, in_rep)
out_vals = pjit.pjit_p.bind(*args, jaxpr=jaxpr_, **kwargs)
return out_vals, out_rep
@register_check(pjit.pjit_p)
def _pjit_check(mesh, *in_rep, jaxpr, **kwargs):
return _check_rep(mesh, jaxpr.jaxpr, in_rep)
@register_rewrite(ad_checkpoint.remat_p)
def _remat_rewrite(mesh, in_rep, *args, jaxpr, **kwargs):
jaxpr_ = pe.close_jaxpr(jaxpr)
jaxpr_, out_rep = _replication_rewrite_nomatch(mesh, jaxpr_, in_rep)
jaxpr, () = jaxpr_.jaxpr, jaxpr_.consts
out_vals = ad_checkpoint.remat_p.bind(*args, jaxpr=jaxpr, **kwargs)
return out_vals, out_rep
@register_check(ad_checkpoint.remat_p)
def _remat_check(mesh, *in_rep, jaxpr, **kwargs):
return _check_rep(mesh, jaxpr, in_rep)
@register_check(core.call_p)
def _core_call_check(mesh, *in_rep, call_jaxpr, **kwargs):
return _check_rep(mesh, call_jaxpr, in_rep)
@register_check(debugging.debug_callback_p)
def _debug_callback_rule(mesh, *in_rep, **_):
return []
register_norewrite(debugging.debug_callback_p)
@register_check(callback.pure_callback_p)
def _pure_callback_rule(mesh, *_, result_avals, **__):
return [set()] * len(result_avals)
register_norewrite(callback.pure_callback_p)
@register_check(callback.io_callback_p)
def _io_callback_rule(mesh, *_, result_avals, **__):
return [set()] * len(result_avals)
register_norewrite(callback.io_callback_p)
@register_check(dispatch.device_put_p)
def _device_put_rule(mesh, *xs, **_):
return list(xs)
register_norewrite(dispatch.device_put_p)
@register_check(ad.custom_lin_p)
def _custom_lin_rule(mesh, *_, out_avals, **__):
return [set()] * len(out_avals)
register_norewrite(ad.custom_lin_p)
@register_check(control_flow.loops.scan_p)
def _scan_check(mesh, *in_rep, jaxpr, num_consts, num_carry, **_):
_, carry_rep_in, _ = split_list(in_rep, [num_consts, num_carry])
out_rep = _check_rep(mesh, jaxpr.jaxpr, in_rep)
carry_rep_out, _ = split_list(out_rep, [num_carry])
if not carry_rep_in == carry_rep_out:
raise Exception("Scan carry input and output got mismatched replication "
f"types {carry_rep_in} and {carry_rep_out}. Please open an "
"issue at https://github.com/jax-ml/jax/issues, and as a "
"temporary workaround pass the check_rep=False argument to "
"shard_map")
return out_rep
@register_rewrite(control_flow.loops.scan_p)
def _scan_rewrite(mesh, in_rep, *args, jaxpr, num_consts, num_carry, **params):
const_rep, carry_rep_in, xs_rep = split_list(in_rep, [num_consts, num_carry])
for _ in range(1 + num_carry):
in_rep_ = [*const_rep, *carry_rep_in, *xs_rep]
_, out_rep = _replication_rewrite_nomatch(mesh, jaxpr, in_rep_)
carry_rep_out, ys_rep = split_list(out_rep, [num_carry])
carry_rep_out = map(op.and_, carry_rep_in, carry_rep_out)
if carry_rep_in == carry_rep_out:
break
else:
carry_rep_in = carry_rep_out
else:
assert False, 'Fixpoint not reached'
args = [pbroadcast(x, tuple(n for n in src if n not in dst))
if src - dst else x for x, src, dst in zip(args, in_rep, in_rep_)]
out_rep = [*carry_rep_out, *ys_rep]
jaxpr_ = _replication_rewrite_match(mesh, jaxpr, in_rep_, out_rep)
out_vals = control_flow.loops.scan_p.bind(
*args, jaxpr=jaxpr_, num_consts=num_consts, num_carry=num_carry, **params)
return out_vals, out_rep
@register_check(control_flow.conditionals.cond_p)
def _cond_rule(mesh, *in_rep, branches):
_, *args_rep = in_rep
out_rep = _check_rep(mesh, branches[0].jaxpr, args_rep)
for branch in branches[1:]:
out_rep_ = _check_rep(mesh, branch.jaxpr, args_rep)
if not out_rep_ == out_rep:
raise Exception("The branches of cond produced mismatched replication "
"types. Please open an issue at "
"https://github.com/jax-ml/jax/issues, and as a "
"temporary workaround pass the check_rep=False argument "
"to shard_map")
return out_rep
@register_rewrite(control_flow.conditionals.cond_p)
def _cond_rewrite(mesh, in_rep, *args, branches):
pred_rep, *args_rep = in_rep
_, out_rep = _replication_rewrite_nomatch(mesh, branches[0], args_rep)
for branch in branches[1:]:
_, out_rep_ = _replication_rewrite_nomatch(mesh, branch, args_rep)
if out_rep:
out_rep = map(op.and_, out_rep, out_rep_)
else:
out_rep = out_rep_
out_rep = map(partial(op.and_, pred_rep), out_rep)
branches_ = tuple(_replication_rewrite_match(mesh, branch, args_rep, out_rep)
for branch in branches)
out_vals = control_flow.conditionals.cond_p.bind(*args, branches=branches_)
return out_vals, out_rep
@register_check(control_flow.conditionals.platform_index_p)
def _platform_index_rule(mesh, *_, **__):
return set(mesh.axis_names)
register_norewrite(control_flow.conditionals.platform_index_p)
@register_rewrite(core.closed_call_p)
def _closed_call_rewrite(mesh, in_rep, *args, call_jaxpr, **kwargs):
new_jaxpr, out_rep = _replication_rewrite_nomatch(mesh, call_jaxpr, in_rep)
out_vals = core.closed_call_p.bind(*args, jaxpr=new_jaxpr, **kwargs)
return out_vals, out_rep
@register_check(core.closed_call_p)
def _closed_call_check(mesh, *in_rep, call_jaxpr, **kwargs):
return _check_rep(mesh, call_jaxpr.jaxpr, in_rep)
@register_check(custom_derivatives.custom_jvp_call_p)
def _custom_jvp_call_check(mesh, *in_rep, call_jaxpr, jvp_jaxpr_thunk,
num_consts, symbolic_zeros):
return _check_rep(mesh, call_jaxpr.jaxpr, in_rep)
@register_rewrite(custom_derivatives.custom_vjp_call_jaxpr_p)
def _custom_vjp_call_jaxpr_rewrite(
mesh, in_rep, *args, fun_jaxpr, fwd_jaxpr_thunk, bwd, num_consts, out_trees,
symbolic_zeros):
if symbolic_zeros:
msg = ("Please open an issue at https://github.com/jax-ml/jax/issues and as"
" a temporary workaround pass the check_rep=False argument to "
"shard_map")
raise NotImplementedError(msg)
fun_jaxpr_, out_rep = _replication_rewrite_nomatch(mesh, fun_jaxpr, in_rep)
_, in_rep_ = split_list(in_rep, [num_consts])
out_rep2 = []
@pe._memoize
def fwd_jaxpr_thunk_(*zeros):
fwd_jaxpr = core.ClosedJaxpr(*fwd_jaxpr_thunk(*zeros))
fwd_jaxpr_, out_rep = _replication_rewrite_nomatch(mesh, fwd_jaxpr, in_rep_)
out_rep2.append(out_rep)
return fwd_jaxpr_.jaxpr, fwd_jaxpr_.consts
bwd_ = _rewrite_bwd(bwd, mesh, lambda: out_rep2[0], in_rep_)
outs = custom_derivatives.custom_vjp_call_jaxpr_p.bind(
*args, fun_jaxpr=fun_jaxpr_, fwd_jaxpr_thunk=fwd_jaxpr_thunk_, bwd=bwd_,
num_consts=num_consts, out_trees=out_trees, symbolic_zeros=symbolic_zeros)
out_rep = out_rep2[0] if out_rep2 else out_rep
return outs, out_rep
@register_check(custom_derivatives.custom_vjp_call_jaxpr_p)
def _custom_vjp_call_jaxpr_check(mesh, *in_rep, fun_jaxpr, **_):
return _check_rep(mesh, fun_jaxpr.jaxpr, in_rep)
@register_check(control_flow.solves.linear_solve_p)
def _linear_solve_check(mesh, *in_rep, jaxprs, **_):
out_rep = _standard_check(control_flow.solves.linear_solve_p, mesh, *in_rep)
return [out_rep] * len(jaxprs.solve.out_avals)
register_standard_rewrite(control_flow.solves.linear_solve_p)
@register_check(ffi.ffi_call_p)
def _ffi_call_check(mesh, *in_rep, result_avals, **_):
out_rep = _standard_check(ffi.ffi_call_p, mesh, *in_rep)
return [out_rep] * len(result_avals)
register_standard_rewrite(ffi.ffi_call_p)
del _check_rules[lax.tie_p]
@register_check(lax.tie_p)
def _tie_check(mesh, x_rep, y_rep):
return x_rep
register_norewrite(lax.tie_p)
# Batching
def _shard_map_batch(
trace: batching.BatchTrace, prim: core.Primitive, fun: lu.WrappedFun,
in_tracers: Sequence[batching.BatchTracer], mesh: Mesh,
in_names: tuple[AxisNames, ...],
out_names_thunk: Callable[[], tuple[AxisNames, ...]],
check_rep: bool,
rewrite: bool,
auto: frozenset) -> Sequence[batching.BatchTracer]:
in_vals, in_dims = unzip2(map(trace.to_batch_info, in_tracers))
if any(isinstance(d, batching.RaggedAxis) for d in in_dims):
raise NotImplementedError
new_in_names = [{ax + (d is not batching.not_mapped and d <= ax): names[ax]
for ax in names} for names, d in zip(in_names, in_dims)]
spmd_axis_name = trace.axis_data.spmd_name
if spmd_axis_name is not None:
used = {n for names in in_names for ns in names.values() for n in ns}
if not config.disable_vmap_shmap_error.value and set(spmd_axis_name) & used:
raise ValueError("vmap spmd_axis_name cannot appear in shard_map in_specs")
new_in_names = [{**ns, d:spmd_axis_name} if d is not batching.not_mapped
else ns for ns, d in zip(new_in_names, in_dims)]
new_size = trace.axis_data.size // prod(mesh.shape[n] for n in spmd_axis_name)
new_axis_data = batching.AxisData(trace.axis_data.name, new_size, trace.axis_data.spmd_name)
else:
new_axis_data = trace.axis_data
fun, out_dims = batching.batch_subtrace(fun, trace.tag, new_axis_data, tuple(in_dims))
@as_hashable_function(closure=out_names_thunk)
def new_out_names_thunk():
return _batch_out_names(spmd_axis_name, out_dims(), out_names_thunk())
new_params = dict(mesh=mesh, in_names=new_in_names,
out_names_thunk=new_out_names_thunk, check_rep=check_rep,
rewrite=rewrite, auto=auto)
with core.set_current_trace(trace.parent_trace):
out_vals = prim.bind(fun, *in_vals, **new_params)
make_tracer = partial(batching.BatchTracer, trace,
source_info=source_info_util.current())
return map(make_tracer, out_vals, out_dims())
batching.BatchTrace.process_shard_map = _shard_map_batch
def _batch_out_names(spmd_axis_name, dims, out_names):
out_names_ = [{ax + (d is not batching.not_mapped and d <= ax): names[ax]
for ax in names} for names, d in zip(out_names, dims)]
if spmd_axis_name is not None:
used = {n for names in out_names for ns in names.values() for n in ns}
if not config.disable_vmap_shmap_error.value and set(spmd_axis_name) & used:
raise ValueError("vmap spmd_axis_name cannot appear in shard_map out_specs")
out_names_ = [{**ns, d:spmd_axis_name} if d is not batching.not_mapped
else ns for ns, d in zip(out_names_, dims)]
return out_names_
# Autodiff
def _shard_map_jvp(trace, shard_map_p, f, tracers, mesh, in_names,
out_names_thunk, check_rep, rewrite, auto):
primals, tangents = unzip2(map(trace.to_primal_tangent_pair, tracers))
which_nz = [ type(t) is not ad.Zero for t in tangents]
tangents = [t if type(t) is not ad.Zero else None for t in tangents]
args, in_tree = tree_flatten((primals, tangents))
f_jvp = ad.jvp_subtrace(f, trace.tag)
f_jvp, which_nz_out = ad.nonzero_tangent_outputs(f_jvp)
tangent_in_names = [ax for ax, nz in zip(in_names, which_nz) if nz]
@as_hashable_function(closure=out_names_thunk)
def new_out_names_thunk():
out_ax = out_names_thunk()
return (*out_ax, *(ax for ax, nz in zip(out_ax, which_nz_out()) if nz))
params = dict(mesh=mesh, in_names=(*in_names, *tangent_in_names),
out_names_thunk=new_out_names_thunk, check_rep=check_rep,
rewrite=rewrite, auto=auto)
f_jvp, out_tree = ad.traceable(f_jvp, in_tree)
result = shard_map_p.bind_with_trace(trace.parent_trace, (f_jvp,) + tuple(args), params)
primal_out, tangent_out = tree_unflatten(out_tree(), result)
tangent_out = [ad.Zero(core.get_aval(p).to_tangent_aval()) if t is None else t
for p, t in zip(primal_out, tangent_out)]
return [ad.JVPTracer(trace, p, t) for p, t in zip(primal_out, tangent_out)]
ad.JVPTrace.process_shard_map = _shard_map_jvp
def _shard_map_partial_eval(trace, shard_map_p, f, tracers, mesh, in_names,
out_names_thunk, check_rep, rewrite, auto):
tracers = map(trace.to_jaxpr_tracer, tracers)
in_pvals = [t.pval for t in tracers]
in_knowns, in_avals, in_consts = pe.partition_pvals(in_pvals)
unk_in_names, known_in_names = pe.partition_list(in_knowns, in_names)
all_names = _all_mesh_names_except_spmd(mesh, trace)
in_avals_sharded = map(partial(_shard_aval, mesh), unk_in_names, in_avals)
f = pe.trace_to_subjaxpr_nounits_fwd2(f, trace.tag, False)
f = _promote_scalar_residuals(f)
f_known, aux = pe.partial_eval_wrapper_nounits(
f, (*in_knowns,), (*in_avals_sharded,))
@as_hashable_function(closure=out_names_thunk)
def known_out_names():
in_fwd, out_fwd, out_knowns, _, jaxpr, _ = aux()
_, out_known_names = pe.partition_list(out_knowns, out_names_thunk())
num_res = sum(f1 is None and f2 is None for f1, f2 in zip(in_fwd, out_fwd))
return (*out_known_names, *({0: all_names},) * num_res)
known_params = dict(mesh=mesh, in_names=(*known_in_names,),
out_names_thunk=known_out_names, check_rep=check_rep,
rewrite=rewrite, auto=auto)
out = shard_map_p.bind_with_trace(trace.parent_trace, (f_known, *in_consts), known_params)
in_fwd, out_fwd, out_knowns, out_avals_sharded, jaxpr, env = aux()
num_res = sum(f1 is None and f2 is None for f1, f2 in zip(in_fwd, out_fwd))
out_consts, non_fwd_res = split_list(out, [len(out) - num_res])
assert not jaxpr.constvars
unk_out_names, _ = pe.partition_list(out_knowns, out_names_thunk())
known_out_names_ = known_out_names()
res = subs_list2(in_fwd, out_fwd, in_consts, out_consts, non_fwd_res)
res_names = [known_in_names[f1] if f1 is not None else
known_out_names_[f2] if f2 is not None else
{0: all_names} for f1, f2 in zip(in_fwd, out_fwd)]
unk_in_names = (*res_names,) + ({},) * len(env) + (*unk_in_names,)
const_tracers = map(trace.new_instantiated_const, res)
env_tracers = map(trace.to_jaxpr_tracer, env)
unk_arg_tracers = [t for t in tracers if not t.is_known()]
unk_params = dict(mesh=mesh, in_names=unk_in_names,
out_names=unk_out_names, jaxpr=jaxpr, check_rep=False,
rewrite=rewrite, auto=auto)
out_avals = map(partial(_unshard_aval, mesh), unk_out_names, out_avals_sharded)
out_tracers = [pe.JaxprTracer(trace, pe.PartialVal.unknown(a), None)
for a in out_avals]
effs = core.filter_named_axis_effects(jaxpr.effects, mesh.axis_names)
eqn = pe.new_eqn_recipe((*const_tracers, *env_tracers, *unk_arg_tracers),
out_tracers, shard_map_p, unk_params,
effs, source_info_util.current())
for t in out_tracers: t.recipe = eqn
return pe.merge_lists(out_knowns, out_tracers, out_consts)
pe.JaxprTrace.process_shard_map = _shard_map_partial_eval
@lu.transformation2
def _promote_scalar_residuals(f, *args, **kwargs):
jaxpr, (in_fwds, out_fwds, out_pvals, out_consts, env) = f(*args, **kwargs)
which = [f1 is None and f2 is None and not v.aval.shape
for f1, f2, v in zip(in_fwds, out_fwds, jaxpr.constvars)]
jaxpr = _promote_scalar_residuals_jaxpr(jaxpr, which)
out_consts = [jax.lax.broadcast(x, (1,)) if not getattr(x, 'shape', ()) else x
for x in out_consts]
return jaxpr, (in_fwds, out_fwds, out_pvals, out_consts, env)
def _promote_scalar_residuals_jaxpr(jaxpr, which):
@lu.wrap_init
def fun(*res_and_args):
res, args = split_list(res_and_args, [len(jaxpr.constvars)])
res = [_rem_singleton(x) if w else x for x, w in zip(res, which)]
return core.eval_jaxpr(jaxpr, res, *args)
res_avals = [core.unmapped_aval(1, None, 0, v.aval) if w else v.aval
for v, w in zip(jaxpr.constvars, which)]
in_avals = [*res_avals, *[v.aval for v in jaxpr.invars]]
jaxpr, _, _, () = pe.trace_to_jaxpr_dynamic(fun, in_avals)
return jaxpr
def _unmentioned2(mesh: Mesh, names: AxisNames,
auto: frozenset[AxisName]) -> list[AxisName]:
# We use a filtered-down version of unmentioned to avoid defensive-psum over
# more chips than required in the transpose-no-check-rep case.
name_set = {n for ns in names.values() for n in ns} | auto
return [n for n in _all_mesh_names_except_spmd(mesh) if n not in name_set]
def _shard_map_transpose(out_cts, *args, jaxpr, mesh, in_names, out_names,
check_rep, rewrite, auto):
mb_div = lambda x, y: x / y if y != 1 else x
out_cts = [ad.Zero(_shard_aval(mesh, ns, x.aval)) if type(x) is ad.Zero
else x if rewrite or dtypes.dtype(x) == dtypes.float0
else mb_div(x, prod(map(mesh.shape.get, _unmentioned2(mesh, ns, auto))))
for ns, x in zip(out_names, out_cts)]
args = [x if type(x) is not ad.UndefinedPrimal else
ad.UndefinedPrimal(_shard_aval(mesh, ns, x.aval))
for ns, x in zip(in_names, args)]
all_args, in_tree = tree_flatten((out_cts, args))
@lu.wrap_init
def fun_trans(out_cts, args):
res, undefs = partition_list(map(ad.is_undefined_primal, args), args)
jaxpr_known, jaxpr_unknown, _, _ = pe.partial_eval_jaxpr_nounits(
pe.close_jaxpr(jaxpr), map(ad.is_undefined_primal, args), False)
res_reshaped = core.jaxpr_as_fun(jaxpr_known)(*res)
out = ad.backward_pass(
jaxpr_unknown.jaxpr, False, (), (*res_reshaped, *undefs), out_cts
)
out = [ad.Zero(_unshard_aval(mesh, ns, x.aval)) if type(x) is ad.Zero
else x if rewrite
else jax.lax.psum(x, tuple(_unmentioned2(mesh, ns, auto)))
for ns, x in zip(in_names, out)]
return out
fun_trans, nz_arg_cts = ad.nonzero_outputs(fun_trans)
fun_trans_flat, out_tree = flatten_fun_nokwargs(fun_trans, in_tree)
new_in_names = \
[n for n, x in zip(out_names, out_cts) if type(x) is not ad.Zero] + \
[n for n, x in zip(in_names, args) if type(x) is not ad.UndefinedPrimal]
def new_out_names_thunk():
return tuple(names for names, nz in zip(in_names, nz_arg_cts()) if nz)
out_flat = shard_map_p.bind(
fun_trans_flat, *all_args, mesh=mesh, in_names=tuple(new_in_names),
out_names_thunk=new_out_names_thunk, check_rep=check_rep, rewrite=rewrite,
auto=auto)
return tree_unflatten(out_tree(), out_flat)
ad.primitive_transposes[shard_map_p] = _shard_map_transpose
# Remat
def _partial_eval_jaxpr_custom_rule(
saveable: Callable[..., pe.RematCases_], unks_in: Sequence[bool],
inst_in: Sequence[bool], eqn: core.JaxprEqn
) -> tuple[core.JaxprEqn, core.JaxprEqn, Sequence[bool], Sequence[bool],
list[core.Var]]:
jaxpr, mesh = eqn.params['jaxpr'], eqn.params['mesh']
with core.extend_axis_env_nd(mesh.shape.items()):
jaxpr_known, jaxpr_staged, unks_out, inst_out, num_res = \
pe.partial_eval_jaxpr_custom(jaxpr, unks_in, inst_in, False, False, saveable)
num_out_primals = len(jaxpr_known.outvars) - num_res
in_fwd = pe._jaxpr_forwarding(jaxpr_known)[num_out_primals:]
out_vars, res_vars = split_list(jaxpr_known.outvars, [num_out_primals])
idx_map = {id(v): i for i, v in enumerate(out_vars)}
out_fwd = [idx_map.get(id(v)) for v in res_vars]
which = [f1 is None and f2 is None for f1, f2 in zip(in_fwd, out_fwd)]
with core.extend_axis_env_nd(eqn.params['mesh'].shape.items()):
jaxpr_known = pe.prune_jaxpr_outputs(jaxpr_known, [True] * num_out_primals + which)
jaxpr_known, jaxpr_staged = _add_reshapes(which, jaxpr_known, jaxpr_staged)
jaxpr_known = core.remove_named_axis_effects(jaxpr_known, mesh.axis_names)
jaxpr_staged = core.remove_named_axis_effects(jaxpr_staged, mesh.axis_names)
ins_known, _ = partition_list(unks_in, eqn.invars)
out_binders_known, _ = partition_list(unks_out, eqn.outvars)
_, ins_staged = partition_list(inst_in, eqn.invars)
_, out_binders_staged = partition_list(inst_out, eqn.outvars)
newvar = core.gensym()
params_known, params_staged, all_names = _pe_custom_params(
unks_in, inst_in, map(op.not_, unks_out), inst_out, in_fwd, out_fwd, which,
dict(eqn.params, jaxpr=jaxpr_known), dict(eqn.params, jaxpr=jaxpr_staged))
residuals = [newvar(_unshard_aval(mesh, {0: all_names}, var.aval))
for var, w in zip(jaxpr_staged.invars[:num_res], which) if w]
eqn_known = pe.new_jaxpr_eqn(ins_known, [*out_binders_known, *residuals],
eqn.primitive, params_known, jaxpr_known.effects,
eqn.source_info)
full_res = subs_list2(in_fwd, out_fwd, ins_known, out_binders_known, residuals)
eqn_staged = pe.new_jaxpr_eqn([*full_res, *ins_staged], out_binders_staged,
eqn.primitive, params_staged,
jaxpr_staged.effects, eqn.source_info)
assert len(eqn_staged.invars) == len(jaxpr_staged.invars)
new_inst = [x for x, inst in zip(eqn.invars, inst_in)
if type(x) is core.Var and not inst]
new_inst += [out_binders_known[f] for f in {i for i in out_fwd if i is not None}]
return eqn_known, eqn_staged, unks_out, inst_out, new_inst + residuals
pe.partial_eval_jaxpr_custom_rules[shard_map_p] = \
_partial_eval_jaxpr_custom_rule
def _add_reshapes(which, jaxpr_known, jaxpr_staged):
# add singleton axes to residuals which are from jaxpr_known and are scalars
which_ = [w and not v.aval.shape
for w, v in zip(which, jaxpr_staged.invars[:len(which)])]
if not any(which_): return jaxpr_known, jaxpr_staged
assert not jaxpr_known.constvars and not jaxpr_staged.constvars
@lu.wrap_init
def known(*args):
out = core.eval_jaxpr(jaxpr_known, (), *args)
out_known, res = split_list(out, [len(out) - sum(which)])
res = [_add_singleton(x) if not x.shape else x for x in res]
return [*out_known, *res]
avals_in = [v.aval for v in jaxpr_known.invars]
jaxpr_known, _, (), () = pe.trace_to_jaxpr_dynamic(known, avals_in)
@lu.wrap_init
def staged(*args):
res_, ins = split_list(args, [len(which)])
res = [_rem_singleton(x) if w else x for x, w in zip(res_, which_)]
return core.eval_jaxpr(jaxpr_staged, (), *res, *ins)
res_avals = [core.unmapped_aval(1, None, 0, v.aval) if w else v.aval
for w, v in zip(which_, jaxpr_staged.invars[:len(which)])]
avals_in = [*res_avals, *[v.aval for v in jaxpr_staged.invars[len(which):]]]
jaxpr_staged, _, (), () = pe.trace_to_jaxpr_dynamic(staged, avals_in)
return jaxpr_known, jaxpr_staged
def _pe_custom_params(unks_in, inst_in, kept_outs_known, kept_outs_staged,
in_fwd, out_fwd, which, params_known, params_staged):
# prune inputs to jaxpr_known according to unks_in
mesh = params_known['mesh']
all_names = _all_mesh_names_except_spmd(mesh)
in_names_known, _ = partition_list(unks_in, params_known['in_names'])
_, out_names_known = partition_list(kept_outs_known, params_known['out_names'])
out_names_known = out_names_known + [{0: all_names}] * sum(which)
new_params_known = dict(params_known, in_names=tuple(in_names_known),
out_names=tuple(out_names_known))
# added num_res new inputs to jaxpr_staged, pruning according to inst_in
_, in_names_staged = partition_list(inst_in, params_staged['in_names'])
res_names = [in_names_known[f1] if f1 is not None else
out_names_known[f2] if f2 is not None else
{0: all_names} for f1, f2 in zip(in_fwd, out_fwd)]
in_names_staged = res_names + in_names_staged
_, out_names_staged = partition_list(kept_outs_staged, params_staged['out_names'])
new_params_staged = dict(params_staged, in_names=tuple(in_names_staged),
out_names=tuple(out_names_staged), check_rep=False)
return new_params_known, new_params_staged, all_names
# TODO(mattjj): remove this mechanism when we revise mesh scopes
def _all_mesh_names_except_spmd(mesh: Mesh, trace=None) -> tuple[AxisName, ...]:
spmd_names = core.get_axis_env().spmd_axis_names
return tuple(name for name in mesh.axis_names if name not in spmd_names)
# DCE
# TODO(mattjj): de-duplicate with pe.dce_jaxpr_call_rule, and/or _pmap_dce_rule?
def _shard_map_dce(used_outputs: list[bool], eqn: core.JaxprEqn
) -> tuple[list[bool], core.JaxprEqn | None]:
if not any(used_outputs) and not pe.has_effects(eqn):
return [False] * len(eqn.invars), None
mesh = eqn.params["mesh"]
with core.extend_axis_env_nd(mesh.shape.items()):
jaxpr, used_inputs = pe.dce_jaxpr(eqn.params['jaxpr'], used_outputs)
if not any(used_inputs) and not any(used_outputs) and not jaxpr.effects:
return used_inputs, None
else:
_, in_names = partition_list(used_inputs, eqn.params['in_names'])
_, out_names = partition_list(used_outputs, eqn.params['out_names'])
new_params = dict(eqn.params, jaxpr=jaxpr, in_names=tuple(in_names),
out_names=tuple(out_names))
effs = core.filter_named_axis_effects(jaxpr.effects, mesh.axis_names)
new_eqn = pe.new_jaxpr_eqn(
[v for v, used in zip(eqn.invars, used_inputs) if used],
[x for x, used in zip(eqn.outvars, used_outputs) if used],
eqn.primitive, new_params, effs, eqn.source_info)
return used_inputs, new_eqn
pe.dce_rules[shard_map_p] = _shard_map_dce
# Implementing pmap in terms of shard_map
def pmap(f, axis_name=None, *, in_axes=0, out_axes=0,
static_broadcasted_argnums=(), devices=None, backend=None,
axis_size=None, donate_argnums=(), global_arg_shapes=None):
devices = tuple(devices) if devices is not None else devices
axis_name, static_broadcasted_tuple, donate_tuple = _shared_code_pmap(
f, axis_name, static_broadcasted_argnums, donate_argnums, in_axes, out_axes)
def infer_params(*args, **kwargs):
p = _prepare_pmap(f, in_axes, out_axes, static_broadcasted_tuple,
donate_tuple, devices, backend, axis_size, args, kwargs)
for arg in p.flat_args:
dispatch.check_arg(arg)
mesh = Mesh(_get_devices(p, backend), (axis_name,))
_pmapped, in_specs, out_specs = _cached_shard_map(
p.flat_fun, mesh, p.in_axes_flat, p.out_axes_thunk, axis_name)
flat_global_args = host_local_array_to_global_array(
p.flat_args, mesh, list(in_specs))
jitted_f = jax.jit(
_pmapped,
donate_argnums=(i for i, val in enumerate(p.donated_invars) if val))
return jitted_f, flat_global_args, p.out_tree, mesh, out_specs
def wrapped(*args, **kwargs):
(jitted_f, flat_global_args, out_tree, mesh,
out_specs) = infer_params(*args, **kwargs)
outs = jitted_f(*flat_global_args)
outs = global_array_to_host_local_array(outs, mesh, out_specs())
return tree_unflatten(out_tree(), outs)
def lower(*args, **kwargs):
jitted_f, _, _, _, _ = infer_params(*args, **kwargs)
return jitted_f.lower(*args, **kwargs)
wrapped.lower = lower
return wrapped
@lu.cache
def _cached_shard_map(flat_fun, mesh, in_axes_flat, out_axes_thunk, axis_name):
in_specs = tuple(map(partial(_axis_to_spec, axis_name), in_axes_flat))
out_specs = lambda: map(partial(_axis_to_spec, axis_name), out_axes_thunk())
fun = _handle_reshapes(flat_fun, in_axes_flat, out_axes_thunk)
return (_shard_map(fun.call_wrapped, mesh, in_specs, out_specs,
check_rep=False, auto=frozenset()),
in_specs, out_specs)
@lu.transformation2
def _handle_reshapes(f, in_axes, out_axes_thunk, *args, **kwargs):
args = tree_map(lambda x, ax: x if ax is None else jnp.squeeze(x, axis=ax),
list(args), list(in_axes))
out = f(*args)
return tree_map(lambda x, ax: x if ax is None else jnp.expand_dims(x, axis=ax),
list(out), list(out_axes_thunk()))
def _axis_to_spec(axis_name, ax):
if isinstance(ax, int):
specs = [None] * ax + [axis_name]
return P(*specs)
elif ax is None:
return P()
else:
raise TypeError(ax)
def _get_devices(p, backend):
if backend is not None and p.devices is None:
devs = jax.devices(backend=backend)
else:
devs = jax.devices() if p.devices is None else p.devices
if jax.process_count() > 1:
return devs[:p.global_axis_size]
return devs[:p.local_axis_size]
### Rewrite!
Val = Any
class RewriteTracer(core.Tracer):
rep: set[AxisName]
val: Val
def __init__(self, trace, rep, val):
self._trace = trace
self.rep = rep
self.val = val
@property
def aval(self) -> core.AbstractValue:
return core.get_aval(self.val)
def to_concrete_value(self):
return core.to_concrete_value(self.val)
def __str__(self) -> str:
return str(self.val) # TODO(mattjj): could show replication info here
__repr__ = __str__ # for debuggers, like `p x`
class RewriteTrace(core.Trace):
parent_trace : core.Trace
tag : core.TraceTag
mesh: Mesh
def __init__(self, parent_trace, tag, mesh):
self.parent_trace = parent_trace
self.tag = tag
self.mesh = mesh
def to_val_rep_pair(self, val):
# TODO: add a tag to tell if self
if isinstance(val, RewriteTracer) and val._trace.tag is self.tag:
return val.val, val.rep
else:
return val, set(self.mesh.axis_names)
def process_primitive(self, prim, in_tracers, params):
rule = _rewrite_rules.get(prim, partial(_rule_missing, prim))
in_vals, in_reps = unzip2(map(self.to_val_rep_pair, in_tracers))
with core.set_current_trace(self.parent_trace):
out_vals, out_reps = rule(self.mesh, in_reps, *in_vals, **params)
out_tracers = map(partial(RewriteTracer, self), out_reps, out_vals)
return out_tracers if prim.multiple_results else out_tracers[0]
def process_call(self, call_primitive, f, in_tracers, params):
in_vals, in_reps = unzip2(map(self.to_val_rep_pair, in_tracers))
f, out_reps = _rewrite_subtrace(f, self.tag, self.mesh, tuple(in_reps))
with core.set_current_trace(self.parent_trace):
out_vals = call_primitive.bind(f, *in_vals, **params)
return map(partial(RewriteTracer, self), out_reps(), out_vals)
def process_custom_jvp_call(self, prim, fun, jvp, tracers, *, symbolic_zeros):
if symbolic_zeros:
msg = ("Please open an issue at https://github.com/jax-ml/jax/issues and "
"as a temporary workaround pass the check_rep=False argument to "
"shard_map")
raise NotImplementedError(msg)
in_vals, in_reps = unzip2(map(self.to_val_rep_pair, tracers))
fun, out_reps1 = _rewrite_subtrace(fun, self.tag, self.mesh, in_reps)
jvp, out_reps2 = _rewrite_subtrace(jvp, self.tag, self.mesh, in_reps * 2)
with core.set_current_trace(self.parent_trace):
out_vals = prim.bind(fun, jvp, *in_vals, symbolic_zeros=symbolic_zeros)
fst, out_reps = lu.merge_linear_aux(out_reps1, out_reps2)
if not fst:
assert out_reps == out_reps[:len(out_reps) // 2] * 2
out_reps = out_reps[:len(out_reps) // 2]
return map(partial(RewriteTracer, self), out_reps, out_vals)
def process_custom_vjp_call(self, prim, fun, fwd, bwd, tracers, out_trees,
symbolic_zeros):
if symbolic_zeros:
msg = ("Please open an issue at https://github.com/jax-ml/jax/issues and "
"as a temporary workaround pass the check_rep=False argument to "
"shard_map")
raise NotImplementedError(msg)
in_vals, in_reps = unzip2(map(self.to_val_rep_pair, tracers))
fun, out_reps1 = _rewrite_subtrace(fun, self.tag, self.mesh, in_reps)
fwd_in_reps = [r_ for r in in_reps for r_ in [r, set(self.mesh.axis_names)]]
fwd, out_reps2 = _rewrite_subtrace(fwd, self.tag, self.mesh, fwd_in_reps)
bwd = _rewrite_bwd(bwd, self.mesh, out_reps2, in_reps)
with core.set_current_trace(self.parent_trace):
out_vals = prim.bind(fun, fwd, bwd, *in_vals, out_trees=out_trees,
symbolic_zeros=symbolic_zeros)
fst, out_reps = lu.merge_linear_aux(out_reps1, out_reps2)
if not fst:
_, res_tree = out_trees()
_, out_reps = split_list(out_reps, [res_tree.num_leaves])
return map(partial(RewriteTracer, self), out_reps, out_vals)
def _efficient_transpose_rewrite(fun, mesh, in_names, out_names_thunk):
in_reps = map(partial(_in_names_to_rep, mesh), in_names)
out_reps_dst = lambda: [set(_unmentioned(mesh, n)) for n in out_names_thunk()]
fun, out_reps_src = _efficient_transpose_rewrite_nomatch(fun, mesh, in_reps)
return _match_rep(fun, mesh, out_reps_src, out_reps_dst)
@lu.transformation_with_aux2
def _efficient_transpose_rewrite_nomatch(f, store, mesh, in_reps, *args):
with core.take_current_trace() as parent:
tag = core.TraceTag()
t = RewriteTrace(parent_trace = parent, tag = tag, mesh=mesh)
in_tracers = map(partial(RewriteTracer, t), in_reps, args)
with core.set_current_trace(t):
ans = f(*in_tracers)
out_vals, out_reps = unzip2(map(t.to_val_rep_pair, ans))
del t, in_tracers, ans
store.store(out_reps)
return out_vals
@lu.transformation2
def _match_rep(f, mesh, out_reps_src_, out_reps_dst_, *args):
outs = f(*args)
out_reps_src = out_reps_src_() if callable(out_reps_src_) else out_reps_src_
out_reps_dst = out_reps_dst_() if callable(out_reps_dst_) else out_reps_dst_
_check_reps2(mesh, out_reps_dst, out_reps_src)
outs = [pbroadcast(x, tuple(n for n in src if n not in dst)) if src - dst
else x for x, src, dst in zip(outs, out_reps_src, out_reps_dst)]
return outs
# TODO(mattjj): caching
def _replication_rewrite_match(
mesh: Mesh,
jaxpr: core.ClosedJaxpr,
in_rep: Sequence[set[AxisName]],
out_rep_dst: Sequence[set[AxisName]],
) -> core.ClosedJaxpr:
f = lu.wrap_init(partial(core.eval_jaxpr, jaxpr.jaxpr, jaxpr.consts))
f, out_rep = _efficient_transpose_rewrite_nomatch(f, mesh, in_rep)
f = _match_rep(f, mesh, out_rep, out_rep_dst)
jaxpr_, _, consts, () = pe.trace_to_jaxpr_dynamic(f, jaxpr.in_avals)
return core.ClosedJaxpr(jaxpr_, consts)
# TODO(mattjj): caching
def _replication_rewrite_nomatch(
mesh: Mesh,
jaxpr: core.ClosedJaxpr,
in_rep: Sequence[set[AxisName]],
) -> tuple[core.ClosedJaxpr, list[set[AxisName]]]:
f = lu.wrap_init(partial(core.eval_jaxpr, jaxpr.jaxpr, jaxpr.consts))
f, out_rep = _efficient_transpose_rewrite_nomatch(f, mesh, in_rep)
jaxpr_, _, consts, () = pe.trace_to_jaxpr_dynamic(f, jaxpr.in_avals)
return core.ClosedJaxpr(jaxpr_, consts), out_rep()
@lu.transformation_with_aux2
def _rewrite_subtrace(f, store, tag, mesh, in_reps, *in_vals):
with core.take_current_trace() as parent_trace:
assert len(in_reps) == len(in_vals), (len(in_reps), len(in_vals))
t = RewriteTrace(parent_trace, tag, mesh)
in_tracers = map(partial(RewriteTracer, t), in_reps, in_vals)
with core.set_current_trace(t):
outs = f(*in_tracers)
out_vals, out_reps = unzip2(map(t.to_val_rep_pair, outs))
store.store(out_reps)
return out_vals
def _rewrite_bwd(bwd, mesh, in_reps, reps_dst):
def new_bwd(*args):
tag = core.TraceTag()
bwd_, reps_thunk = _rewrite_subtrace(lu.wrap_init(bwd), tag, mesh, in_reps())
out = bwd_.call_wrapped(*args)
return map(_match_replication, reps_thunk(), reps_dst, out)
return new_bwd
def _match_replication(src, dst, x):
if dst - src:
x, = psum2_p.bind(x, axes=tuple(n for n in dst if n not in src),
axis_index_groups=None)
if src - dst:
x = pbroadcast(x, tuple(n for n in src if n not in dst))
return x
# TODO(parkers,mattjj): change implementation when we have sharding-in-types.
def get_replication(x: jax.Array) -> set[AxisName]:
"""For a jax.Array, return what axes it is known to be replicated along."""
if isinstance(x, RewriteTracer):
return x.rep
if isinstance(x, batching.BatchTracer):
return get_replication(x.val)
raise ValueError("get_replication not defined on %s" % repr(type(x)))