mirror of
https://github.com/ROCm/jax.git
synced 2025-04-15 19:36:06 +00:00

Before this change, JAX could dispatch compiled functions over new-style (typed) RNG key arrays, but it would always do so off of the fast (C++-based) dispatch path. In other words, switching from old-style `uint32` RNG keys to new-style keys would regress dispatch times. With this change, dispatch happens on the fast path again and performance regressions ought to be minimal. We currently maintain only one pytree registry, for all registered pytree node types. We want RNG key arrays to also be treated as pytree leaves everywhere *except* during dispatch. In other words: we want operations on (typed) RNG key arrays to appear in Jaxpr, but we want to unravel those arrays into their underlying `uint32` arrays only during dispatch. To do this, we add a new internal pytree registry that dispatch respects uniquely. This registry includes all items in the default registry, but also the RNG key array type. Co-authored-by: Matthew Johnson <mattjj@google.com> PiperOrigin-RevId: 565077758
1431 lines
49 KiB
Python
1431 lines
49 KiB
Python
# Copyright 2021 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import annotations
|
|
|
|
import abc
|
|
from collections.abc import Hashable, Iterator, Sequence
|
|
from functools import partial, reduce
|
|
import math
|
|
import operator as op
|
|
from typing import Any, Callable, NamedTuple
|
|
|
|
import numpy as np
|
|
|
|
import jax
|
|
from jax import lax
|
|
from jax import numpy as jnp
|
|
from jax import tree_util
|
|
|
|
from jax._src import ad_util
|
|
from jax._src import api
|
|
from jax._src import basearray
|
|
from jax._src import config as config_lib
|
|
from jax._src import core
|
|
from jax._src import dispatch
|
|
from jax._src import dtypes
|
|
from jax._src import pretty_printer as pp
|
|
from jax._src import sharding_specs
|
|
from jax._src import tree_util as tree_util_internal
|
|
from jax._src import typing
|
|
from jax._src.api import jit, vmap
|
|
from jax._src.config import config
|
|
from jax._src.dtypes import float0
|
|
from jax._src.interpreters import ad
|
|
from jax._src.interpreters import batching
|
|
from jax._src.interpreters import mlir
|
|
from jax._src.interpreters import pxla
|
|
from jax._src.interpreters import xla
|
|
from jax._src.lax import lax as lax_internal
|
|
from jax._src.lax import utils as lax_utils
|
|
from jax._src.lib.mlir import ir
|
|
from jax._src.lib import gpu_prng
|
|
from jax._src.lib import xla_client as xc
|
|
from jax._src.lib.mlir.dialects import hlo
|
|
from jax._src.numpy.array_methods import (
|
|
_array_operators, _set_array_base_attributes, _IndexUpdateHelper)
|
|
from jax._src.partition_spec import PartitionSpec
|
|
from jax._src.sharding_impls import (
|
|
NamedSharding, PmapSharding, GSPMDSharding, XLACompatibleSharding)
|
|
from jax._src.typing import Array
|
|
from jax._src.util import safe_map, safe_zip
|
|
|
|
map, unsafe_map = safe_map, map
|
|
zip, unsafe_zip = safe_zip, zip
|
|
|
|
Device = xc.Device
|
|
Shard = Any # TODO(jakevdp): fix circular imports and import Shard
|
|
Shape = tuple[int, ...]
|
|
|
|
UINT_DTYPES = {
|
|
8: jnp.uint8, 16: jnp.uint16, 32: jnp.uint32, 64: jnp.uint64} # type: ignore[has-type]
|
|
|
|
# -- PRNG implementation interface
|
|
|
|
class PRNGImpl(NamedTuple):
|
|
"""Specifies PRNG key shape and operations.
|
|
|
|
A PRNG implementation is determined by a key type ``K`` and a
|
|
collection of functions that operate on such keys. The key type
|
|
``K`` is an array type with element type uint32 and shape specified
|
|
by ``key_shape``. The type signature of each operations is::
|
|
|
|
seed :: int[] -> K
|
|
fold_in :: K -> int[] -> K
|
|
split[shape] :: K -> K[*shape]
|
|
random_bits[shape, bit_width] :: K -> uint<bit_width>[*shape]
|
|
|
|
A PRNG implementation is adapted to an array-like object of keys
|
|
``K`` by the ``PRNGKeyArray`` class, which should be created via the
|
|
``seed_with_impl`` function.
|
|
"""
|
|
key_shape: Shape
|
|
seed: Callable
|
|
split: Callable
|
|
random_bits: Callable
|
|
fold_in: Callable
|
|
tag: str = '?'
|
|
|
|
def __hash__(self) -> int:
|
|
return hash(self.tag)
|
|
|
|
def __str__(self) -> str:
|
|
return self.tag
|
|
|
|
def pprint(self):
|
|
return (pp.text(f"{self.__class__.__name__} [{self.tag}]:") +
|
|
pp.nest(2, pp.group(pp.brk() + pp.join(pp.brk(), [
|
|
pp.text(f"{k} = {v}") for k, v in self._asdict().items()
|
|
]))))
|
|
|
|
|
|
# -- PRNG key arrays
|
|
|
|
def _check_prng_key_data(impl, key_data: typing.Array):
|
|
ndim = len(impl.key_shape)
|
|
if not all(hasattr(key_data, attr) for attr in ['ndim', 'shape', 'dtype']):
|
|
raise TypeError("JAX encountered invalid PRNG key data: expected key_data "
|
|
f"to have ndim, shape, and dtype attributes. Got {key_data}")
|
|
if key_data.ndim < 1:
|
|
raise TypeError("JAX encountered invalid PRNG key data: expected "
|
|
f"key_data.ndim >= 1; got ndim={key_data.ndim}")
|
|
if key_data.shape[-ndim:] != impl.key_shape:
|
|
raise TypeError("JAX encountered invalid PRNG key data: expected key_data.shape to "
|
|
f"end with {impl.key_shape}; got shape={key_data.shape} for {impl=}")
|
|
if key_data.dtype not in [np.uint32, float0]:
|
|
raise TypeError("JAX encountered invalid PRNG key data: expected key_data.dtype = uint32; "
|
|
f"got dtype={key_data.dtype}")
|
|
|
|
|
|
class PRNGKeyArrayMeta(abc.ABCMeta):
|
|
"""Metaclass for overriding PRNGKeyArray isinstance checks."""
|
|
|
|
def __instancecheck__(cls, instance):
|
|
try:
|
|
return (isinstance(instance.aval, core.ShapedArray) and
|
|
type(instance.aval.dtype) is KeyTy)
|
|
except AttributeError:
|
|
return super().__instancecheck__(instance)
|
|
|
|
|
|
class PRNGKeyArray(jax.Array, metaclass=PRNGKeyArrayMeta):
|
|
"""An array whose elements are PRNG keys"""
|
|
|
|
@abc.abstractmethod # TODO(frostig): rename
|
|
def unsafe_raw_array(self) -> PRNGKeyArray: ...
|
|
|
|
@abc.abstractmethod
|
|
def unsafe_buffer_pointer(self) -> int: ...
|
|
|
|
@abc.abstractmethod
|
|
def block_until_ready(self) -> PRNGKeyArray: ...
|
|
|
|
@abc.abstractmethod
|
|
def copy_to_host_async(self) -> None: ...
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def shape(self) -> tuple[int, ...]: ...
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def ndim(self) -> int: ...
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def size(self) -> int: ...
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def dtype(self): ...
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def sharding(self): ...
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def at(self) -> _IndexUpdateHelper: ... # type: ignore[override]
|
|
|
|
@abc.abstractmethod
|
|
def __len__(self) -> int: ...
|
|
@abc.abstractmethod
|
|
def __iter__(self) -> Iterator[PRNGKeyArray]: ...
|
|
|
|
@abc.abstractmethod
|
|
def reshape(self, *args, order='C') -> PRNGKeyArray: ...
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def T(self) -> PRNGKeyArray: ...
|
|
@abc.abstractmethod
|
|
def __getitem__(self, _) -> PRNGKeyArray: ...
|
|
@abc.abstractmethod
|
|
def ravel(self, *_, **__) -> PRNGKeyArray: ...
|
|
@abc.abstractmethod
|
|
def squeeze(self, *_, **__) -> PRNGKeyArray: ...
|
|
@abc.abstractmethod
|
|
def swapaxes(self, *_, **__) -> PRNGKeyArray: ...
|
|
@abc.abstractmethod
|
|
def take(self, *_, **__) -> PRNGKeyArray: ...
|
|
@abc.abstractmethod
|
|
def transpose(self, *_, **__) -> PRNGKeyArray: ...
|
|
@abc.abstractmethod
|
|
def flatten(self, *_, **__) -> PRNGKeyArray: ...
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def is_fully_addressable(self) -> bool: ...
|
|
@property
|
|
@abc.abstractmethod
|
|
def is_fully_replicated(self) -> bool: ...
|
|
@abc.abstractmethod
|
|
def device(self) -> Device: ...
|
|
@abc.abstractmethod
|
|
def devices(self) -> set[Device]: ...
|
|
@abc.abstractmethod
|
|
def delete(self) -> None: ...
|
|
@abc.abstractmethod
|
|
def is_deleted(self) -> bool: ...
|
|
@abc.abstractmethod
|
|
def on_device_size_in_bytes(self) -> int: ...
|
|
@property
|
|
@abc.abstractmethod
|
|
def addressable_shards(self) -> list[Shard]: ...
|
|
@property
|
|
@abc.abstractmethod
|
|
def global_shards(self) -> list[Shard]: ...
|
|
@abc.abstractmethod
|
|
def addressable_data(self, index: int) -> PRNGKeyArray: ...
|
|
|
|
# TODO(jakevdp): potentially add tolist(), tobytes(),
|
|
# device_buffer, device_buffers, __cuda_interface__()
|
|
|
|
|
|
class PRNGKeyArrayImpl(PRNGKeyArray):
|
|
"""An array of PRNG keys backed by an RNG implementation.
|
|
|
|
This class lifts the definition of a PRNG, provided in the form of a
|
|
``PRNGImpl``, into an array-like pytree class. Instances of this
|
|
class behave like an array whose base elements are keys, hiding the
|
|
fact that keys are typically arrays (of ``uint32`` dtype) themselves.
|
|
|
|
PRNGKeyArrays are also restricted relative to JAX arrays in that
|
|
they do not expose arithmetic operations. They instead expose
|
|
wrapper methods around the PRNG implementation functions (``split``,
|
|
``random_bits``, ``fold_in``).
|
|
"""
|
|
|
|
impl: PRNGImpl
|
|
_base_array: typing.Array
|
|
|
|
def __init__(self, impl, key_data: Any):
|
|
assert not isinstance(key_data, core.Tracer)
|
|
_check_prng_key_data(impl, key_data)
|
|
self.impl = impl
|
|
self._base_array = key_data
|
|
|
|
# TODO(frostig): rename to unsafe_base_array, or just offer base_array attr?
|
|
def unsafe_raw_array(self):
|
|
"""Access the raw numerical array that carries underlying key data.
|
|
|
|
Returns:
|
|
A uint32 JAX array whose leading dimensions are ``self.shape``.
|
|
"""
|
|
return self._base_array
|
|
|
|
def block_until_ready(self):
|
|
_ = self._base_array.block_until_ready()
|
|
return self
|
|
|
|
def copy_to_host_async(self):
|
|
_ = self._base_array.copy_to_host_async()
|
|
|
|
@property
|
|
def aval(self):
|
|
return keys_shaped_array(self.impl, self.shape)
|
|
|
|
@property
|
|
def shape(self):
|
|
return base_arr_shape_to_keys_shape(self.impl, self._base_array.shape)
|
|
|
|
@property
|
|
def size(self):
|
|
return math.prod(self.shape)
|
|
|
|
@property
|
|
def ndim(self):
|
|
return len(self.shape)
|
|
|
|
@property
|
|
def dtype(self):
|
|
return KeyTy(self.impl)
|
|
|
|
_device = property(op.attrgetter('_base_array._device'))
|
|
_committed = property(op.attrgetter('_base_array._committed'))
|
|
device = property(op.attrgetter('_base_array.device')) # type: ignore[assignment]
|
|
devices = property(op.attrgetter('_base_array.devices')) # type: ignore[assignment]
|
|
is_fully_addressable = property(op.attrgetter('_base_array.is_fully_addressable')) # type: ignore[assignment]
|
|
is_fully_replicated = property(op.attrgetter('_base_array.is_fully_replicated')) # type: ignore[assignment]
|
|
delete = property(op.attrgetter('_base_array.delete')) # type: ignore[assignment]
|
|
is_deleted = property(op.attrgetter('_base_array.is_deleted')) # type: ignore[assignment]
|
|
on_device_size_in_bytes = property(op.attrgetter('_base_array.on_device_size_in_bytes')) # type: ignore[assignment]
|
|
unsafe_buffer_pointer = property(op.attrgetter('_base_array.unsafe_buffer_pointer')) # type: ignore[assignment]
|
|
|
|
def addressable_data(self, index: int) -> PRNGKeyArrayImpl:
|
|
return PRNGKeyArrayImpl(self.impl, self._base_array.addressable_data(index))
|
|
|
|
@property
|
|
def addressable_shards(self) -> list[Shard]:
|
|
return [
|
|
type(s)(
|
|
device=s._device,
|
|
sharding=s._sharding,
|
|
global_shape=s._global_shape,
|
|
data=PRNGKeyArrayImpl(self.impl, s._data),
|
|
)
|
|
for s in self._base_array.addressable_shards
|
|
]
|
|
|
|
@property
|
|
def global_shards(self) -> list[Shard]:
|
|
return [
|
|
type(s)(
|
|
device=s._device,
|
|
sharding=s._sharding,
|
|
global_shape=s._global_shape,
|
|
data=PRNGKeyArrayImpl(self.impl, s._data),
|
|
)
|
|
for s in self._base_array.global_shards
|
|
]
|
|
|
|
@property
|
|
def sharding(self):
|
|
phys_sharding = self._base_array.sharding
|
|
return KeyTyRules.logical_op_sharding(self.aval, phys_sharding)
|
|
|
|
def _is_scalar(self):
|
|
base_ndim = len(self.impl.key_shape)
|
|
return self._base_array.ndim == base_ndim
|
|
|
|
def __len__(self):
|
|
if self._is_scalar():
|
|
raise TypeError('len() of unsized object')
|
|
return len(self._base_array)
|
|
|
|
def __iter__(self) -> Iterator[PRNGKeyArrayImpl]:
|
|
if self._is_scalar():
|
|
raise TypeError('iteration over a 0-d key array')
|
|
# TODO(frostig): we may want to avoid iteration by slicing because
|
|
# a very common use of iteration is `k1, k2 = split(key)`, and
|
|
# slicing/indexing may be trickier to track for linearity checking
|
|
# purposes. Maybe we can:
|
|
# * introduce an unpack primitive+traceable (also allow direct use)
|
|
# * unpack upfront into shape[0] many keyarray slices
|
|
# * return iter over these unpacked slices
|
|
# Whatever we do, we'll want to do it by overriding
|
|
# ShapedArray._iter when the element type is KeyTy...
|
|
return (PRNGKeyArrayImpl(self.impl, k) for k in iter(self._base_array))
|
|
|
|
# TODO(frostig): are all of the stackable methods below (reshape,
|
|
# concat, broadcast_to, expand_dims), and the stackable registration,
|
|
# still needed? If, with some work, none are needed, then do we want
|
|
# to remove stackables altogether? This may be the only application.
|
|
|
|
def __repr__(self):
|
|
return (f'Array({self.shape}, dtype={self.dtype.name}) overlaying:\n'
|
|
f'{self._base_array}')
|
|
|
|
def pprint(self):
|
|
pp_keys = pp.text('shape = ') + pp.text(str(self.shape))
|
|
pp_impl = pp.text('impl = ') + self.impl.pprint()
|
|
return str(pp.group(
|
|
pp.text('PRNGKeyArray:') +
|
|
pp.nest(2, pp.brk() + pp_keys + pp.brk() + pp_impl)))
|
|
|
|
def copy(self):
|
|
return self.__class__(self.impl, self._base_array.copy())
|
|
|
|
__hash__ = None # type: ignore[assignment]
|
|
__array_priority__ = 100
|
|
|
|
# Overwritten immediately below
|
|
@property
|
|
def at(self) -> _IndexUpdateHelper: assert False # type: ignore[override]
|
|
@property
|
|
def T(self) -> PRNGKeyArray: assert False
|
|
def __getitem__(self, _) -> PRNGKeyArray: assert False
|
|
def flatten(self, *_, **__) -> PRNGKeyArray: assert False
|
|
def ravel(self, *_, **__) -> PRNGKeyArray: assert False
|
|
def reshape(self, *_, **__) -> PRNGKeyArray: assert False
|
|
def squeeze(self, *_, **__) -> PRNGKeyArray: assert False
|
|
def swapaxes(self, *_, **__) -> PRNGKeyArray: assert False
|
|
def take(self, *_, **__) -> PRNGKeyArray: assert False
|
|
def transpose(self, *_, **__) -> PRNGKeyArray: assert False
|
|
|
|
_set_array_base_attributes(PRNGKeyArrayImpl, include=[
|
|
*(f"__{op}__" for op in _array_operators),
|
|
'at', 'flatten', 'ravel', 'reshape',
|
|
'squeeze', 'swapaxes', 'take', 'transpose', 'T'])
|
|
basearray.Array.register(PRNGKeyArrayImpl)
|
|
|
|
ad_util.jaxval_zeros_likers[PRNGKeyArrayImpl] = jnp.zeros_like # type: ignore[has-type]
|
|
|
|
def prngkeyarrayimpl_flatten(x):
|
|
return (x._base_array,), x.impl
|
|
|
|
def prngkeyarrayimpl_unflatten(impl, children):
|
|
base_array, = children
|
|
return PRNGKeyArrayImpl(impl, base_array)
|
|
|
|
tree_util_internal.dispatch_registry.register_node(
|
|
PRNGKeyArrayImpl, prngkeyarrayimpl_flatten, prngkeyarrayimpl_unflatten)
|
|
|
|
|
|
# TODO(frostig): remove, rerouting callers directly to random_seed
|
|
def seed_with_impl(impl: PRNGImpl, seed: int | Array) -> PRNGKeyArrayImpl:
|
|
return random_seed(seed, impl=impl)
|
|
|
|
|
|
def keys_shaped_array(impl, shape):
|
|
return core.ShapedArray(shape, KeyTy(impl))
|
|
|
|
# TODO(frostig): remove in favor of physical_aval call
|
|
def keys_aval_to_base_arr_aval(keys_aval):
|
|
return core.physical_aval(keys_aval)
|
|
|
|
def base_arr_shape_to_keys_shape(impl, base_arr_shape):
|
|
base_ndim = len(impl.key_shape)
|
|
return base_arr_shape[:-base_ndim]
|
|
|
|
def make_key_array_phys_sharding(aval, sharding, is_sharding_from_xla):
|
|
if dispatch.is_single_device_sharding(sharding):
|
|
return sharding
|
|
elif isinstance(sharding, PmapSharding):
|
|
key_shape = aval.dtype.impl.key_shape
|
|
trailing_sharding = [sharding_specs.NoSharding()] * len(key_shape)
|
|
phys_sharding_spec = sharding_specs.ShardingSpec(
|
|
sharding=(*sharding.sharding_spec.sharding, *trailing_sharding),
|
|
mesh_mapping=sharding.sharding_spec.mesh_mapping)
|
|
return PmapSharding(devices=sharding.devices,
|
|
sharding_spec=phys_sharding_spec)
|
|
elif isinstance(sharding, NamedSharding):
|
|
key_shape = aval.dtype.impl.key_shape
|
|
trailing_spec = [None] * len(key_shape)
|
|
return NamedSharding(
|
|
sharding.mesh,
|
|
PartitionSpec(*sharding.spec, *trailing_spec))
|
|
elif is_sharding_from_xla:
|
|
return sharding
|
|
else:
|
|
hlos = sharding._to_xla_hlo_sharding(aval.ndim)
|
|
return GSPMDSharding(
|
|
sharding._device_assignment,
|
|
KeyTyRules.physical_hlo_sharding(aval, hlos))
|
|
|
|
class KeyTyRules:
|
|
|
|
@staticmethod
|
|
def full(shape, fill_value, dtype):
|
|
physical_shape = (*shape, *dtype.impl.key_shape)
|
|
if hasattr(fill_value, 'dtype') and jnp.issubdtype(fill_value.dtype, dtypes.prng_key):
|
|
key_data = jnp.broadcast_to(random_unwrap(fill_value), physical_shape)
|
|
else:
|
|
key_data = lax.full(physical_shape, fill_value, dtype=np.dtype('uint32'))
|
|
# TODO(frostig,mattjj,vanderplas,lenamartens): consider this consumed from
|
|
# the outset.
|
|
return random_wrap(key_data, impl=dtype.impl)
|
|
|
|
@staticmethod
|
|
def physical_element_aval(dtype) -> core.ShapedArray:
|
|
return core.ShapedArray(dtype.impl.key_shape, jnp.dtype('uint32'))
|
|
|
|
@staticmethod
|
|
def physical_const(val) -> Array:
|
|
return val.unsafe_raw_array()
|
|
|
|
@staticmethod
|
|
def physical_hlo_sharding(aval, hlo_sharding: xc.HloSharding) -> xc.HloSharding:
|
|
key_shape = aval.dtype.impl.key_shape
|
|
op_sharding_proto = hlo_sharding.to_proto() # type: ignore
|
|
new_op_sharding = op_sharding_proto.clone()
|
|
tad = list(new_op_sharding.tile_assignment_dimensions)
|
|
suffix = [tad.pop()] if op_sharding_proto.replicate_on_last_tile_dim else []
|
|
tad.extend([1] * len(key_shape) + suffix)
|
|
new_op_sharding.tile_assignment_dimensions = tad
|
|
return xc.HloSharding.from_proto(new_op_sharding)
|
|
|
|
@staticmethod
|
|
def logical_op_sharding(aval, phys_sharding) -> XLACompatibleSharding:
|
|
if dispatch.is_single_device_sharding(phys_sharding):
|
|
return phys_sharding
|
|
elif isinstance(phys_sharding, PmapSharding):
|
|
key_shape = aval.dtype.impl.key_shape
|
|
logical_sharding_spec = sharding_specs.ShardingSpec(
|
|
sharding=phys_sharding.sharding_spec.sharding[:-len(key_shape)],
|
|
mesh_mapping=phys_sharding.sharding_spec.mesh_mapping)
|
|
return PmapSharding(devices=phys_sharding.devices,
|
|
sharding_spec=logical_sharding_spec)
|
|
elif isinstance(phys_sharding, NamedSharding):
|
|
key_shape = aval.dtype.impl.key_shape
|
|
return pxla.create_mesh_pspec_sharding(
|
|
phys_sharding.mesh,
|
|
PartitionSpec(*phys_sharding.spec[:-len(key_shape)]))
|
|
else:
|
|
key_shape = aval.dtype.impl.key_shape
|
|
phys_op_sharding = phys_sharding._to_xla_hlo_sharding(
|
|
aval.ndim + len(key_shape)).to_proto()
|
|
logical_op_sharding = phys_op_sharding.clone()
|
|
tad = list(logical_op_sharding.tile_assignment_dimensions)
|
|
tad = tad[:-len(key_shape)]
|
|
logical_op_sharding.tile_assignment_dimensions = tad
|
|
return GSPMDSharding(phys_sharding._device_assignment,
|
|
xc.HloSharding.from_proto(logical_op_sharding))
|
|
|
|
@staticmethod
|
|
def result_handler(sticky_device, aval):
|
|
def handler(_, buf):
|
|
buf.aval = core.ShapedArray(buf.shape, buf.dtype)
|
|
return PRNGKeyArrayImpl(aval.dtype.impl, buf)
|
|
return handler
|
|
|
|
@staticmethod
|
|
def local_sharded_result_handler(aval, sharding, indices):
|
|
phys_aval = core.physical_aval(aval)
|
|
key_shape = aval.dtype.impl.key_shape
|
|
phys_handler_maker = pxla.local_result_handlers[core.ShapedArray]
|
|
|
|
# set up a grounded sharding (with a grounded sharding spec)
|
|
if isinstance(sharding, (PmapSharding, NamedSharding)):
|
|
phys_sharding = make_key_array_phys_sharding(
|
|
aval, sharding, is_sharding_from_xla=False)
|
|
else:
|
|
assert False, f'impossible sharding {sharding} in local sharded result handler'
|
|
|
|
# set up grounded indices
|
|
trailing_inds = [slice(None)] * len(key_shape)
|
|
phys_indices = [(*inds, *trailing_inds) for inds in indices]
|
|
|
|
# make a physical handler
|
|
phys_handler = phys_handler_maker(phys_aval, phys_sharding, phys_indices)
|
|
|
|
# set up a handler that calls the physical one and wraps back up
|
|
def handler(bufs):
|
|
return PRNGKeyArrayImpl(aval.dtype.impl, phys_handler(bufs))
|
|
|
|
return handler
|
|
|
|
@staticmethod
|
|
def global_sharded_result_handler(aval, out_sharding, committed,
|
|
is_out_sharding_from_xla):
|
|
phys_aval = core.physical_aval(aval)
|
|
phys_handler_maker = pxla.global_result_handlers[core.ShapedArray]
|
|
|
|
phys_sharding = make_key_array_phys_sharding(
|
|
aval, out_sharding, is_out_sharding_from_xla)
|
|
phys_handler = phys_handler_maker(phys_aval, phys_sharding, committed,
|
|
is_out_sharding_from_xla)
|
|
def handler(bufs):
|
|
return PRNGKeyArrayImpl(aval.dtype.impl, phys_handler(bufs))
|
|
return handler
|
|
|
|
@staticmethod
|
|
def make_sharded_array(aval, sharding, arrays, committed):
|
|
phys_aval = core.physical_aval(aval)
|
|
phys_handler_maker = pxla.global_result_handlers[core.ShapedArray]
|
|
phys_arrays = [random_unwrap(arr) for arr in arrays]
|
|
|
|
phys_sharding = make_key_array_phys_sharding(aval, sharding, False)
|
|
phys_handler = phys_handler_maker(phys_aval, phys_sharding, committed, False)
|
|
phys_result = phys_handler(phys_arrays)
|
|
return PRNGKeyArrayImpl(aval.dtype.impl, phys_result)
|
|
|
|
@staticmethod
|
|
def device_put_sharded(vals, aval, sharding, devices):
|
|
physical_aval = keys_aval_to_base_arr_aval(aval)
|
|
physical_buffers = tree_util.tree_map(random_unwrap, vals)
|
|
physical_sharding = make_key_array_phys_sharding(aval, sharding, False)
|
|
physical_result = pxla.batched_device_put(physical_aval, physical_sharding, physical_buffers, list(devices))
|
|
return random_wrap(physical_result, impl=aval.dtype.impl)
|
|
|
|
@staticmethod
|
|
def device_put_replicated(val, aval, sharding, devices):
|
|
physical_aval = keys_aval_to_base_arr_aval(aval)
|
|
assert len(xla.aval_to_xla_shapes(physical_aval)) == 1
|
|
physical_buf = random_unwrap(val)
|
|
physical_sharding = make_key_array_phys_sharding(aval, sharding, False)
|
|
physical_result = pxla.batched_device_put(physical_aval, physical_sharding, [physical_buf] * len(devices), devices)
|
|
return random_wrap(physical_result, impl=aval.dtype.impl)
|
|
|
|
|
|
class KeyTy(dtypes.ExtendedDType):
|
|
impl: Hashable # prng.PRNGImpl. TODO(mattjj,frostig): protocol really
|
|
_rules = KeyTyRules
|
|
type = dtypes.prng_key
|
|
|
|
def __init__(self, impl):
|
|
self.impl = impl
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
return f'key<{self.impl.tag}>'
|
|
|
|
@property
|
|
def itemsize(self) -> int:
|
|
return math.prod(self.impl.key_shape) * np.dtype('uint32').itemsize
|
|
|
|
def __repr__(self) -> str:
|
|
return self.name
|
|
|
|
def __eq__(self, other):
|
|
return type(other) is KeyTy and self.impl == other.impl
|
|
|
|
def __hash__(self) -> int:
|
|
return hash((self.__class__, self.impl))
|
|
|
|
|
|
|
|
core.pytype_aval_mappings[PRNGKeyArrayImpl] = lambda x: x.aval
|
|
xla.pytype_aval_mappings[PRNGKeyArrayImpl] = lambda x: x.aval
|
|
|
|
xla.canonicalize_dtype_handlers[PRNGKeyArrayImpl] = lambda x: x
|
|
|
|
|
|
def key_array_shard_arg_handler(x: PRNGKeyArrayImpl, devices, indices, sharding):
|
|
aval = x.aval
|
|
key_shape = aval.dtype.impl.key_shape
|
|
arr = x.unsafe_raw_array()
|
|
|
|
# TODO(yashkatariya,frostig): This assumes that the last dimensions are not
|
|
# sharded. This is only true when enable_custom_prng is True.
|
|
trailing_inds = [slice(None)] * len(key_shape)
|
|
phys_indices = [(*inds, *trailing_inds) for inds in indices]
|
|
phys_sharding = make_key_array_phys_sharding(
|
|
aval, sharding, is_sharding_from_xla=False)
|
|
return pxla.shard_arg_handlers[type(arr)](
|
|
arr, devices, phys_indices, phys_sharding
|
|
)
|
|
|
|
|
|
pxla.shard_arg_handlers[PRNGKeyArrayImpl] = key_array_shard_arg_handler
|
|
|
|
|
|
def key_array_constant_handler(x):
|
|
arr = x.unsafe_raw_array()
|
|
return mlir.get_constant_handler(type(arr))(arr)
|
|
mlir.register_constant_handler(PRNGKeyArrayImpl, key_array_constant_handler)
|
|
|
|
|
|
# -- primitives
|
|
|
|
def iterated_vmap_unary(n, f):
|
|
for _ in range(n):
|
|
f = api.vmap(f)
|
|
return f
|
|
|
|
# TODO(frostig): Revise the following two functions? These basically
|
|
# undo the singleton dimensions added by `batching.defbroadcasting`.
|
|
# It works, but introduces some possibly-redundant squeezes. Can we
|
|
# borrow from other broadcasting primitives instead?
|
|
|
|
def squeeze_vmap(f, left):
|
|
def squeeze_vmap_f(x, y):
|
|
if left:
|
|
x = jnp.squeeze(x, axis=0)
|
|
axes = (None, 0)
|
|
else:
|
|
y = jnp.squeeze(y, axis=0)
|
|
axes = (0, None)
|
|
return api.vmap(f, in_axes=axes, out_axes=0)(x, y)
|
|
return squeeze_vmap_f
|
|
|
|
def iterated_vmap_binary_bcast(shape1, shape2, f):
|
|
ndim1, ndim2 = len(shape1), len(shape2)
|
|
if ndim1 == ndim2 == 0:
|
|
return f
|
|
if 0 in [ndim1, ndim2]:
|
|
if ndim1 == 0:
|
|
return lambda x, y: iterated_vmap_unary(ndim2, lambda y: f(x, y))(y)
|
|
else:
|
|
return lambda x, y: iterated_vmap_unary(ndim1, lambda x: f(x, y))(x)
|
|
assert len(shape1) == len(shape2)
|
|
for sz1, sz2 in reversed(zip(shape1, shape2)):
|
|
if sz1 == sz2:
|
|
f = api.vmap(f, out_axes=0)
|
|
else:
|
|
assert sz1 == 1 or sz2 == 1, (sz1, sz2)
|
|
f = squeeze_vmap(f, sz1 == 1)
|
|
return f
|
|
|
|
|
|
def random_seed(seeds, impl):
|
|
# Avoid overflow error in X32 mode by first converting ints to int64.
|
|
# This breaks JIT invariance for large ints, but supports the common
|
|
# use-case of instantiating with Python hashes in X32 mode.
|
|
if isinstance(seeds, int):
|
|
seeds_arr = jnp.asarray(np.int64(seeds))
|
|
else:
|
|
seeds_arr = jnp.asarray(seeds)
|
|
return random_seed_p.bind(seeds_arr, impl=impl)
|
|
|
|
random_seed_p = core.Primitive('random_seed')
|
|
ad.defjvp_zero(random_seed_p)
|
|
batching.defvectorized(random_seed_p)
|
|
|
|
@random_seed_p.def_abstract_eval
|
|
def random_seed_abstract_eval(seeds_aval, *, impl):
|
|
return keys_shaped_array(impl, seeds_aval.shape)
|
|
|
|
@random_seed_p.def_impl
|
|
def random_seed_impl(seeds, *, impl):
|
|
base_arr = random_seed_impl_base(seeds, impl=impl)
|
|
return PRNGKeyArrayImpl(impl, base_arr)
|
|
|
|
def random_seed_impl_base(seeds, *, impl):
|
|
seed = iterated_vmap_unary(seeds.ndim, impl.seed)
|
|
return seed(seeds)
|
|
|
|
def random_seed_lowering(ctx, seeds, *, impl):
|
|
aval, = ctx.avals_in
|
|
seed = iterated_vmap_unary(aval.ndim, impl.seed)
|
|
seed_lowering = mlir.lower_fun(seed, multiple_results=False)
|
|
return mlir.delegate_lowering(
|
|
ctx, seed_lowering, seeds,
|
|
avals_out=map(keys_aval_to_base_arr_aval, ctx.avals_out))
|
|
|
|
mlir.register_lowering(random_seed_p, random_seed_lowering)
|
|
|
|
|
|
def random_split(keys, shape: Shape):
|
|
return random_split_p.bind(keys, shape=shape)
|
|
|
|
random_split_p = core.Primitive('random_split')
|
|
ad.defjvp_zero(random_split_p)
|
|
batching.defvectorized(random_split_p)
|
|
|
|
@random_split_p.def_abstract_eval
|
|
def random_split_abstract_eval(keys_aval, *, shape):
|
|
return keys_shaped_array(keys_aval.dtype.impl, (*keys_aval.shape, *shape))
|
|
|
|
@random_split_p.def_impl
|
|
def random_split_impl(keys, *, shape):
|
|
base_arr = random_split_impl_base(
|
|
keys.impl, keys.unsafe_raw_array(), keys.ndim, shape=shape)
|
|
return PRNGKeyArrayImpl(keys.impl, base_arr)
|
|
|
|
def random_split_impl_base(impl, base_arr, keys_ndim, *, shape):
|
|
split = iterated_vmap_unary(keys_ndim, lambda k: impl.split(k, shape))
|
|
return split(base_arr)
|
|
|
|
def random_split_lowering(ctx, keys, *, shape):
|
|
aval, = ctx.avals_in
|
|
impl = aval.dtype.impl
|
|
split = iterated_vmap_unary(aval.ndim, lambda k: impl.split(k, shape))
|
|
split_lowering = mlir.lower_fun(split, multiple_results=False)
|
|
return mlir.delegate_lowering(
|
|
ctx, split_lowering, keys,
|
|
avals_in=[keys_aval_to_base_arr_aval(aval)],
|
|
avals_out=map(keys_aval_to_base_arr_aval, ctx.avals_out))
|
|
|
|
mlir.register_lowering(random_split_p, random_split_lowering)
|
|
|
|
|
|
def random_fold_in(keys, msgs):
|
|
return random_fold_in_p.bind(keys, jnp.asarray(msgs))
|
|
|
|
random_fold_in_p = core.Primitive('random_fold_in')
|
|
ad.defjvp_zero(random_fold_in_p)
|
|
batching.defbroadcasting(random_fold_in_p)
|
|
|
|
@random_fold_in_p.def_abstract_eval
|
|
def random_fold_in_abstract_eval(keys_aval, msgs_aval):
|
|
shape = lax_internal.broadcasting_shape_rule(
|
|
'random_fold_in', keys_aval, msgs_aval)
|
|
named_shape = lax_utils.standard_named_shape_rule(keys_aval, msgs_aval)
|
|
return core.ShapedArray(shape, keys_aval.dtype, named_shape=named_shape)
|
|
|
|
@random_fold_in_p.def_impl
|
|
def random_fold_in_impl(keys, msgs):
|
|
base_arr = random_fold_in_impl_base(
|
|
keys.impl, keys.unsafe_raw_array(), msgs, keys.shape)
|
|
return PRNGKeyArrayImpl(keys.impl, base_arr)
|
|
|
|
def random_fold_in_impl_base(impl, base_arr, msgs, keys_shape):
|
|
fold_in = iterated_vmap_binary_bcast(
|
|
keys_shape, np.shape(msgs), impl.fold_in)
|
|
return fold_in(base_arr, msgs)
|
|
|
|
def random_fold_in_lowering(ctx, keys, msgs):
|
|
keys_aval, msgs_aval = ctx.avals_in
|
|
impl = keys_aval.dtype.impl
|
|
fold_in = iterated_vmap_binary_bcast(
|
|
keys_aval.shape, msgs_aval.shape, impl.fold_in)
|
|
fold_in_lowering = mlir.lower_fun(fold_in, multiple_results=False)
|
|
return mlir.delegate_lowering(
|
|
ctx, fold_in_lowering, keys, msgs,
|
|
avals_in=[keys_aval_to_base_arr_aval(keys_aval), msgs_aval],
|
|
avals_out=map(keys_aval_to_base_arr_aval, ctx.avals_out))
|
|
|
|
mlir.register_lowering(random_fold_in_p, random_fold_in_lowering)
|
|
|
|
|
|
def random_bits(keys, bit_width, shape):
|
|
shape = core.as_named_shape(shape)
|
|
for name, size in shape.named_items:
|
|
# TODO(frostig,mattjj,apaszke): Is this real_size check necessary,
|
|
# and is it meant to raise a user-facing ValueError? Should it be
|
|
# an `assert` (or RuntimeError) instead? Why do we check it in
|
|
# calls to `random_bits` instead of a more common paralleism path?
|
|
real_size = lax.psum(1, name)
|
|
if real_size != size:
|
|
raise ValueError(f"The shape of axis {name} was specified as {size}, "
|
|
f"but it really is {real_size}")
|
|
axis_index = lax.axis_index(name)
|
|
keys = random_fold_in(keys, axis_index)
|
|
return random_bits_p.bind(keys, bit_width=bit_width, shape=shape.positional)
|
|
|
|
random_bits_p = core.Primitive('random_bits')
|
|
ad.defjvp_zero(random_bits_p)
|
|
batching.defvectorized(random_bits_p)
|
|
|
|
@random_bits_p.def_abstract_eval
|
|
def random_bits_abstract_eval(keys_aval, *, bit_width, shape):
|
|
out_shape = (*keys_aval.shape, *shape)
|
|
out_dtype = dtypes.dtype(f'uint{bit_width}')
|
|
return core.ShapedArray(out_shape, out_dtype)
|
|
|
|
@random_bits_p.def_impl
|
|
def random_bits_impl(keys, *, bit_width, shape):
|
|
return random_bits_impl_base(keys.impl, keys.unsafe_raw_array(), keys.ndim,
|
|
bit_width=bit_width, shape=shape)
|
|
|
|
def random_bits_impl_base(impl, base_arr, keys_ndim, *, bit_width, shape):
|
|
bits = iterated_vmap_unary(
|
|
keys_ndim, lambda k: impl.random_bits(k, bit_width, shape))
|
|
return bits(base_arr)
|
|
|
|
def random_bits_lowering(ctx, keys, *, bit_width, shape):
|
|
aval, = ctx.avals_in
|
|
impl = aval.dtype.impl
|
|
bits = iterated_vmap_unary(
|
|
aval.ndim, lambda k: impl.random_bits(k, bit_width, shape))
|
|
bits_lowering = mlir.lower_fun(bits, multiple_results=False)
|
|
ctx_new = ctx.replace(avals_in=[keys_aval_to_base_arr_aval(aval)])
|
|
out = bits_lowering(ctx_new, keys)
|
|
ctx.set_tokens_out(ctx_new.tokens_out)
|
|
return out
|
|
|
|
mlir.register_lowering(random_bits_p, random_bits_lowering)
|
|
|
|
|
|
# The following wrap/unwrap primitives are at least a stopgap for
|
|
# backwards compatibility, namely when `config.jax_enable_custom_prng`
|
|
# is False. We need to convert key arrays to and from underlying
|
|
# uint32 base array, and we may need to do so under a jit. For
|
|
# example, we want to support:
|
|
#
|
|
# keys = jax.jit(random.split)(key)
|
|
#
|
|
# where `key` and `keys` are both acceptably old-style uint32 arrays
|
|
# so long as enable_custom_prng is False. The way we handle this is
|
|
# that `random.split` adapts the input/output by converting to/from
|
|
# key arrays across its call to `random_split`. So we rely on these
|
|
# wrap/unwrap casting primitives to allow that conversion under jit.
|
|
#
|
|
# We may want to keep both around for testing and debugging escape
|
|
# hatches. We can rename them `unsafe` for emphasis, and/or issue a
|
|
# warning on entry to the traceable.
|
|
#
|
|
# TODO(frostig): Consider removal once we always enable_custom_prng.
|
|
|
|
def random_wrap(base_arr, *, impl):
|
|
_check_prng_key_data(impl, base_arr)
|
|
return random_wrap_p.bind(base_arr, impl=impl)
|
|
|
|
random_wrap_p = core.Primitive('random_wrap')
|
|
ad.defjvp_zero(random_wrap_p)
|
|
|
|
@random_wrap_p.def_abstract_eval
|
|
def random_wrap_abstract_eval(base_arr_aval, *, impl):
|
|
shape = base_arr_shape_to_keys_shape(impl, base_arr_aval.shape)
|
|
return keys_shaped_array(impl, shape)
|
|
|
|
@random_wrap_p.def_impl
|
|
def random_wrap_impl(base_arr, *, impl):
|
|
return PRNGKeyArrayImpl(impl, base_arr)
|
|
|
|
def random_wrap_lowering(ctx, base_arr, *, impl):
|
|
return [base_arr]
|
|
|
|
def random_wrap_batch_rule(batched_args, batch_dims, *, impl):
|
|
x, = batched_args
|
|
d, = batch_dims
|
|
x = batching.bdim_at_front(x, d, 1)
|
|
return random_wrap(x, impl=impl), 0
|
|
|
|
mlir.register_lowering(random_wrap_p, random_wrap_lowering)
|
|
batching.primitive_batchers[random_wrap_p] = random_wrap_batch_rule
|
|
|
|
|
|
def random_unwrap(keys):
|
|
if not jnp.issubdtype(keys.dtype, dtypes.prng_key):
|
|
raise TypeError(f'random_unwrap takes key array operand, got {keys.dtype=}')
|
|
return random_unwrap_p.bind(keys)
|
|
|
|
random_unwrap_p = core.Primitive('random_unwrap')
|
|
ad.defjvp_zero(random_unwrap_p)
|
|
batching.defvectorized(random_unwrap_p)
|
|
|
|
@random_unwrap_p.def_abstract_eval
|
|
def random_unwrap_abstract_eval(keys_aval):
|
|
return keys_aval_to_base_arr_aval(keys_aval)
|
|
|
|
@random_unwrap_p.def_impl
|
|
def random_unwrap_impl(keys):
|
|
return keys.unsafe_raw_array()
|
|
|
|
def random_unwrap_lowering(ctx, keys):
|
|
return [keys]
|
|
|
|
mlir.register_lowering(random_unwrap_p, random_unwrap_lowering)
|
|
|
|
|
|
# -- threefry2x32 PRNG implementation
|
|
|
|
|
|
def _is_threefry_prng_key(key: typing.Array) -> bool:
|
|
try:
|
|
return key.shape == (2,) and key.dtype == np.uint32
|
|
except AttributeError:
|
|
return False
|
|
|
|
|
|
def threefry_seed(seed: typing.Array) -> typing.Array:
|
|
"""Create a single raw threefry PRNG key from an integer seed.
|
|
|
|
Args:
|
|
seed: a 64- or 32-bit integer used as the value of the key.
|
|
|
|
Returns:
|
|
The PRNG key contents, modeled as an array of shape (2,) and dtype
|
|
uint32. The key is constructed from a 64-bit seed by effectively
|
|
bit-casting to a pair of uint32 values (or from a 32-bit seed by
|
|
first padding out with zeros).
|
|
"""
|
|
return _threefry_seed(seed)
|
|
|
|
@partial(jit, inline=True)
|
|
def _threefry_seed(seed: typing.Array) -> typing.Array:
|
|
if seed.shape:
|
|
raise TypeError(f"PRNG key seed must be a scalar; got {seed!r}.")
|
|
if not np.issubdtype(seed.dtype, np.integer):
|
|
raise TypeError(f"PRNG key seed must be an integer; got {seed!r}")
|
|
convert = lambda k: lax.reshape(lax.convert_element_type(k, np.uint32), [1])
|
|
k1 = convert(
|
|
lax.shift_right_logical(seed, lax_internal._const(seed, 32)))
|
|
with config_lib.numpy_dtype_promotion('standard'):
|
|
# TODO(jakevdp): in X64 mode, this can generate 64-bit computations for 32-bit
|
|
# inputs. We should avoid this.
|
|
k2 = convert(jnp.bitwise_and(seed, np.uint32(0xFFFFFFFF)))
|
|
return lax.concatenate([k1, k2], 0)
|
|
|
|
|
|
def _make_rotate_left(dtype):
|
|
if not jnp.issubdtype(dtype, np.integer):
|
|
raise TypeError("_rotate_left only accepts integer dtypes.")
|
|
nbits = np.array(jnp.iinfo(dtype).bits, dtype)
|
|
|
|
def _rotate_left(x, d):
|
|
if lax.dtype(d) != dtype:
|
|
d = lax.convert_element_type(d, dtype)
|
|
if lax.dtype(x) != dtype:
|
|
x = lax.convert_element_type(x, dtype)
|
|
return lax.shift_left(x, d) | lax.shift_right_logical(x, nbits - d)
|
|
return _rotate_left
|
|
|
|
|
|
### hash function and split
|
|
|
|
def _threefry2x32_abstract_eval(*args):
|
|
if any(a.dtype != jnp.uint32 for a in args):
|
|
raise TypeError("Arguments to threefry2x32 must have uint32 type, got {}"
|
|
.format(args))
|
|
if all(isinstance(arg, core.ShapedArray) for arg in args):
|
|
shape = lax_internal.broadcasting_shape_rule(*args)
|
|
named_shape = core.join_named_shapes(*(a.named_shape for a in args))
|
|
aval = core.ShapedArray(shape, jnp.dtype(jnp.uint32), named_shape=named_shape)
|
|
else:
|
|
aval = core.UnshapedArray(jnp.dtype(jnp.uint32))
|
|
return (aval,) * 2
|
|
|
|
|
|
rotate_left = _make_rotate_left(np.uint32)
|
|
|
|
|
|
def apply_round(v, rot):
|
|
v = v[:]
|
|
v[0] = v[0] + v[1]
|
|
v[1] = rotate_left(v[1], rot)
|
|
v[1] = v[0] ^ v[1]
|
|
return v
|
|
|
|
|
|
def rotate_list(xs):
|
|
return xs[1:] + xs[:1]
|
|
|
|
|
|
def rolled_loop_step(i, state):
|
|
x, ks, rotations = state
|
|
for r in rotations[0]:
|
|
x = apply_round(x, r)
|
|
new_x = [x[0] + ks[0], x[1] + ks[1] + jnp.asarray(i + 1, dtype=np.uint32)]
|
|
return new_x, rotate_list(ks), rotate_list(rotations)
|
|
|
|
|
|
def _threefry2x32_lowering(key1, key2, x1, x2, use_rolled_loops=True):
|
|
"""Apply the Threefry 2x32 hash.
|
|
|
|
Args:
|
|
keypair: a pair of 32bit unsigned integers used for the key.
|
|
count: an array of dtype uint32 used for the counts.
|
|
|
|
Returns:
|
|
An array of dtype uint32 with the same shape as `count`.
|
|
"""
|
|
x = [x1, x2]
|
|
|
|
rotations = [np.array([13, 15, 26, 6], dtype=np.uint32),
|
|
np.array([17, 29, 16, 24], dtype=np.uint32)]
|
|
ks = [key1, key2, key1 ^ key2 ^ np.uint32(0x1BD11BDA)]
|
|
|
|
x[0] = x[0] + ks[0]
|
|
x[1] = x[1] + ks[1]
|
|
|
|
if use_rolled_loops:
|
|
x, _, _ = lax.fori_loop(0, 5, rolled_loop_step, (x, rotate_list(ks), rotations))
|
|
|
|
else:
|
|
for r in rotations[0]:
|
|
x = apply_round(x, r)
|
|
x[0] = x[0] + ks[1]
|
|
x[1] = x[1] + ks[2] + np.uint32(1)
|
|
|
|
for r in rotations[1]:
|
|
x = apply_round(x, r)
|
|
x[0] = x[0] + ks[2]
|
|
x[1] = x[1] + ks[0] + np.uint32(2)
|
|
|
|
for r in rotations[0]:
|
|
x = apply_round(x, r)
|
|
x[0] = x[0] + ks[0]
|
|
x[1] = x[1] + ks[1] + np.uint32(3)
|
|
|
|
for r in rotations[1]:
|
|
x = apply_round(x, r)
|
|
x[0] = x[0] + ks[1]
|
|
x[1] = x[1] + ks[2] + np.uint32(4)
|
|
|
|
for r in rotations[0]:
|
|
x = apply_round(x, r)
|
|
x[0] = x[0] + ks[2]
|
|
x[1] = x[1] + ks[0] + np.uint32(5)
|
|
|
|
return tuple(x)
|
|
|
|
|
|
def _threefry2x32_gpu_lowering(lowering_func, ctx, k1, k2, x1, x2):
|
|
aval_out, aval_out_2 = ctx.avals_out
|
|
assert aval_out == aval_out_2
|
|
k1_aval, k2_aval, x1_aval, x2_aval = ctx.avals_in
|
|
rank = len(aval_out.shape)
|
|
if 0 in aval_out.shape:
|
|
zeros = mlir.full_like_aval(ctx, 0, aval_out)
|
|
return [zeros, zeros]
|
|
def _broadcast(x, aval):
|
|
return mlir.broadcast_in_dim(ctx, x, aval_out,
|
|
broadcast_dimensions=range(rank - len(aval.shape), rank))
|
|
|
|
out_len = reduce(op.mul, aval_out.shape, 1)
|
|
if not core.is_constant_dim(out_len):
|
|
length = mlir.eval_dynamic_shape_as_tensor(ctx, [out_len])
|
|
length = mlir.hlo.ConvertOp(
|
|
ir.RankedTensorType.get((1,), ir.IntegerType.get_signless(64)),
|
|
length).result
|
|
output_shape = mlir.eval_dynamic_shape_as_tensor(ctx, aval_out.shape)
|
|
else:
|
|
length = int(out_len) # will be passed statically
|
|
output_shape = None
|
|
|
|
return lowering_func(
|
|
(_broadcast(k1, k1_aval), _broadcast(k2, k2_aval)),
|
|
(_broadcast(x1, x1_aval), _broadcast(x2, x2_aval)), length,
|
|
output_shape)
|
|
|
|
threefry2x32_p = core.Primitive("threefry2x32")
|
|
threefry2x32_p.multiple_results = True
|
|
threefry2x32_p.def_impl(partial(dispatch.apply_primitive, threefry2x32_p))
|
|
threefry2x32_p.def_abstract_eval(_threefry2x32_abstract_eval)
|
|
batching.defbroadcasting(threefry2x32_p)
|
|
mlir.register_lowering(threefry2x32_p, mlir.lower_fun(
|
|
partial(_threefry2x32_lowering, use_rolled_loops=False),
|
|
multiple_results=True))
|
|
mlir.register_lowering(threefry2x32_p, mlir.lower_fun(
|
|
partial(_threefry2x32_lowering, use_rolled_loops=True),
|
|
multiple_results=True), platform='cpu')
|
|
mlir.register_lowering(
|
|
threefry2x32_p,
|
|
partial(_threefry2x32_gpu_lowering, gpu_prng.cuda_threefry2x32),
|
|
platform='cuda')
|
|
mlir.register_lowering(
|
|
threefry2x32_p,
|
|
partial(_threefry2x32_gpu_lowering, gpu_prng.rocm_threefry2x32),
|
|
platform='rocm')
|
|
|
|
|
|
def iota_2x32_shape(shape):
|
|
"""Reshaped ``uint64`` iota, as two parallel ``uint32`` arrays.
|
|
|
|
Setting aside representation, this function essentially computes the
|
|
equivalent of::
|
|
|
|
jax.lax.iota(dtype=np.uint64, size=math.prod(shape)).reshape(shape)
|
|
|
|
However:
|
|
|
|
* It returns two parallel ``uint32`` arrays instead of one
|
|
``uint64`` array. This renders it invariant under either setting of
|
|
the system-wide ``jax_enable_x64`` configuration flag.
|
|
|
|
* It lowers in a way such that the compiler's automatic SPMD
|
|
partitioner recognizes its partitionability.
|
|
|
|
For example::
|
|
|
|
>>> import numpy as np
|
|
>>> from jax import lax
|
|
>>> from jax._src import prng
|
|
|
|
>>> prng.iota_2x32_shape((3, 4))
|
|
[Array([[0, 0, 0, 0],
|
|
[0, 0, 0, 0],
|
|
[0, 0, 0, 0]], dtype=uint32),
|
|
Array([[ 0, 1, 2, 3],
|
|
[ 4, 5, 6, 7],
|
|
[ 8, 9, 10, 11]], dtype=uint32)]
|
|
|
|
>>> def reshaped_iota(shape):
|
|
... return lax.iota(size=math.prod(shape), dtype=np.uint32).reshape(shape)
|
|
...
|
|
>>> reshaped_iota((3, 4))
|
|
Array([[ 0, 1, 2, 3],
|
|
[ 4, 5, 6, 7],
|
|
[ 8, 9, 10, 11]], dtype=uint32)
|
|
|
|
Args:
|
|
shape: the output shape
|
|
|
|
Returns:
|
|
A pair of ``uint32`` arrays ``(counts_hi, counts_lo)``, both of
|
|
shape ``shape``, representing the higher-order and lower-order 32
|
|
bits of the 64 bit unsigned iota.
|
|
"""
|
|
if len(shape) == 0:
|
|
return (jnp.zeros((), np.dtype('uint32')),) * 2
|
|
return iota_2x32_shape_p.bind(shape=shape)
|
|
|
|
iota_2x32_shape_p = core.Primitive('iota_2x32_shape')
|
|
iota_2x32_shape_p.multiple_results = True
|
|
iota_2x32_shape_p.def_impl(partial(dispatch.apply_primitive, iota_2x32_shape_p))
|
|
|
|
@iota_2x32_shape_p.def_abstract_eval
|
|
def iota_2x32_shape_abstract_eval(*, shape):
|
|
return (core.ShapedArray(shape, np.dtype('uint32')),) * 2
|
|
|
|
def bcast_iotas_to_reshaped_iota(
|
|
add: Callable[[ir.Value, ir.Value], ir.Value],
|
|
mul: Callable[[core.DimSize, ir.Value], ir.Value],
|
|
shape: core.Shape,
|
|
iotas: Sequence[ir.Value]) -> ir.Value:
|
|
strides: core.Shape = (*(np.cumprod(shape[1:][::-1])[::-1]), 1) # type: ignore
|
|
return reduce(add, [mul(s, i) for i, s in zip(iotas, strides)]) # type: ignore
|
|
|
|
def iota_2x32_shape_lowering(ctx, *, shape):
|
|
aval_out, _ = ctx.avals_out
|
|
aval_u64 = core.ShapedArray(shape, np.dtype('uint64'))
|
|
|
|
def _add(x: ir.Value, y: ir.Value) -> ir.Value:
|
|
return mlir.hlo.AddOp(x, y).result
|
|
|
|
def _mul(x: core.DimSize, y: ir.Value) -> ir.Value:
|
|
if core.is_constant_dim(x):
|
|
x_const = mlir.ir_constant(np.array(x, np.dtype('uint64')))
|
|
else:
|
|
x_const, = mlir.eval_dynamic_shape(ctx, (x,))
|
|
x_const = hlo.ConvertOp(
|
|
ir.RankedTensorType.get(
|
|
(),
|
|
mlir.dtype_to_ir_type(np.dtype('uint64'))), x_const).result
|
|
x_bcast = mlir.broadcast_in_dim(ctx, x_const, aval_u64,
|
|
broadcast_dimensions=[])
|
|
return mlir.hlo.MulOp(x_bcast, y).result
|
|
|
|
assert len(shape) > 0
|
|
|
|
iotas = [mlir.iota(ctx, aval_u64, dimension=dimension)
|
|
for dimension in range(len(shape))]
|
|
counts = bcast_iotas_to_reshaped_iota(_add, _mul, shape, iotas)
|
|
shift = mlir.ir_constant(np.array(32, np.dtype('uint64')))
|
|
shift = mlir.broadcast_in_dim(ctx, shift, aval_u64,
|
|
broadcast_dimensions=[])
|
|
counts_shifted = mlir.hlo.ShiftRightLogicalOp(counts, shift).result
|
|
counts_lo = mlir.hlo.ConvertOp(mlir.aval_to_ir_type(aval_out), counts).result
|
|
counts_hi = mlir.hlo.ConvertOp(mlir.aval_to_ir_type(aval_out),
|
|
counts_shifted).result
|
|
return counts_hi, counts_lo
|
|
mlir.register_lowering(iota_2x32_shape_p, iota_2x32_shape_lowering)
|
|
|
|
|
|
@partial(jit, inline=True)
|
|
def threefry_2x32(keypair, count):
|
|
"""Apply the Threefry 2x32 hash.
|
|
|
|
Args:
|
|
keypair: a pair of 32bit unsigned integers used for the key.
|
|
count: an array of dtype uint32 used for the counts.
|
|
|
|
Returns:
|
|
An array of dtype uint32 with the same shape as `count`.
|
|
"""
|
|
key1, key2 = keypair
|
|
if not lax.dtype(key1) == lax.dtype(key2) == lax.dtype(count) == np.uint32:
|
|
msg = "threefry_2x32 requires uint32 arguments, got {}"
|
|
raise TypeError(msg.format([lax.dtype(x) for x in [key1, key2, count]]))
|
|
|
|
odd_size = count.size % 2
|
|
if not isinstance(odd_size, int):
|
|
msg = ("jax.random functions have limited support for shape polymorphism. "
|
|
"In particular, the product of the known dimensions must be even.")
|
|
raise core.InconclusiveDimensionOperation(msg)
|
|
|
|
if odd_size:
|
|
x = list(jnp.split(jnp.concatenate([count.ravel(), np.uint32([0])]), 2))
|
|
else:
|
|
x = list(jnp.split(count.ravel(), 2))
|
|
|
|
x = threefry2x32_p.bind(key1, key2, x[0], x[1])
|
|
out = jnp.concatenate(x)
|
|
assert out.dtype == np.uint32
|
|
return lax.reshape(out[:-1] if odd_size else out, count.shape)
|
|
|
|
|
|
def threefry_split(key: typing.Array, shape: Shape) -> typing.Array:
|
|
shape = tuple(unsafe_map(core.concrete_dim_or_error, shape))
|
|
return _threefry_split(key, shape)
|
|
|
|
@partial(jit, static_argnums=(1,))
|
|
def _threefry_split(key, shape) -> typing.Array:
|
|
if config.jax_threefry_partitionable:
|
|
return _threefry_split_foldlike(key, shape) # type: ignore
|
|
else:
|
|
return _threefry_split_original(key, shape) # type: ignore
|
|
|
|
@partial(jit, static_argnums=(1,), inline=True)
|
|
def _threefry_split_original(key, shape) -> typing.Array:
|
|
num = math.prod(shape)
|
|
counts = lax.iota(np.uint32, num * 2)
|
|
return lax.reshape(threefry_2x32(key, counts), (*shape, 2))
|
|
|
|
@partial(jit, static_argnums=(1,), inline=True)
|
|
def _threefry_split_foldlike(key, shape) -> typing.Array:
|
|
k1, k2 = key
|
|
counts1, counts2 = iota_2x32_shape(shape)
|
|
bits1, bits2 = threefry2x32_p.bind(k1, k2, counts1, counts2)
|
|
return jnp.stack([bits1, bits2], axis=bits1.ndim)
|
|
|
|
|
|
def threefry_fold_in(key: typing.Array, data: typing.Array) -> typing.Array:
|
|
assert not data.shape
|
|
return _threefry_fold_in(key, jnp.uint32(data))
|
|
|
|
@jit
|
|
def _threefry_fold_in(key, data):
|
|
return threefry_2x32(key, threefry_seed(data))
|
|
|
|
|
|
def threefry_random_bits(key: typing.Array, bit_width, shape):
|
|
"""Sample uniform random bits of given width and shape using PRNG key."""
|
|
if not _is_threefry_prng_key(key):
|
|
raise TypeError("threefry_random_bits got invalid prng key.")
|
|
if bit_width not in (8, 16, 32, 64):
|
|
raise TypeError("requires 8-, 16-, 32- or 64-bit field width.")
|
|
|
|
if config.jax_threefry_partitionable:
|
|
return _threefry_random_bits_partitionable(key, bit_width, shape)
|
|
else:
|
|
return _threefry_random_bits_original(key, bit_width, shape)
|
|
|
|
def _threefry_random_bits_partitionable(key: typing.Array, bit_width, shape):
|
|
if all(core.is_constant_dim(d) for d in shape) and math.prod(shape) > 2 ** 64:
|
|
raise NotImplementedError('random bits array of size exceeding 2 ** 64')
|
|
|
|
k1, k2 = key
|
|
counts1, counts2 = iota_2x32_shape(shape)
|
|
bits1, bits2 = threefry2x32_p.bind(k1, k2, counts1, counts2)
|
|
|
|
dtype = UINT_DTYPES[bit_width]
|
|
if bit_width == 64:
|
|
bits_hi = lax.convert_element_type(bits1, dtype)
|
|
bits_lo = lax.convert_element_type(bits2, dtype)
|
|
return lax.shift_left(bits_hi, dtype(32)) | bits_lo
|
|
elif bit_width == 32:
|
|
return bits1 ^ bits2
|
|
else:
|
|
return lax.convert_element_type(bits1 ^ bits2, dtype)
|
|
|
|
@partial(jit, static_argnums=(1, 2), inline=True)
|
|
def _threefry_random_bits_original(key: typing.Array, bit_width, shape):
|
|
size = math.prod(shape)
|
|
# Compute ceil(bit_width * size / 32) in a way that is friendly to shape
|
|
# polymorphism
|
|
max_count, r = divmod(bit_width * size, 32)
|
|
if r > 0:
|
|
max_count += 1
|
|
|
|
if core.is_constant_dim(max_count):
|
|
nblocks, rem = divmod(max_count, jnp.iinfo(np.uint32).max)
|
|
else:
|
|
nblocks, rem = 0, max_count
|
|
|
|
if not nblocks:
|
|
bits = threefry_2x32(key, lax.iota(np.uint32, rem))
|
|
else:
|
|
keys = threefry_split(key, (nblocks + 1,))
|
|
subkeys, last_key = keys[:-1], keys[-1]
|
|
blocks = vmap(threefry_2x32, in_axes=(0, None))(subkeys, lax.iota(np.uint32, jnp.iinfo(np.uint32).max))
|
|
last = threefry_2x32(last_key, lax.iota(np.uint32, rem))
|
|
bits = lax.concatenate([blocks.ravel(), last], 0)
|
|
|
|
dtype = UINT_DTYPES[bit_width]
|
|
if bit_width == 64:
|
|
bits = [lax.convert_element_type(x, dtype) for x in jnp.split(bits, 2)]
|
|
bits = lax.shift_left(bits[0], dtype(32)) | bits[1]
|
|
elif bit_width in [8, 16]:
|
|
# this is essentially bits.view(dtype)[:size]
|
|
bits = lax.bitwise_and(
|
|
np.uint32(np.iinfo(dtype).max),
|
|
lax.shift_right_logical(
|
|
lax.broadcast(bits, (1,)),
|
|
lax.mul(
|
|
np.uint32(bit_width),
|
|
lax.broadcasted_iota(np.uint32, (32 // bit_width, 1), 0)
|
|
)
|
|
)
|
|
)
|
|
bits = lax.reshape(bits, ((max_count * 32 // bit_width),), (1, 0))
|
|
bits = lax.convert_element_type(bits, dtype)[:size]
|
|
return lax.reshape(bits, shape)
|
|
|
|
|
|
threefry_prng_impl = PRNGImpl(
|
|
key_shape=(2,),
|
|
seed=threefry_seed,
|
|
split=threefry_split,
|
|
random_bits=threefry_random_bits,
|
|
fold_in=threefry_fold_in,
|
|
tag='fry')
|
|
|
|
|
|
# -- RngBitGenerator PRNG implementation
|
|
|
|
# This code is experimental!
|
|
# https://www.tensorflow.org/xla/operation_semantics#rngbitgenerator
|
|
# Notice that the RngBitGenerator operations are not guaranteed to be
|
|
# stable/deterministic across backends or compiler versions. Correspondingly, we
|
|
# reserve the right to change any of these implementations at any time!
|
|
|
|
def _rbg_seed(seed: typing.Array) -> typing.Array:
|
|
assert not seed.shape
|
|
halfkey = threefry_seed(seed)
|
|
return jnp.concatenate([halfkey, halfkey])
|
|
|
|
def _rbg_split(key: typing.Array, shape: Shape) -> typing.Array:
|
|
if config.jax_threefry_partitionable:
|
|
_threefry_split = _threefry_split_foldlike
|
|
else:
|
|
_threefry_split = _threefry_split_original
|
|
halfkeys = key.reshape(2, 2)
|
|
return vmap(
|
|
_threefry_split, (0, None), len(shape))(halfkeys, shape).reshape(
|
|
*shape, 4)
|
|
|
|
def _rbg_fold_in(key: typing.Array, data: typing.Array) -> typing.Array:
|
|
assert not data.shape
|
|
return vmap(_threefry_fold_in, (0, None), 0)(key.reshape(2, 2), data).reshape(4)
|
|
|
|
def _rbg_random_bits(key: typing.Array, bit_width: int, shape: Sequence[int]
|
|
) -> typing.Array:
|
|
if not key.shape == (4,) and key.dtype == jnp.dtype('uint32'):
|
|
raise TypeError("_rbg_random_bits got invalid prng key.")
|
|
if bit_width not in (8, 16, 32, 64):
|
|
raise TypeError("requires 8-, 16-, 32- or 64-bit field width.")
|
|
_, bits = lax.rng_bit_generator(key, shape, dtype=UINT_DTYPES[bit_width])
|
|
return bits
|
|
|
|
rbg_prng_impl = PRNGImpl(
|
|
key_shape=(4,),
|
|
seed=_rbg_seed,
|
|
split=_rbg_split,
|
|
random_bits=_rbg_random_bits,
|
|
fold_in=_rbg_fold_in,
|
|
tag='rbg')
|
|
|
|
def _unsafe_rbg_split(key: typing.Array, shape: Shape) -> typing.Array:
|
|
# treat 10 iterations of random bits as a 'hash function'
|
|
num = math.prod(shape)
|
|
_, keys = lax.rng_bit_generator(key, (10 * num, 4), dtype='uint32')
|
|
return lax.slice_in_dim(
|
|
keys, start_index=None, limit_index=None, stride=10).reshape(*shape, 4)
|
|
|
|
def _unsafe_rbg_fold_in(key: typing.Array, data: typing.Array) -> typing.Array:
|
|
assert not data.shape
|
|
_, random_bits = lax.rng_bit_generator(_rbg_seed(data), (10, 4), dtype='uint32')
|
|
return key ^ random_bits[-1]
|
|
|
|
unsafe_rbg_prng_impl = PRNGImpl(
|
|
key_shape=(4,),
|
|
seed=_rbg_seed,
|
|
split=_unsafe_rbg_split,
|
|
random_bits=_rbg_random_bits,
|
|
fold_in=_unsafe_rbg_fold_in,
|
|
tag='urbg')
|