mirror of
https://github.com/ROCm/jax.git
synced 2025-04-15 19:36:06 +00:00

Before this change, JAX could dispatch compiled functions over new-style (typed) RNG key arrays, but it would always do so off of the fast (C++-based) dispatch path. In other words, switching from old-style `uint32` RNG keys to new-style keys would regress dispatch times. With this change, dispatch happens on the fast path again and performance regressions ought to be minimal. We currently maintain only one pytree registry, for all registered pytree node types. We want RNG key arrays to also be treated as pytree leaves everywhere *except* during dispatch. In other words: we want operations on (typed) RNG key arrays to appear in Jaxpr, but we want to unravel those arrays into their underlying `uint32` arrays only during dispatch. To do this, we add a new internal pytree registry that dispatch respects uniquely. This registry includes all items in the default registry, but also the RNG key array type. Co-authored-by: Matthew Johnson <mattjj@google.com> PiperOrigin-RevId: 565077758
1352 lines
45 KiB
Python
1352 lines
45 KiB
Python
# Copyright 2018 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import annotations
|
|
|
|
from collections.abc import Generator, Sequence
|
|
from contextlib import contextmanager, ExitStack
|
|
import inspect
|
|
import io
|
|
import functools
|
|
from functools import partial
|
|
import math
|
|
import re
|
|
import os
|
|
import tempfile
|
|
import textwrap
|
|
from typing import Any, Callable, Optional, Union
|
|
import unittest
|
|
import warnings
|
|
import zlib
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
import numpy as np
|
|
import numpy.random as npr
|
|
|
|
import jax
|
|
from jax import lax
|
|
from jax.experimental.compilation_cache import compilation_cache
|
|
from jax._src.interpreters import mlir
|
|
from jax.tree_util import tree_map, tree_all, tree_flatten, tree_unflatten
|
|
from jax._src import api
|
|
from jax._src import pjit as pjit_lib
|
|
from jax._src import config as jax_config
|
|
from jax._src import core
|
|
from jax._src import dispatch
|
|
from jax._src import dtypes as _dtypes
|
|
from jax._src import monitoring
|
|
from jax._src import stages
|
|
from jax._src.interpreters import pxla
|
|
from jax._src.config import (bool_env, config,
|
|
raise_persistent_cache_errors,
|
|
persistent_cache_min_compile_time_secs)
|
|
from jax._src.numpy.util import promote_dtypes, promote_dtypes_inexact
|
|
from jax._src.util import unzip2
|
|
from jax._src.public_test_util import ( # noqa: F401
|
|
_assert_numpy_allclose, _check_dtypes_match, _default_tolerance, _dtype, check_close, check_grads,
|
|
check_jvp, check_vjp, default_gradient_tolerance, default_tolerance, tolerance)
|
|
from jax._src import xla_bridge
|
|
|
|
|
|
# This submodule includes private test utilities that are not exported to
|
|
# jax.test_util. Functionality appearing here is for internal use only, and
|
|
# may be changed or removed at any time and without any deprecation cycle.
|
|
|
|
_TEST_DUT = jax_config.DEFINE_string(
|
|
'jax_test_dut', '',
|
|
help=
|
|
'Describes the device under test in case special consideration is required.'
|
|
)
|
|
|
|
_NUM_GENERATED_CASES = jax_config.DEFINE_integer(
|
|
'jax_num_generated_cases',
|
|
int(os.getenv('JAX_NUM_GENERATED_CASES', '10')),
|
|
help='Number of generated cases to test')
|
|
|
|
_MAX_CASES_SAMPLING_RETRIES = jax_config.DEFINE_integer(
|
|
'max_cases_sampling_retries',
|
|
int(os.getenv('JAX_MAX_CASES_SAMPLING_RETRIES', '100')),
|
|
'Number of times a failed test sample should be retried. '
|
|
'When an unseen case cannot be generated in this many trials, the '
|
|
'sampling process is terminated.'
|
|
)
|
|
|
|
_SKIP_SLOW_TESTS = jax_config.DEFINE_bool(
|
|
'jax_skip_slow_tests',
|
|
bool_env('JAX_SKIP_SLOW_TESTS', False),
|
|
help='Skip tests marked as slow (> 5 sec).'
|
|
)
|
|
|
|
_TEST_TARGETS = jax_config.DEFINE_string(
|
|
'test_targets', os.getenv('JAX_TEST_TARGETS', ''),
|
|
'Regular expression specifying which tests to run, called via re.search on '
|
|
'the test name. If empty or unspecified, run all tests.'
|
|
)
|
|
_EXCLUDE_TEST_TARGETS = jax_config.DEFINE_string(
|
|
'exclude_test_targets', os.getenv('JAX_EXCLUDE_TEST_TARGETS', ''),
|
|
'Regular expression specifying which tests NOT to run, called via re.search '
|
|
'on the test name. If empty or unspecified, run all tests.'
|
|
)
|
|
TEST_WITH_PERSISTENT_COMPILATION_CACHE = jax_config.DEFINE_bool(
|
|
'jax_test_with_persistent_compilation_cache',
|
|
bool_env('JAX_TEST_WITH_PERSISTENT_COMPILATION_CACHE', False),
|
|
help='If enabled, the persistent compilation cache will be enabled for all '
|
|
'test cases. This can be used to increase compilation cache coverage.')
|
|
|
|
# We sanitize test names to ensure they work with "unitttest -k" and
|
|
# "pytest -k" test filtering. pytest accepts '[' and ']' but unittest -k
|
|
# does not. We replace sequences of problematic characters with a single '_'.
|
|
kSanitizeNameRE = re.compile(r"[ \"'\[\](){}<>=,._]+")
|
|
def sanitize_test_name(s: str) -> str:
|
|
return kSanitizeNameRE.sub("_", s)
|
|
|
|
def num_float_bits(dtype):
|
|
return _dtypes.finfo(_dtypes.canonicalize_dtype(dtype)).bits
|
|
|
|
def to_default_dtype(arr):
|
|
"""Convert a value to an array with JAX's default dtype.
|
|
|
|
This is generally used for type conversions of values returned by numpy functions,
|
|
to make their dtypes take into account the state of the ``jax_enable_x64`` and
|
|
``jax_default_dtype_bits`` flags.
|
|
"""
|
|
arr = np.asarray(arr)
|
|
dtype = _dtypes._default_types.get(arr.dtype.kind)
|
|
return arr.astype(_dtypes.canonicalize_dtype(dtype)) if dtype else arr
|
|
|
|
def with_jax_dtype_defaults(func, use_defaults=True):
|
|
"""Return a version of a function with outputs that match JAX's default dtypes.
|
|
|
|
This is generally used to wrap numpy functions within tests, in order to make
|
|
their default output dtypes match those of corresponding JAX functions, taking
|
|
into account the state of the ``jax_enable_x64`` and ``jax_default_dtype_bits``
|
|
flags.
|
|
|
|
Args:
|
|
use_defaults : whether to convert any given output to the default dtype. May be
|
|
a single boolean, in which case it specifies the conversion for all outputs,
|
|
or may be a a pytree with the same structure as the function output.
|
|
"""
|
|
@functools.wraps(func)
|
|
def wrapped(*args, **kwargs):
|
|
result = func(*args, **kwargs)
|
|
if isinstance(use_defaults, bool):
|
|
return tree_map(to_default_dtype, result) if use_defaults else result
|
|
else:
|
|
f = lambda arr, use_default: to_default_dtype(arr) if use_default else arr
|
|
return tree_map(f, result, use_defaults)
|
|
return wrapped
|
|
|
|
def is_sequence(x):
|
|
try:
|
|
iter(x)
|
|
except TypeError:
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
def _normalize_tolerance(tol):
|
|
tol = tol or 0
|
|
if isinstance(tol, dict):
|
|
return {np.dtype(k): v for k, v in tol.items()}
|
|
else:
|
|
return {k: tol for k in _default_tolerance}
|
|
|
|
def join_tolerance(tol1, tol2):
|
|
tol1 = _normalize_tolerance(tol1)
|
|
tol2 = _normalize_tolerance(tol2)
|
|
out = tol1
|
|
for k, v in tol2.items():
|
|
out[k] = max(v, tol1.get(k, 0))
|
|
return out
|
|
|
|
|
|
def check_eq(xs, ys, err_msg=''):
|
|
assert_close = partial(_assert_numpy_allclose, err_msg=err_msg)
|
|
tree_all(tree_map(assert_close, xs, ys))
|
|
|
|
|
|
@contextmanager
|
|
def capture_stdout() -> Generator[Callable[[], str], None, None]:
|
|
with unittest.mock.patch('sys.stdout', new_callable=io.StringIO) as fp:
|
|
def _read() -> str:
|
|
return fp.getvalue()
|
|
yield _read
|
|
|
|
|
|
@contextmanager
|
|
def count_device_put():
|
|
batched_device_put = pxla.batched_device_put
|
|
count = [0]
|
|
|
|
def make_fn_and_count(fn):
|
|
def fn_and_count(*args, **kwargs):
|
|
count[0] += 1
|
|
# device_put handlers might call `dispatch.device_put` (e.g. on an
|
|
# underlying payload or several). We only want to count these
|
|
# recursive puts once, so we skip counting more than the outermost
|
|
# one in such a call stack.
|
|
pxla.batched_device_put = batched_device_put
|
|
try:
|
|
return fn(*args, **kwargs)
|
|
finally:
|
|
pxla.batched_device_put = batched_device_put_and_count
|
|
return fn_and_count
|
|
|
|
batched_device_put_and_count = make_fn_and_count(batched_device_put)
|
|
|
|
pxla.batched_device_put = batched_device_put_and_count
|
|
try:
|
|
yield count
|
|
finally:
|
|
pxla.batched_device_put = batched_device_put
|
|
|
|
|
|
@contextmanager
|
|
def count_primitive_compiles():
|
|
dispatch.xla_primitive_callable.cache_clear()
|
|
|
|
count = [-1]
|
|
try:
|
|
yield count
|
|
finally:
|
|
count[0] = dispatch.xla_primitive_callable.cache_info().misses
|
|
|
|
|
|
@contextmanager
|
|
def count_pjit_cpp_cache_miss():
|
|
original_pjit_lower = pjit_lib._pjit_lower
|
|
count = [0]
|
|
|
|
def pjit_lower_and_count(*args, **kwargs):
|
|
count[0] += 1
|
|
return original_pjit_lower(*args, **kwargs)
|
|
|
|
pjit_lib._pjit_lower = pjit_lower_and_count
|
|
try:
|
|
yield count
|
|
finally:
|
|
pjit_lib._pjit_lower = original_pjit_lower
|
|
|
|
|
|
@contextmanager
|
|
def count_aot_jit_cpp_cache_miss():
|
|
original_call = stages.Compiled.call
|
|
count = [0]
|
|
|
|
def compiled_call_count(*args, **kwargs):
|
|
count[0] += 1
|
|
return original_call(*args, **kwargs)
|
|
|
|
stages.Compiled.call = compiled_call_count
|
|
try:
|
|
yield count
|
|
finally:
|
|
stages.Compiled.call = original_call
|
|
|
|
|
|
@contextmanager
|
|
def count_jit_and_pmap_compiles():
|
|
# No need to clear any caches since we generally jit and pmap fresh callables
|
|
# in tests.
|
|
|
|
mlir_lower = mlir.lower_jaxpr_to_module
|
|
count = [0]
|
|
|
|
def mlir_lower_and_count(*args, **kwargs):
|
|
count[0] += 1
|
|
return mlir_lower(*args, **kwargs)
|
|
|
|
mlir.lower_jaxpr_to_module = mlir_lower_and_count
|
|
try:
|
|
yield count
|
|
finally:
|
|
mlir.lower_jaxpr_to_module = mlir_lower
|
|
|
|
@contextmanager
|
|
def assert_num_jit_and_pmap_compilations(times):
|
|
with count_jit_and_pmap_compiles() as count:
|
|
yield
|
|
if count[0] != times:
|
|
raise AssertionError(f"Expected exactly {times} XLA compilations, "
|
|
f"but executed {count[0]}")
|
|
|
|
|
|
def device_under_test():
|
|
return _TEST_DUT.value or xla_bridge.get_backend().platform
|
|
|
|
|
|
def if_device_under_test(device_type: Union[str, Sequence[str]],
|
|
if_true, if_false):
|
|
"""Chooses `if_true` of `if_false` based on device_under_test."""
|
|
if device_under_test() in ([device_type] if isinstance(device_type, str)
|
|
else device_type):
|
|
return if_true
|
|
else:
|
|
return if_false
|
|
|
|
def supported_dtypes():
|
|
if device_under_test() == "tpu":
|
|
types = {np.bool_, np.int8, np.int16, np.int32, np.uint8, np.uint16,
|
|
np.uint32, _dtypes.bfloat16, np.float16, np.float32, np.complex64}
|
|
elif device_under_test() == "iree":
|
|
types = {np.bool_, np.int8, np.int16, np.int32, np.uint8, np.uint16,
|
|
np.uint32, np.float32}
|
|
else:
|
|
types = {np.bool_, np.int8, np.int16, np.int32, np.int64,
|
|
np.uint8, np.uint16, np.uint32, np.uint64,
|
|
_dtypes.bfloat16, np.float16, np.float32, np.float64,
|
|
np.complex64, np.complex128}
|
|
if not config.x64_enabled:
|
|
types -= {np.uint64, np.int64, np.float64, np.complex128}
|
|
return types
|
|
|
|
def is_device_rocm():
|
|
return xla_bridge.get_backend().platform_version.startswith('rocm')
|
|
|
|
def is_device_cuda():
|
|
return xla_bridge.get_backend().platform_version.startswith('cuda')
|
|
|
|
def is_cloud_tpu():
|
|
return 'libtpu' in xla_bridge.get_backend().platform_version
|
|
|
|
|
|
def is_se_tpu():
|
|
return (
|
|
is_cloud_tpu() and not xla_bridge.using_pjrt_c_api()
|
|
) or xla_bridge.get_backend().platform_version.startswith(
|
|
'StreamExecutor TPU'
|
|
)
|
|
|
|
|
|
def is_device_tpu_v4():
|
|
return jax.devices()[0].device_kind == "TPU v4"
|
|
|
|
def _get_device_tags():
|
|
"""returns a set of tags defined for the device under test"""
|
|
if is_device_rocm():
|
|
device_tags = {device_under_test(), "rocm"}
|
|
elif is_device_cuda():
|
|
device_tags = {device_under_test(), "cuda"}
|
|
else:
|
|
device_tags = {device_under_test()}
|
|
return device_tags
|
|
|
|
def skip_on_devices(*disabled_devices):
|
|
"""A decorator for test methods to skip the test on certain devices."""
|
|
def skip(test_method):
|
|
@functools.wraps(test_method)
|
|
def test_method_wrapper(self, *args, **kwargs):
|
|
device_tags = _get_device_tags()
|
|
if device_tags & set(disabled_devices):
|
|
test_name = getattr(test_method, '__name__', '[unknown test]')
|
|
raise unittest.SkipTest(
|
|
f"{test_name} not supported on device with tags {device_tags}.")
|
|
return test_method(self, *args, **kwargs)
|
|
return test_method_wrapper
|
|
return skip
|
|
|
|
def set_host_platform_device_count(nr_devices: int):
|
|
"""Returns a closure that undoes the operation."""
|
|
prev_xla_flags = os.getenv("XLA_FLAGS")
|
|
flags_str = prev_xla_flags or ""
|
|
# Don't override user-specified device count, or other XLA flags.
|
|
if "xla_force_host_platform_device_count" not in flags_str:
|
|
os.environ["XLA_FLAGS"] = (flags_str +
|
|
f" --xla_force_host_platform_device_count={nr_devices}")
|
|
# Clear any cached backends so new CPU backend will pick up the env var.
|
|
xla_bridge.get_backend.cache_clear()
|
|
def undo():
|
|
if prev_xla_flags is None:
|
|
del os.environ["XLA_FLAGS"]
|
|
else:
|
|
os.environ["XLA_FLAGS"] = prev_xla_flags
|
|
xla_bridge.get_backend.cache_clear()
|
|
return undo
|
|
|
|
|
|
def skip_on_xla_cpu_mlir(test_method):
|
|
"""A decorator to skip tests when MLIR lowering is enabled."""
|
|
@functools.wraps(test_method)
|
|
def test_method_wrapper(self, *args, **kwargs):
|
|
xla_flags = os.getenv('XLA_FLAGS') or ''
|
|
if '--xla_cpu_use_xla_runtime' in xla_flags:
|
|
test_name = getattr(test_method, '__name__', '[unknown test]')
|
|
raise unittest.SkipTest(
|
|
f'{test_name} not supported on XLA:CPU MLIR')
|
|
return test_method(self, *args, **kwargs)
|
|
return test_method_wrapper
|
|
|
|
|
|
def skip_on_flag(flag_name, skip_value):
|
|
"""A decorator for test methods to skip the test when flags are set."""
|
|
def skip(test_method): # pylint: disable=missing-docstring
|
|
@functools.wraps(test_method)
|
|
def test_method_wrapper(self, *args, **kwargs):
|
|
flag_value = config._read(flag_name)
|
|
if flag_value == skip_value:
|
|
test_name = getattr(test_method, '__name__', '[unknown test]')
|
|
raise unittest.SkipTest(
|
|
f"{test_name} not supported when FLAGS.{flag_name} is {flag_value}")
|
|
return test_method(self, *args, **kwargs)
|
|
return test_method_wrapper
|
|
return skip
|
|
|
|
|
|
def pytest_mark_if_available(marker: str):
|
|
"""A decorator for test classes or methods to pytest.mark if installed."""
|
|
def wrap(func_or_class):
|
|
try:
|
|
import pytest
|
|
except ImportError:
|
|
return func_or_class
|
|
return getattr(pytest.mark, marker)(func_or_class)
|
|
return wrap
|
|
|
|
|
|
def format_test_name_suffix(opname, shapes, dtypes):
|
|
arg_descriptions = (format_shape_dtype_string(shape, dtype)
|
|
for shape, dtype in zip(shapes, dtypes))
|
|
return '{}_{}'.format(opname.capitalize(), '_'.join(arg_descriptions))
|
|
|
|
|
|
# We use special symbols, represented as singleton objects, to distinguish
|
|
# between NumPy scalars, Python scalars, and 0-D arrays.
|
|
class ScalarShape:
|
|
def __len__(self): return 0
|
|
def __getitem__(self, i): raise IndexError(f"index {i} out of range.")
|
|
class _NumpyScalar(ScalarShape): pass
|
|
class _PythonScalar(ScalarShape): pass
|
|
NUMPY_SCALAR_SHAPE = _NumpyScalar()
|
|
PYTHON_SCALAR_SHAPE = _PythonScalar()
|
|
|
|
|
|
# Some shape combinations don't make sense.
|
|
def is_valid_shape(shape, dtype):
|
|
if shape == PYTHON_SCALAR_SHAPE:
|
|
return dtype == np.dtype(type(np.array(0, dtype=dtype).item()))
|
|
return True
|
|
|
|
|
|
def _dims_of_shape(shape):
|
|
"""Converts `shape` to a tuple of dimensions."""
|
|
if type(shape) in (list, tuple):
|
|
return shape
|
|
elif isinstance(shape, ScalarShape):
|
|
return ()
|
|
elif np.ndim(shape) == 0:
|
|
return (shape,)
|
|
else:
|
|
raise TypeError(type(shape))
|
|
|
|
|
|
def _cast_to_shape(value, shape, dtype):
|
|
"""Casts `value` to the correct Python type for `shape` and `dtype`."""
|
|
if shape is NUMPY_SCALAR_SHAPE:
|
|
# explicitly cast to NumPy scalar in case `value` is a Python scalar.
|
|
return np.dtype(dtype).type(value)
|
|
elif shape is PYTHON_SCALAR_SHAPE:
|
|
# explicitly cast to Python scalar via https://stackoverflow.com/a/11389998
|
|
return np.asarray(value).item()
|
|
elif type(shape) in (list, tuple):
|
|
assert np.shape(value) == tuple(shape)
|
|
return value
|
|
elif np.ndim(shape) == 0:
|
|
assert np.shape(value) == (shape,)
|
|
return value
|
|
else:
|
|
raise TypeError(type(shape))
|
|
|
|
|
|
def dtype_str(dtype):
|
|
return np.dtype(dtype).name
|
|
|
|
|
|
def format_shape_dtype_string(shape, dtype):
|
|
if isinstance(shape, np.ndarray):
|
|
return f'{dtype_str(dtype)}[{shape}]'
|
|
elif isinstance(shape, list):
|
|
shape = tuple(shape)
|
|
return _format_shape_dtype_string(shape, dtype)
|
|
|
|
@functools.lru_cache(maxsize=64)
|
|
def _format_shape_dtype_string(shape, dtype):
|
|
if shape is NUMPY_SCALAR_SHAPE:
|
|
return dtype_str(dtype)
|
|
elif shape is PYTHON_SCALAR_SHAPE:
|
|
return 'py' + dtype_str(dtype)
|
|
elif type(shape) is tuple:
|
|
shapestr = ','.join(str(dim) for dim in shape)
|
|
return f'{dtype_str(dtype)}[{shapestr}]'
|
|
elif type(shape) is int:
|
|
return f'{dtype_str(dtype)}[{shape},]'
|
|
else:
|
|
raise TypeError(type(shape))
|
|
|
|
|
|
def _rand_dtype(rand, shape, dtype, scale=1., post=lambda x: x):
|
|
"""Produce random values given shape, dtype, scale, and post-processor.
|
|
|
|
Args:
|
|
rand: a function for producing random values of a given shape, e.g. a
|
|
bound version of either np.RandomState.randn or np.RandomState.rand.
|
|
shape: a shape value as a tuple of positive integers.
|
|
dtype: a numpy dtype.
|
|
scale: optional, a multiplicative scale for the random values (default 1).
|
|
post: optional, a callable for post-processing the random values (default
|
|
identity).
|
|
|
|
Returns:
|
|
An ndarray of the given shape and dtype using random values based on a call
|
|
to rand but scaled, converted to the appropriate dtype, and post-processed.
|
|
"""
|
|
if _dtypes.issubdtype(dtype, np.unsignedinteger):
|
|
r = lambda: np.asarray(scale * abs(rand(*_dims_of_shape(shape))), dtype)
|
|
else:
|
|
r = lambda: np.asarray(scale * rand(*_dims_of_shape(shape)), dtype)
|
|
if _dtypes.issubdtype(dtype, np.complexfloating):
|
|
vals = r() + 1.0j * r()
|
|
else:
|
|
vals = r()
|
|
return _cast_to_shape(np.asarray(post(vals), dtype), shape, dtype)
|
|
|
|
|
|
def rand_fullrange(rng, standardize_nans=False):
|
|
"""Random numbers that span the full range of available bits."""
|
|
def gen(shape, dtype, post=lambda x: x):
|
|
dtype = np.dtype(dtype)
|
|
size = dtype.itemsize * math.prod(_dims_of_shape(shape))
|
|
vals = rng.randint(0, np.iinfo(np.uint8).max, size=size, dtype=np.uint8)
|
|
vals = post(vals).view(dtype)
|
|
if shape is PYTHON_SCALAR_SHAPE:
|
|
# Sampling from the full range of the largest available uint type
|
|
# leads to overflows in this case; sample from signed ints instead.
|
|
if dtype == np.uint64:
|
|
vals = vals.astype(np.int64)
|
|
elif dtype == np.uint32 and not config.x64_enabled:
|
|
vals = vals.astype(np.int32)
|
|
vals = vals.reshape(shape)
|
|
# Non-standard NaNs cause errors in numpy equality assertions.
|
|
if standardize_nans and np.issubdtype(dtype, np.floating):
|
|
vals[np.isnan(vals)] = np.nan
|
|
return _cast_to_shape(vals, shape, dtype)
|
|
return gen
|
|
|
|
|
|
def rand_default(rng, scale=3):
|
|
return partial(_rand_dtype, rng.randn, scale=scale)
|
|
|
|
|
|
def rand_nonzero(rng):
|
|
post = lambda x: np.where(x == 0, np.array(1, dtype=x.dtype), x)
|
|
return partial(_rand_dtype, rng.randn, scale=3, post=post)
|
|
|
|
|
|
def rand_positive(rng):
|
|
post = lambda x: x + 1
|
|
return partial(_rand_dtype, rng.rand, scale=2, post=post)
|
|
|
|
|
|
def rand_small(rng):
|
|
return partial(_rand_dtype, rng.randn, scale=1e-3)
|
|
|
|
|
|
def rand_not_small(rng, offset=10.):
|
|
post = lambda x: x + np.where(x > 0, offset, -offset)
|
|
return partial(_rand_dtype, rng.randn, scale=3., post=post)
|
|
|
|
|
|
def rand_small_positive(rng):
|
|
return partial(_rand_dtype, rng.rand, scale=2e-5)
|
|
|
|
def rand_uniform(rng, low=0.0, high=1.0):
|
|
assert low < high
|
|
post = lambda x: x * (high - low) + low
|
|
return partial(_rand_dtype, rng.rand, post=post)
|
|
|
|
|
|
def rand_some_equal(rng):
|
|
|
|
def post(x):
|
|
x_ravel = x.ravel()
|
|
if len(x_ravel) == 0:
|
|
return x
|
|
flips = rng.rand(*np.shape(x)) < 0.5
|
|
return np.where(flips, x_ravel[0], x)
|
|
|
|
return partial(_rand_dtype, rng.randn, scale=100., post=post)
|
|
|
|
|
|
def rand_some_inf(rng):
|
|
"""Return a random sampler that produces infinities in floating types."""
|
|
base_rand = rand_default(rng)
|
|
|
|
# TODO: Complex numbers are not correctly tested
|
|
# If blocks should be switched in order, and relevant tests should be fixed
|
|
def rand(shape, dtype):
|
|
"""The random sampler function."""
|
|
if not _dtypes.issubdtype(dtype, np.floating):
|
|
# only float types have inf
|
|
return base_rand(shape, dtype)
|
|
|
|
if _dtypes.issubdtype(dtype, np.complexfloating):
|
|
base_dtype = np.real(np.array(0, dtype=dtype)).dtype
|
|
out = (rand(shape, base_dtype) +
|
|
np.array(1j, dtype) * rand(shape, base_dtype))
|
|
return _cast_to_shape(out, shape, dtype)
|
|
|
|
dims = _dims_of_shape(shape)
|
|
posinf_flips = rng.rand(*dims) < 0.1
|
|
neginf_flips = rng.rand(*dims) < 0.1
|
|
|
|
vals = base_rand(shape, dtype)
|
|
vals = np.where(posinf_flips, np.array(np.inf, dtype=dtype), vals)
|
|
vals = np.where(neginf_flips, np.array(-np.inf, dtype=dtype), vals)
|
|
|
|
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
|
|
|
|
return rand
|
|
|
|
def rand_some_nan(rng):
|
|
"""Return a random sampler that produces nans in floating types."""
|
|
base_rand = rand_default(rng)
|
|
|
|
def rand(shape, dtype):
|
|
"""The random sampler function."""
|
|
if _dtypes.issubdtype(dtype, np.complexfloating):
|
|
base_dtype = np.real(np.array(0, dtype=dtype)).dtype
|
|
out = (rand(shape, base_dtype) +
|
|
np.array(1j, dtype) * rand(shape, base_dtype))
|
|
return _cast_to_shape(out, shape, dtype)
|
|
|
|
if not _dtypes.issubdtype(dtype, np.floating):
|
|
# only float types have inf
|
|
return base_rand(shape, dtype)
|
|
|
|
dims = _dims_of_shape(shape)
|
|
r = rng.rand(*dims)
|
|
nan_flips = r < 0.1
|
|
neg_nan_flips = r < 0.05
|
|
|
|
vals = base_rand(shape, dtype)
|
|
vals = np.where(nan_flips, np.array(np.nan, dtype=dtype), vals)
|
|
vals = np.where(neg_nan_flips, np.array(-np.nan, dtype=dtype), vals)
|
|
|
|
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
|
|
|
|
return rand
|
|
|
|
def rand_some_inf_and_nan(rng):
|
|
"""Return a random sampler that produces infinities in floating types."""
|
|
base_rand = rand_default(rng)
|
|
|
|
# TODO: Complex numbers are not correctly tested
|
|
# If blocks should be switched in order, and relevant tests should be fixed
|
|
def rand(shape, dtype):
|
|
"""The random sampler function."""
|
|
if not _dtypes.issubdtype(dtype, np.floating):
|
|
# only float types have inf
|
|
return base_rand(shape, dtype)
|
|
|
|
if _dtypes.issubdtype(dtype, np.complexfloating):
|
|
base_dtype = np.real(np.array(0, dtype=dtype)).dtype
|
|
out = (rand(shape, base_dtype) +
|
|
np.array(1j, dtype) * rand(shape, base_dtype))
|
|
return _cast_to_shape(out, shape, dtype)
|
|
|
|
dims = _dims_of_shape(shape)
|
|
posinf_flips = rng.rand(*dims) < 0.1
|
|
neginf_flips = rng.rand(*dims) < 0.1
|
|
nan_flips = rng.rand(*dims) < 0.1
|
|
|
|
vals = base_rand(shape, dtype)
|
|
vals = np.where(posinf_flips, np.array(np.inf, dtype=dtype), vals)
|
|
vals = np.where(neginf_flips, np.array(-np.inf, dtype=dtype), vals)
|
|
vals = np.where(nan_flips, np.array(np.nan, dtype=dtype), vals)
|
|
|
|
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
|
|
|
|
return rand
|
|
|
|
# TODO(mattjj): doesn't handle complex types
|
|
def rand_some_zero(rng):
|
|
"""Return a random sampler that produces some zeros."""
|
|
base_rand = rand_default(rng)
|
|
|
|
def rand(shape, dtype):
|
|
"""The random sampler function."""
|
|
dims = _dims_of_shape(shape)
|
|
zeros = rng.rand(*dims) < 0.5
|
|
|
|
vals = base_rand(shape, dtype)
|
|
vals = np.where(zeros, np.array(0, dtype=dtype), vals)
|
|
|
|
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
|
|
|
|
return rand
|
|
|
|
|
|
def rand_int(rng, low=0, high=None):
|
|
def fn(shape, dtype):
|
|
nonlocal high
|
|
gen_dtype = dtype if np.issubdtype(dtype, np.integer) else np.int64
|
|
if low == 0 and high is None:
|
|
if np.issubdtype(dtype, np.integer):
|
|
high = np.iinfo(dtype).max
|
|
else:
|
|
raise ValueError("rand_int requires an explicit `high` value for "
|
|
"non-integer types.")
|
|
return rng.randint(low, high=high, size=shape,
|
|
dtype=gen_dtype).astype(dtype)
|
|
return fn
|
|
|
|
def rand_unique_int(rng, high=None):
|
|
def fn(shape, dtype):
|
|
return rng.choice(np.arange(high or math.prod(shape), dtype=dtype),
|
|
size=shape, replace=False)
|
|
return fn
|
|
|
|
def rand_bool(rng):
|
|
def generator(shape, dtype):
|
|
return _cast_to_shape(
|
|
np.asarray(rng.rand(*_dims_of_shape(shape)) < 0.5, dtype=dtype),
|
|
shape, dtype)
|
|
return generator
|
|
|
|
def check_raises(thunk, err_type, msg):
|
|
try:
|
|
thunk()
|
|
assert False
|
|
except err_type as e:
|
|
assert str(e).startswith(msg), f"\n{e}\n\n{msg}\n"
|
|
|
|
def check_raises_regexp(thunk, err_type, pattern):
|
|
try:
|
|
thunk()
|
|
assert False
|
|
except err_type as e:
|
|
assert re.match(pattern, str(e)), f"{e}\n\n{pattern}\n"
|
|
|
|
|
|
def iter_eqns(jaxpr):
|
|
# TODO(necula): why doesn't this search in params?
|
|
yield from jaxpr.eqns
|
|
for subjaxpr in core.subjaxprs(jaxpr):
|
|
yield from iter_eqns(subjaxpr)
|
|
|
|
def assert_dot_precision(expected_precision, fun, *args):
|
|
jaxpr = api.make_jaxpr(fun)(*args)
|
|
precisions = [eqn.params['precision'] for eqn in iter_eqns(jaxpr.jaxpr)
|
|
if eqn.primitive == lax.dot_general_p]
|
|
for precision in precisions:
|
|
msg = f"Unexpected precision: {expected_precision} != {precision}"
|
|
if isinstance(precision, tuple):
|
|
assert precision[0] == expected_precision, msg
|
|
assert precision[1] == expected_precision, msg
|
|
else:
|
|
assert precision == expected_precision, msg
|
|
|
|
def assert_dot_preferred_element_type(expected, fun, *args, **kwargs):
|
|
jaxpr = api.make_jaxpr(partial(fun, **kwargs))(*args)
|
|
pref_eltypes = [eqn.params['preferred_element_type'] for eqn in iter_eqns(jaxpr.jaxpr)
|
|
if eqn.primitive == lax.dot_general_p]
|
|
for pref_eltype in pref_eltypes:
|
|
msg = f"Unexpected preferred_element_type: {expected} != {pref_eltype}"
|
|
assert expected == pref_eltype, msg
|
|
|
|
def cases_from_gens(*gens):
|
|
sizes = [1, 3, 10]
|
|
cases_per_size = int(_NUM_GENERATED_CASES.value / len(sizes)) + 1
|
|
for size in sizes:
|
|
for i in range(cases_per_size):
|
|
yield (f'_{size}_{i}',) + tuple(gen(size) for gen in gens)
|
|
|
|
def named_cases_from_sampler(gen):
|
|
seen = set()
|
|
retries = 0
|
|
rng = npr.RandomState(42)
|
|
def choose_one(x):
|
|
if not isinstance(x, (list, tuple)):
|
|
x = list(x)
|
|
return [x[rng.randint(len(x))]]
|
|
while (len(seen) < _NUM_GENERATED_CASES.value and
|
|
retries < _MAX_CASES_SAMPLING_RETRIES.value):
|
|
retries += 1
|
|
cases = list(gen(choose_one))
|
|
if not cases:
|
|
continue
|
|
if len(cases) > 1:
|
|
raise RuntimeError("Generator is expected to only return a single case when sampling")
|
|
case = cases[0]
|
|
if case["testcase_name"] in seen:
|
|
continue
|
|
retries = 0
|
|
seen.add(case["testcase_name"])
|
|
yield case
|
|
|
|
|
|
# Random sampling for every parameterized test is expensive. Do it once and
|
|
# cache the result.
|
|
@functools.cache
|
|
def _choice(n, m):
|
|
rng = np.random.RandomState(42)
|
|
return rng.choice(n, size=m, replace=False)
|
|
|
|
def sample_product_testcases(*args, **kw):
|
|
"""Non-decorator form of sample_product."""
|
|
args = [list(arg) for arg in args]
|
|
kw = [(k, list(v)) for k, v in kw.items()]
|
|
n = math.prod(len(a) for a in args) * math.prod(len(v) for _, v in kw)
|
|
testcases = []
|
|
for i in _choice(n, min(n, _NUM_GENERATED_CASES.value)):
|
|
testcase = {}
|
|
for a in args:
|
|
testcase.update(a[i % len(a)])
|
|
i //= len(a)
|
|
for k, v in kw:
|
|
testcase[k] = v[i % len(v)]
|
|
i //= len(v)
|
|
testcases.append(testcase)
|
|
return testcases
|
|
|
|
def sample_product(*args, **kw):
|
|
"""Decorator that samples from a cartesian product of test cases.
|
|
|
|
Similar to absltest.parameterized.product(), except that it samples from the
|
|
cartesian product rather than returning the whole thing.
|
|
|
|
Arguments:
|
|
*args: each positional argument is a list of dictionaries. The entries
|
|
in a dictionary correspond to name=value argument pairs; one dictionary
|
|
will be chosen for each test case. This allows multiple parameters to be
|
|
correlated.
|
|
**kw: each keyword argument is a list of values. One value will be chosen
|
|
for each test case.
|
|
"""
|
|
return parameterized.parameters(*sample_product_testcases(*args, **kw))
|
|
|
|
|
|
class JaxTestLoader(absltest.TestLoader):
|
|
def getTestCaseNames(self, testCaseClass):
|
|
names = super().getTestCaseNames(testCaseClass)
|
|
if _TEST_TARGETS.value:
|
|
pattern = re.compile(_TEST_TARGETS.value)
|
|
names = [name for name in names
|
|
if pattern.search(f"{testCaseClass.__name__}.{name}")]
|
|
if _EXCLUDE_TEST_TARGETS.value:
|
|
pattern = re.compile(_EXCLUDE_TEST_TARGETS.value)
|
|
names = [name for name in names
|
|
if not pattern.search(f"{testCaseClass.__name__}.{name}")]
|
|
return names
|
|
|
|
|
|
def with_config(**kwds):
|
|
"""Test case decorator for subclasses of JaxTestCase"""
|
|
def decorator(cls):
|
|
assert inspect.isclass(cls) and issubclass(cls, JaxTestCase), "@with_config can only wrap JaxTestCase class definitions."
|
|
cls._default_config = {}
|
|
for b in cls.__bases__:
|
|
cls._default_config.update(b._default_config)
|
|
cls._default_config.update(kwds)
|
|
return cls
|
|
return decorator
|
|
|
|
|
|
def promote_like_jnp(fun, inexact=False):
|
|
"""Decorator that promotes the arguments of `fun` to `jnp.result_type(*args)`.
|
|
|
|
jnp and np have different type promotion semantics; this decorator allows
|
|
tests make an np reference implementation act more like an jnp
|
|
implementation.
|
|
"""
|
|
_promote = promote_dtypes_inexact if inexact else promote_dtypes
|
|
def wrapper(*args, **kw):
|
|
flat_args, tree = tree_flatten(args)
|
|
args = tree_unflatten(tree, _promote(*flat_args))
|
|
return fun(*args, **kw)
|
|
return wrapper
|
|
|
|
|
|
class JaxTestCase(parameterized.TestCase):
|
|
"""Base class for JAX tests including numerical checks and boilerplate."""
|
|
_default_config = {
|
|
'jax_enable_checks': True,
|
|
'jax_numpy_dtype_promotion': 'strict',
|
|
'jax_numpy_rank_promotion': 'raise',
|
|
'jax_traceback_filtering': 'off',
|
|
'jax_legacy_prng_key': 'error',
|
|
}
|
|
|
|
_compilation_cache_exit_stack: Optional[ExitStack] = None
|
|
|
|
# TODO(mattjj): this obscures the error messages from failures, figure out how
|
|
# to re-enable it
|
|
# def tearDown(self) -> None:
|
|
# assert core.reset_trace_state()
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self._original_config = {}
|
|
for key, value in self._default_config.items():
|
|
self._original_config[key] = config._read(key)
|
|
config.update(key, value)
|
|
|
|
# We use the adler32 hash for two reasons.
|
|
# a) it is deterministic run to run, unlike hash() which is randomized.
|
|
# b) it returns values in int32 range, which RandomState requires.
|
|
self._rng = npr.RandomState(zlib.adler32(self._testMethodName.encode()))
|
|
|
|
def tearDown(self):
|
|
for key, value in self._original_config.items():
|
|
config.update(key, value)
|
|
super().tearDown()
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
if TEST_WITH_PERSISTENT_COMPILATION_CACHE.value:
|
|
cls._compilation_cache_exit_stack = ExitStack()
|
|
stack = cls._compilation_cache_exit_stack
|
|
stack.enter_context(raise_persistent_cache_errors(True))
|
|
stack.enter_context(persistent_cache_min_compile_time_secs(0))
|
|
|
|
tmp_dir = stack.enter_context(tempfile.TemporaryDirectory())
|
|
compilation_cache.initialize_cache(tmp_dir)
|
|
stack.callback(lambda: compilation_cache.reset_cache()
|
|
if compilation_cache.is_initialized() else None)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
if TEST_WITH_PERSISTENT_COMPILATION_CACHE.value:
|
|
cls._compilation_cache_exit_stack.close()
|
|
|
|
def rng(self):
|
|
return self._rng
|
|
|
|
def assertArraysEqual(self, x, y, *, check_dtypes=True, err_msg=''):
|
|
"""Assert that x and y arrays are exactly equal."""
|
|
if check_dtypes:
|
|
self.assertDtypesMatch(x, y)
|
|
# Work around https://github.com/numpy/numpy/issues/18992
|
|
with np.errstate(over='ignore'):
|
|
np.testing.assert_array_equal(x, y, err_msg=err_msg)
|
|
|
|
def assertArraysAllClose(self, x, y, *, check_dtypes=True, atol=None,
|
|
rtol=None, err_msg=''):
|
|
"""Assert that x and y are close (up to numerical tolerances)."""
|
|
self.assertEqual(x.shape, y.shape)
|
|
atol = max(tolerance(_dtype(x), atol), tolerance(_dtype(y), atol))
|
|
rtol = max(tolerance(_dtype(x), rtol), tolerance(_dtype(y), rtol))
|
|
|
|
_assert_numpy_allclose(x, y, atol=atol, rtol=rtol, err_msg=err_msg)
|
|
|
|
if check_dtypes:
|
|
self.assertDtypesMatch(x, y)
|
|
|
|
def assertDtypesMatch(self, x, y, *, canonicalize_dtypes=True):
|
|
if not config.x64_enabled and canonicalize_dtypes:
|
|
self.assertEqual(_dtypes.canonicalize_dtype(_dtype(x), allow_extended_dtype=True),
|
|
_dtypes.canonicalize_dtype(_dtype(y), allow_extended_dtype=True))
|
|
else:
|
|
self.assertEqual(_dtype(x), _dtype(y))
|
|
|
|
def assertAllClose(self, x, y, *, check_dtypes=True, atol=None, rtol=None,
|
|
canonicalize_dtypes=True, err_msg=''):
|
|
"""Assert that x and y, either arrays or nested tuples/lists, are close."""
|
|
if isinstance(x, dict):
|
|
self.assertIsInstance(y, dict)
|
|
self.assertEqual(set(x.keys()), set(y.keys()))
|
|
for k in x.keys():
|
|
self.assertAllClose(x[k], y[k], check_dtypes=check_dtypes, atol=atol,
|
|
rtol=rtol, canonicalize_dtypes=canonicalize_dtypes,
|
|
err_msg=err_msg)
|
|
elif is_sequence(x) and not hasattr(x, '__array__'):
|
|
self.assertTrue(is_sequence(y) and not hasattr(y, '__array__'))
|
|
self.assertEqual(len(x), len(y))
|
|
for x_elt, y_elt in zip(x, y):
|
|
self.assertAllClose(x_elt, y_elt, check_dtypes=check_dtypes, atol=atol,
|
|
rtol=rtol, canonicalize_dtypes=canonicalize_dtypes,
|
|
err_msg=err_msg)
|
|
elif hasattr(x, '__array__') or np.isscalar(x):
|
|
self.assertTrue(hasattr(y, '__array__') or np.isscalar(y))
|
|
if check_dtypes:
|
|
self.assertDtypesMatch(x, y, canonicalize_dtypes=canonicalize_dtypes)
|
|
x = np.asarray(x)
|
|
y = np.asarray(y)
|
|
self.assertArraysAllClose(x, y, check_dtypes=False, atol=atol, rtol=rtol,
|
|
err_msg=err_msg)
|
|
elif x == y:
|
|
return
|
|
else:
|
|
raise TypeError((type(x), type(y)))
|
|
|
|
def assertMultiLineStrippedEqual(self, expected, what):
|
|
"""Asserts two strings are equal, after dedenting and stripping each line."""
|
|
expected = textwrap.dedent(expected)
|
|
what = textwrap.dedent(what)
|
|
ignore_space_re = re.compile(r'\s*\n\s*')
|
|
expected_clean = re.sub(ignore_space_re, '\n', expected.strip())
|
|
what_clean = re.sub(ignore_space_re, '\n', what.strip())
|
|
if what_clean != expected_clean:
|
|
# Print it so we can copy-and-paste it into the test
|
|
print(f"Found\n{what}\n")
|
|
self.assertMultiLineEqual(expected_clean, what_clean,
|
|
msg=f"Found\n{what}\nExpecting\n{expected}")
|
|
|
|
@contextmanager
|
|
def assertNoWarnings(self):
|
|
with warnings.catch_warnings(record=True) as caught_warnings:
|
|
yield
|
|
self.assertEmpty(caught_warnings)
|
|
|
|
def _CompileAndCheck(self, fun, args_maker, *, check_dtypes=True, tol=None,
|
|
rtol=None, atol=None, check_cache_misses=True):
|
|
"""Helper method for running JAX compilation and allclose assertions."""
|
|
args = args_maker()
|
|
|
|
def wrapped_fun(*args):
|
|
self.assertTrue(python_should_be_executing)
|
|
return fun(*args)
|
|
|
|
python_should_be_executing = True
|
|
python_ans = fun(*args)
|
|
|
|
python_shapes = tree_map(lambda x: np.shape(x), python_ans)
|
|
np_shapes = tree_map(lambda x: np.shape(np.asarray(x)), python_ans)
|
|
self.assertEqual(python_shapes, np_shapes)
|
|
|
|
cache_misses = dispatch.xla_primitive_callable.cache_info().misses
|
|
python_ans = fun(*args)
|
|
if check_cache_misses:
|
|
self.assertEqual(
|
|
cache_misses, dispatch.xla_primitive_callable.cache_info().misses,
|
|
"Compilation detected during second call of {} in op-by-op "
|
|
"mode.".format(fun))
|
|
|
|
cfun = api.jit(wrapped_fun)
|
|
python_should_be_executing = True
|
|
monitored_ans = cfun(*args)
|
|
|
|
python_should_be_executing = False
|
|
compiled_ans = cfun(*args)
|
|
|
|
self.assertAllClose(python_ans, monitored_ans, check_dtypes=check_dtypes,
|
|
atol=atol or tol, rtol=rtol or tol)
|
|
self.assertAllClose(python_ans, compiled_ans, check_dtypes=check_dtypes,
|
|
atol=atol or tol, rtol=rtol or tol)
|
|
|
|
args = args_maker()
|
|
|
|
python_should_be_executing = True
|
|
python_ans = fun(*args)
|
|
|
|
python_should_be_executing = False
|
|
compiled_ans = cfun(*args)
|
|
|
|
self.assertAllClose(python_ans, compiled_ans, check_dtypes=check_dtypes,
|
|
atol=atol or tol, rtol=rtol or tol)
|
|
|
|
def _CheckAgainstNumpy(self, numpy_reference_op, lax_op, args_maker,
|
|
check_dtypes=True, tol=None, atol=None, rtol=None,
|
|
canonicalize_dtypes=True):
|
|
args = args_maker()
|
|
lax_ans = lax_op(*args)
|
|
numpy_ans = numpy_reference_op(*args)
|
|
self.assertAllClose(numpy_ans, lax_ans, check_dtypes=check_dtypes,
|
|
atol=atol or tol, rtol=rtol or tol,
|
|
canonicalize_dtypes=canonicalize_dtypes)
|
|
|
|
_PJIT_IMPLEMENTATION = jax.jit
|
|
_PJIT_IMPLEMENTATION._name = "jit"
|
|
_NOOP_JIT_IMPLEMENTATION = lambda x, *args, **kwargs: x
|
|
_NOOP_JIT_IMPLEMENTATION._name = "noop"
|
|
|
|
JIT_IMPLEMENTATION = (
|
|
_PJIT_IMPLEMENTATION,
|
|
_NOOP_JIT_IMPLEMENTATION,
|
|
)
|
|
|
|
class BufferDonationTestCase(JaxTestCase):
|
|
assertDeleted = lambda self, x: self._assertDeleted(x, True)
|
|
assertNotDeleted = lambda self, x: self._assertDeleted(x, False)
|
|
|
|
def _assertDeleted(self, x, deleted):
|
|
if hasattr(x, "_arrays"):
|
|
self.assertEqual(x.is_deleted(), deleted)
|
|
elif hasattr(x, "device_buffer"):
|
|
self.assertEqual(x.device_buffer.is_deleted(), deleted)
|
|
else:
|
|
for buffer in x.device_buffers:
|
|
self.assertEqual(buffer.is_deleted(), deleted)
|
|
|
|
|
|
@contextmanager
|
|
def ignore_warning(**kw):
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", **kw)
|
|
yield
|
|
|
|
# -------------------- Mesh parametrization helpers --------------------
|
|
|
|
MeshSpec = list[tuple[str, int]]
|
|
|
|
@contextmanager
|
|
def with_mesh(named_shape: MeshSpec) -> Generator[None, None, None]:
|
|
"""Test utility for setting up meshes given mesh data from `schedules`."""
|
|
# This is similar to the `with_mesh` function above, but isn't a decorator.
|
|
axis_names, shape = unzip2(named_shape)
|
|
size = math.prod(shape)
|
|
local_devices = list(jax.local_devices())
|
|
if len(local_devices) < size:
|
|
raise unittest.SkipTest(f"Test requires {size} local devices")
|
|
mesh_devices = np.array(local_devices[:size]).reshape(shape) # type: ignore
|
|
with jax.sharding.Mesh(mesh_devices, axis_names):
|
|
yield
|
|
|
|
def with_mesh_from_kwargs(f):
|
|
return lambda *args, **kwargs: with_mesh(kwargs['mesh'])(f)(*args, **kwargs)
|
|
|
|
def with_and_without_mesh(f):
|
|
return parameterized.named_parameters(
|
|
{"testcase_name": name, "mesh": mesh, "axis_resources": axis_resources}
|
|
for name, mesh, axis_resources in (
|
|
('', (), ()),
|
|
('Mesh', (('x', 2),), (('i', 'x'),))
|
|
))(with_mesh_from_kwargs(f))
|
|
|
|
old_spmd_lowering_flag = None
|
|
def set_spmd_lowering_flag(val: bool):
|
|
global old_spmd_lowering_flag
|
|
old_spmd_lowering_flag = config.experimental_xmap_spmd_lowering
|
|
config.update('experimental_xmap_spmd_lowering', val)
|
|
|
|
def restore_spmd_lowering_flag():
|
|
if old_spmd_lowering_flag is None: return
|
|
config.update('experimental_xmap_spmd_lowering', old_spmd_lowering_flag)
|
|
|
|
old_spmd_manual_lowering_flag = None
|
|
def set_spmd_manual_lowering_flag(val: bool):
|
|
global old_spmd_manual_lowering_flag
|
|
old_spmd_manual_lowering_flag = config.experimental_xmap_spmd_lowering_manual
|
|
config.update('experimental_xmap_spmd_lowering_manual', val)
|
|
|
|
def restore_spmd_manual_lowering_flag():
|
|
if old_spmd_manual_lowering_flag is None: return
|
|
config.update('experimental_xmap_spmd_lowering_manual', old_spmd_manual_lowering_flag)
|
|
|
|
def create_global_mesh(mesh_shape, axis_names):
|
|
size = math.prod(mesh_shape)
|
|
if len(jax.devices()) < size:
|
|
raise unittest.SkipTest(f"Test requires {size} global devices.")
|
|
devices = sorted(jax.devices(), key=lambda d: d.id)
|
|
mesh_devices = np.array(devices[:size]).reshape(mesh_shape)
|
|
global_mesh = jax.sharding.Mesh(mesh_devices, axis_names)
|
|
return global_mesh
|
|
|
|
|
|
class _cached_property:
|
|
null = object()
|
|
|
|
def __init__(self, method):
|
|
self._method = method
|
|
self._value = self.null
|
|
|
|
def __get__(self, obj, cls):
|
|
if self._value is self.null:
|
|
self._value = self._method(obj)
|
|
return self._value
|
|
|
|
|
|
class _LazyDtypes:
|
|
"""A class that unifies lists of supported dtypes.
|
|
|
|
These could be module-level constants, but device_under_test() is not always
|
|
known at import time, so we need to define these lists lazily.
|
|
"""
|
|
def supported(self, dtypes):
|
|
supported = supported_dtypes()
|
|
return type(dtypes)(d for d in dtypes if d in supported)
|
|
|
|
@_cached_property
|
|
def custom_floats(self):
|
|
return [np.dtype(t) for t in [
|
|
_dtypes.bfloat16, _dtypes.float8_e4m3b11fnuz,
|
|
_dtypes.float8_e4m3fn, _dtypes.float8_e4m3fnuz,
|
|
_dtypes.float8_e5m2, _dtypes.float8_e5m2fnuz]]
|
|
|
|
@_cached_property
|
|
def floating(self):
|
|
return self.supported([np.float32, np.float64])
|
|
|
|
@_cached_property
|
|
def all_floating(self):
|
|
return self.supported([_dtypes.bfloat16, np.float16, np.float32, np.float64])
|
|
|
|
@_cached_property
|
|
def integer(self):
|
|
return self.supported([np.int32, np.int64])
|
|
|
|
@_cached_property
|
|
def all_integer(self):
|
|
return self.supported([np.int8, np.int16, np.int32, np.int64])
|
|
|
|
@_cached_property
|
|
def unsigned(self):
|
|
return self.supported([np.uint32, np.uint64])
|
|
|
|
@_cached_property
|
|
def all_unsigned(self):
|
|
return self.supported([np.uint8, np.uint16, np.uint32, np.uint64])
|
|
|
|
@_cached_property
|
|
def complex(self):
|
|
return self.supported([np.complex64, np.complex128])
|
|
|
|
@_cached_property
|
|
def boolean(self):
|
|
return self.supported([np.bool_])
|
|
|
|
@_cached_property
|
|
def inexact(self):
|
|
return self.floating + self.complex
|
|
|
|
@_cached_property
|
|
def all_inexact(self):
|
|
return self.all_floating + self.complex
|
|
|
|
@_cached_property
|
|
def numeric(self):
|
|
return self.floating + self.integer + self.unsigned + self.complex
|
|
|
|
@_cached_property
|
|
def all(self):
|
|
return (self.all_floating + self.all_integer + self.all_unsigned +
|
|
self.complex + self.boolean)
|
|
|
|
|
|
dtypes = _LazyDtypes()
|
|
|
|
|
|
def strict_promotion_if_dtypes_match(dtypes):
|
|
"""
|
|
Context manager to enable strict promotion if all dtypes match,
|
|
and enable standard dtype promotion otherwise.
|
|
"""
|
|
if all(dtype == dtypes[0] for dtype in dtypes):
|
|
return jax.numpy_dtype_promotion('strict')
|
|
return jax.numpy_dtype_promotion('standard')
|
|
|
|
_version_regex = re.compile(r"([0-9]+(?:\.[0-9]+)*)(?:(rc|dev).*)?")
|
|
def _parse_version(v: str) -> tuple[int, ...]:
|
|
m = _version_regex.match(v)
|
|
if m is None:
|
|
raise ValueError(f"Unable to parse version '{v}'")
|
|
return tuple(int(x) for x in m.group(1).split('.'))
|
|
|
|
def numpy_version():
|
|
return _parse_version(np.__version__)
|
|
|
|
def parameterized_filterable(*,
|
|
kwargs: Sequence[dict[str, Any]],
|
|
testcase_name: Optional[Callable[[dict[str, Any]], str]] = None,
|
|
one_containing: Optional[str] = None,
|
|
):
|
|
"""
|
|
Decorator for named parameterized tests, with filtering.
|
|
|
|
Works like parameterized.named_parameters, except that it supports the
|
|
`one_containing` option. This is useful to select only one of the tests,
|
|
and to leave the test name unchanged (helps with specifying the desired test
|
|
when debugging).
|
|
|
|
Args:
|
|
kwargs: Each entry is a set of kwargs to be passed to the test function.
|
|
testcase_name: Optionally, a function to construct the testcase_name from
|
|
one kwargs dict. If not given then kwarg may contain `testcase_name` and
|
|
if not, the test case name is constructed as `str(kwarg)`.
|
|
We sanitize the test names to work with -k test filters. See
|
|
`sanitize_test_name`.
|
|
one_containing: If given, then leave the test name unchanged, and use
|
|
only one `kwargs` whose `testcase_name` includes `one_containing`.
|
|
"""
|
|
# Ensure that all kwargs contain a testcase_name
|
|
kwargs_with_testcase_name: Sequence[dict[str, Any]]
|
|
if testcase_name is not None:
|
|
kwargs_with_testcase_name = [
|
|
dict(testcase_name=sanitize_test_name(str(testcase_name(kw))), **kw)
|
|
for kw in kwargs]
|
|
else:
|
|
for kw in kwargs:
|
|
testcase_name = kw.get("testcase_name")
|
|
if testcase_name is None:
|
|
testcase_name = "_".join(f"{k}={str(kw[k])}" # type: ignore
|
|
for k in sorted(kw.keys()))
|
|
kw["testcase_name"] = sanitize_test_name(testcase_name) # type: ignore
|
|
|
|
kwargs_with_testcase_name = kwargs
|
|
if one_containing is not None:
|
|
filtered = tuple(kw for kw in kwargs_with_testcase_name
|
|
if one_containing in kw["testcase_name"])
|
|
assert filtered, f"No testcase_name contains '{one_containing}'"
|
|
kw = filtered[0]
|
|
kw["testcase_name"] = ""
|
|
return parameterized.named_parameters([kw])
|
|
else:
|
|
return parameterized.named_parameters(*kwargs_with_testcase_name)
|
|
|
|
@contextmanager
|
|
def register_event_duration_listener(callback):
|
|
"""Manages registering/unregistering an event duration listener callback."""
|
|
try:
|
|
monitoring.register_event_duration_secs_listener(callback)
|
|
yield
|
|
finally:
|
|
monitoring._unregister_event_duration_listener_by_callback(callback)
|
|
|
|
|
|
@contextmanager
|
|
def set_env(**kwargs):
|
|
"""Context manager to temporarily set/unset one or more environment variables.
|
|
|
|
Example:
|
|
|
|
>>> import os
|
|
>>> os.environ['my_var'] = 'original'
|
|
|
|
>>> with set_env(my_var=None, other_var='some_value'):
|
|
... print("my_var is set:", 'my_var' in os.environ)
|
|
... print("other_var =", os.environ['other_var'])
|
|
...
|
|
my_var is set: False
|
|
other_var = some_value
|
|
|
|
>>> os.environ['my_var']
|
|
'original'
|
|
>>> 'other_var' in os.environ
|
|
False
|
|
"""
|
|
original = {key: os.environ.pop(key, None) for key in kwargs}
|
|
os.environ.update({k: v for k, v in kwargs.items() if v is not None})
|
|
try:
|
|
yield
|
|
finally:
|
|
_ = [os.environ.pop(key, None) for key in kwargs]
|
|
os.environ.update({k: v for k, v in original.items() if v is not None})
|
|
|
|
def fwd_bwd_jaxprs(f, *example_args):
|
|
fwd_jaxpr, (y_shape, res_shape) = jax.make_jaxpr(
|
|
lambda *args: jax.vjp(f, *args), return_shape=True)(*example_args)
|
|
bwd_jaxpr = jax.make_jaxpr(lambda res, outs: res(outs))(res_shape, y_shape)
|
|
return fwd_jaxpr, bwd_jaxpr
|