rocm_jax/tests/nn_test.py
jax authors 311dc9cfde Add truncated normal initializer to jax.nn
PiperOrigin-RevId: 563576354
2023-09-07 16:23:42 -07:00

375 lines
13 KiB
Python

# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for nn module."""
import collections
from functools import partial
import itertools
import unittest
from absl.testing import absltest
from absl.testing import parameterized
import scipy.stats
from jax._src import core
from jax._src import test_util as jtu
from jax._src import ad_checkpoint
from jax.test_util import check_grads
from jax import nn
from jax import random
import jax
import jax.numpy as jnp
from jax import config
config.parse_flags_with_absl()
class NNFunctionsTest(jtu.JaxTestCase):
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testSoftplusGrad(self):
check_grads(nn.softplus, (1e-8,), order=4,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradZero(self):
check_grads(nn.softplus, (0.,), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradInf(self):
self.assertAllClose(
1., jax.grad(nn.softplus)(float('inf')))
def testSoftplusGradNegInf(self):
check_grads(nn.softplus, (-float('inf'),), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradNan(self):
check_grads(nn.softplus, (float('nan'),), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
@parameterized.parameters([int, float] + jtu.dtypes.floating + jtu.dtypes.integer)
def testSoftplusZero(self, dtype):
self.assertEqual(jnp.log(dtype(2)), nn.softplus(dtype(0)))
def testReluGrad(self):
rtol = 1e-2 if jtu.device_under_test() == "tpu" else None
check_grads(nn.relu, (1.,), order=3, rtol=rtol)
check_grads(nn.relu, (-1.,), order=3, rtol=rtol)
jaxpr = jax.make_jaxpr(jax.grad(nn.relu))(0.)
self.assertGreaterEqual(len(jaxpr.jaxpr.eqns), 2)
def testRelu6Grad(self):
rtol = 1e-2 if jtu.device_under_test() == "tpu" else None
check_grads(nn.relu6, (1.,), order=3, rtol=rtol)
check_grads(nn.relu6, (-1.,), order=3, rtol=rtol)
self.assertAllClose(jax.grad(nn.relu6)(0.), 0., check_dtypes=False)
self.assertAllClose(jax.grad(nn.relu6)(6.), 0., check_dtypes=False)
def testSoftplusValue(self):
val = nn.softplus(89.)
self.assertAllClose(val, 89., check_dtypes=False)
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testEluGrad(self):
check_grads(nn.elu, (1e4,), order=4, eps=1.)
def testEluValue(self):
val = nn.elu(1e4)
self.assertAllClose(val, 1e4, check_dtypes=False)
def testGluValue(self):
val = nn.glu(jnp.array([1.0, 0.0]), axis=0)
self.assertAllClose(val, jnp.array([0.5]))
@parameterized.parameters(False, True)
def testGeluIntType(self, approximate):
val_float = nn.gelu(jnp.array(-1.0), approximate=approximate)
val_int = nn.gelu(jnp.array(-1), approximate=approximate)
self.assertAllClose(val_float, val_int)
@parameterized.parameters(False, True)
def testGelu(self, approximate):
def gelu_reference(x):
return x * scipy.stats.norm.cdf(x)
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng((4, 5, 6), jnp.float32)]
self._CheckAgainstNumpy(
gelu_reference, partial(nn.gelu, approximate=approximate), args_maker,
check_dtypes=False, tol=1e-3 if approximate else None)
@parameterized.parameters(*itertools.product(
(jnp.float32, jnp.bfloat16, jnp.float16),
(partial(nn.gelu, approximate=False),
partial(nn.gelu, approximate=True),
nn.relu, nn.softplus, nn.sigmoid)))
def testDtypeMatchesInput(self, dtype, fn):
x = jnp.zeros((), dtype=dtype)
out = fn(x)
self.assertEqual(out.dtype, dtype)
def testEluMemory(self):
# see https://github.com/google/jax/pull/1640
with jax.enable_checks(False): # With checks we materialize the array
jax.make_jaxpr(lambda: nn.elu(jnp.ones((10 ** 12,)))) # don't oom
def testHardTanhMemory(self):
# see https://github.com/google/jax/pull/1640
with jax.enable_checks(False): # With checks we materialize the array
jax.make_jaxpr(lambda: nn.hard_tanh(jnp.ones((10 ** 12,)))) # don't oom
@parameterized.parameters([nn.softmax, nn.log_softmax])
def testSoftmaxWhereMask(self, fn):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
m = jnp.array([True, False, True, True])
out = fn(x, where=m, initial=-jnp.inf)
self.assertAllClose(out[m], fn(x[m]))
probs = out if fn is nn.softmax else jnp.exp(out)
self.assertAllClose(probs.sum(), 1.0)
# TODO(mattjj): include log_softmax in these extra tests if/when we add a
# custom_jvp rule for it (since otherwise it doesn't pass the numerical
# checks below).
if fn is nn.softmax and config.jax_softmax_custom_jvp:
g_fun = lambda x: jnp.take(fn(x, where=m, initial=-jnp.inf),
jnp.array([0, 2, 3]))
jtu.check_grads(g_fun, (x,), order=2)
def testSoftmaxGrad(self):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
jtu.check_grads(nn.softmax, (x,), order=2, atol=3e-3)
def testSoftmaxGradResiduals(self):
if not jax.config.jax_softmax_custom_jvp:
raise unittest.SkipTest("only applies when upgrade flag enabled")
x = jnp.array([5.5, 1.3, -4.2, 0.9])
res = ad_checkpoint.saved_residuals(nn.softmax, x)
self.assertLen(res, 1)
def testSoftmaxGradFlag(self):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
with jax.softmax_custom_jvp(False):
res = ad_checkpoint.saved_residuals(nn.softmax, x)
self.assertLen(res, 3)
self.assertEqual(sum(a.size for a, _ in res), 6)
with jax.softmax_custom_jvp(True):
res = ad_checkpoint.saved_residuals(nn.softmax, x)
self.assertLen(res, 1)
self.assertEqual(sum(a.size for a, _ in res), 4)
def testStandardizeWhereMask(self):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
m = jnp.array([True, False, True, True])
x_filtered = jnp.take(x, jnp.array([0, 2, 3]))
out_masked = jnp.take(nn.standardize(x, where=m), jnp.array([0, 2, 3]))
out_filtered = nn.standardize(x_filtered)
self.assertAllClose(out_masked, out_filtered)
def testOneHot(self):
actual = nn.one_hot(jnp.array([0, 1, 2]), 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected, check_dtypes=False)
actual = nn.one_hot(jnp.array([1, 2, 0]), 3)
expected = jnp.array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.]])
self.assertAllClose(actual, expected, check_dtypes=False)
def testOneHotOutOfBound(self):
actual = nn.one_hot(jnp.array([-1, 3]), 3)
expected = jnp.array([[0., 0., 0.],
[0., 0., 0.]])
self.assertAllClose(actual, expected, check_dtypes=False)
def testOneHotNonArrayInput(self):
actual = nn.one_hot([0, 1, 2], 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected, check_dtypes=False)
def testOneHotCustomDtype(self):
actual = nn.one_hot(jnp.array([0, 1, 2]), 3, dtype=jnp.bool_)
expected = jnp.array([[True, False, False],
[False, True, False],
[False, False, True]])
self.assertAllClose(actual, expected)
def testOneHotConcretizationError(self):
# https://github.com/google/jax/issues/3654
msg = r"in jax.nn.one_hot argument `num_classes`"
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
jax.jit(nn.one_hot)(3, 5)
def testOneHotAxis(self):
expected = jnp.array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.]]).T
actual = nn.one_hot(jnp.array([1, 2, 0]), 3, axis=0)
self.assertAllClose(actual, expected, check_dtypes=False)
actual = nn.one_hot(jnp.array([1, 2, 0]), 3, axis=-2)
self.assertAllClose(actual, expected, check_dtypes=False)
def testTanhExists(self):
nn.tanh # doesn't crash
def testCustomJVPLeak(self):
# https://github.com/google/jax/issues/8171
@jax.jit
def fwd():
a = jnp.array(1.)
def f(hx, _):
hx = jax.nn.sigmoid(hx + a)
return hx, None
hx = jnp.array(0.)
jax.lax.scan(f, hx, None, length=2)
with jax.checking_leaks():
fwd() # doesn't crash
def testCustomJVPLeak2(self):
# https://github.com/google/jax/issues/8171
# The above test uses jax.nn.sigmoid, as in the original #8171, but that
# function no longer actually has a custom_jvp! So we inline the old def.
@jax.custom_jvp
def sigmoid(x):
one = jnp.float32(1)
return jax.lax.div(one, jax.lax.add(one, jax.lax.exp(jax.lax.neg(x))))
sigmoid.defjvps(lambda g, ans, x: g * ans * (jnp.float32(1) - ans))
@jax.jit
def fwd():
a = jnp.array(1., 'float32')
def f(hx, _):
hx = sigmoid(hx + a)
return hx, None
hx = jnp.array(0., 'float32')
jax.lax.scan(f, hx, None, length=2)
with jax.checking_leaks():
fwd() # doesn't crash
InitializerRecord = collections.namedtuple(
"InitializerRecord",
["name", "initializer", "shapes", "dtypes"])
ALL_SHAPES = [(2,), (2, 2), (2, 3), (3, 2), (2, 3, 4), (4, 3, 2), (2, 3, 4, 5)]
def initializer_record(name, initializer, dtypes, min_dims=2, max_dims=4):
shapes = [shape for shape in ALL_SHAPES
if min_dims <= len(shape) <= max_dims]
return InitializerRecord(name, initializer, shapes, dtypes)
INITIALIZER_RECS = [
initializer_record("uniform", nn.initializers.uniform, jtu.dtypes.floating, 1),
initializer_record("normal", nn.initializers.normal, jtu.dtypes.inexact, 1),
initializer_record("he_normal", nn.initializers.he_normal, jtu.dtypes.inexact),
initializer_record("he_uniform", nn.initializers.he_uniform, jtu.dtypes.inexact),
initializer_record("glorot_normal", nn.initializers.glorot_normal, jtu.dtypes.inexact),
initializer_record("glorot_uniform", nn.initializers.glorot_uniform, jtu.dtypes.inexact),
initializer_record("lecun_normal", nn.initializers.lecun_normal, jtu.dtypes.inexact),
initializer_record("lecun_uniform", nn.initializers.lecun_uniform, jtu.dtypes.inexact),
initializer_record("orthogonal", nn.initializers.orthogonal, jtu.dtypes.floating, 2, 2),
initializer_record("truncated_normal", nn.initializers.truncated_normal, jtu.dtypes.floating, 1),
initializer_record("delta_orthogonal", nn.initializers.delta_orthogonal, jtu.dtypes.floating, 4, 4)
]
@jtu.with_config(jax_legacy_prng_key="allow")
class NNInitializersTest(jtu.JaxTestCase):
@parameterized.parameters(itertools.chain.from_iterable(
jtu.sample_product_testcases(
[dict(initializer=rec.initializer())],
shape=rec.shapes,
dtype=rec.dtypes
)
for rec in INITIALIZER_RECS
))
def testInitializer(self, initializer, shape, dtype):
rng = random.PRNGKey(0)
val = initializer(rng, shape, dtype)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val))
@parameterized.parameters(itertools.chain.from_iterable(
jtu.sample_product_testcases(
[dict(initializer_provider=rec.initializer)],
shape=rec.shapes,
dtype=rec.dtypes
)
for rec in INITIALIZER_RECS
))
def testInitializerProvider(self, initializer_provider, shape, dtype):
rng = random.PRNGKey(0)
initializer = initializer_provider(dtype=dtype)
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val))
def testVarianceScalingMultiAxis(self):
rng = random.PRNGKey(0)
shape = (2, 3, 4, 5)
initializer = nn.initializers.variance_scaling(
scale=1.0, mode='fan_avg', distribution='truncated_normal',
in_axis=(0, 1), out_axis=(-2, -1))
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
def testVarianceScalingBatchAxis(self):
rng = random.PRNGKey(0)
shape = (2, 3, 4, 5)
initializer = nn.initializers.variance_scaling(
scale=1.0, mode='fan_avg', distribution='truncated_normal',
in_axis=0, out_axis=(2, 3), batch_axis=1)
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
def testVarianceScalingError(self):
rng = random.PRNGKey(0)
shape = (5,)
initializer = nn.initializers.variance_scaling(
scale=1.0, mode='fan_avg', distribution='truncated_normal')
with self.assertRaisesRegex(
ValueError,
"Can't compute input and output sizes of a 1"
"-dimensional weights tensor. Must be at least 2D."
):
initializer(rng, shape)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())