rocm_jax/jax/_src/sharding.py

198 lines
7.6 KiB
Python

# Copyright 2021 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections.abc import Mapping, Sequence
import functools
from jax._src.util import safe_zip, use_cpp_class, cache
from jax._src import xla_bridge as xb
from jax._src.lib import xla_client as xc
from jax._src.op_shardings import (
are_op_shardings_equal, get_num_ways_dim_sharded, is_op_sharding_replicated,
op_sharding_to_indices)
Shape = tuple[int, ...]
Device = xc.Device
Index = tuple[slice, ...]
XLADeviceAssignment = Sequence[Device]
@cache(max_size=4096, trace_context_in_key=False)
def _addressable_devices_indices_map(
sharding: Sharding, global_shape: Shape) -> Mapping[Device, Index | None]:
global_map = sharding.devices_indices_map(global_shape)
if sharding.is_fully_addressable:
return global_map
if hasattr(sharding, '_internal_device_list'):
return {d: global_map[d]
for d in sharding._internal_device_list.addressable_device_list}
return {d: ind for d, ind in global_map.items()
if d.process_index == d.client.process_index()}
@cache(max_size=4096, trace_context_in_key=False)
def common_devices_indices_map(s, global_shape: Shape) -> Mapping[Device, Index]:
s.shard_shape(global_shape) # raises a good error message
hlo_sharding = s._to_xla_hlo_sharding(len(global_shape))
indices = op_sharding_to_indices(hlo_sharding, global_shape,
len(s._device_assignment))
return dict(safe_zip(s._device_assignment, indices))
@cache(max_size=4096, trace_context_in_key=False)
def _common_shard_shape(self, global_shape: Shape) -> Shape:
hlo_sharding = self._to_xla_hlo_sharding(len(global_shape))
if is_op_sharding_replicated(hlo_sharding):
return global_shape
partitions, _ = get_num_ways_dim_sharded(hlo_sharding)
assert len(partitions) == len(global_shape), (len(partitions), len(global_shape))
out = []
for dim, (s, p) in enumerate(safe_zip(global_shape, partitions)):
try:
quotient, remainder = divmod(s, p)
except TypeError:
# TODO Figure out how to partition dynamic shapes
raise NotImplementedError
if remainder != 0:
raise ValueError(
f"Sharding {self} implies that array axis {dim} is partitioned "
f"{p} times, but the dimension size is {s} "
f"(full shape: {global_shape}, "
f"per-dimension tiling factors: {partitions} should evenly divide "
"the shape)")
out.append(quotient)
return tuple(out)
@use_cpp_class(xc.Sharding)
class Sharding:
"""Describes how a :class:`jax.Array` is laid out across devices.
"""
# Abstract methods below that subclasses should implement.
@property
def device_set(self) -> set[Device]:
"""The set of devices that this :class:`Sharding` spans.
In multi-controller JAX, the set of devices is global, i.e., includes
non-addressable devices from other processes.
"""
raise NotImplementedError('Subclasses should implement this method.')
@property
def is_fully_replicated(self) -> bool:
"""Is this sharding fully replicated?
A sharding is fully replicated if each device has a complete copy of the
entire data.
"""
raise NotImplementedError('Subclasses should implement this method.')
@property
def is_fully_addressable(self) -> bool:
"""Is this sharding fully addressable?
A sharding is fully addressable if the current process can address all of
the devices named in the :class:`Sharding`. ``is_fully_addressable`` is
equivalent to "is_local" in multi-process JAX.
"""
raise NotImplementedError('Subclasses should implement this method.')
@property
def memory_kind(self) -> str | None:
"""Returns the memory kind of the sharding."""
raise NotImplementedError('Subclasses should implement this method.')
def with_memory_kind(self, kind: str) -> Sharding:
"""Returns a new Sharding instance with the specified memory kind."""
raise NotImplementedError('Subclasses should implement this method')
@property
def _device_assignment(self) -> XLADeviceAssignment:
raise NotImplementedError('Subclasses should implement this method.')
def _to_xla_hlo_sharding(self, num_dimensions: int) -> xc.HloSharding:
raise NotImplementedError('Subclasses should implement this method.')
#############################################################################
# Default implementations below that all subclasses will inherit.
@functools.cached_property
def addressable_devices(self) -> set[Device]:
"""The set of devices in the :class:`Sharding` that are addressable by the
current process.
"""
# Add a fast path for single controller runtimes.
if xb.process_count() == 1:
return self.device_set
return {d for d in self.device_set
if d.process_index == d.client.process_index()}
def addressable_devices_indices_map(
self, global_shape: Shape) -> Mapping[Device, Index | None]:
"""A mapping from addressable devices to the slice of array data each contains.
``addressable_devices_indices_map`` contains that part of
``device_indices_map`` that applies to the addressable devices.
"""
return _addressable_devices_indices_map(self, global_shape)
def devices_indices_map(self, global_shape: Shape) -> Mapping[Device, Index]:
"""Returns a mapping from devices to the array slices each contains.
The mapping includes all global devices, i.e., including
non-addressable devices from other processes.
"""
return common_devices_indices_map(self, global_shape)
@functools.cached_property
def _addressable_device_assignment(self) -> XLADeviceAssignment:
if self.is_fully_addressable:
return self._device_assignment
if hasattr(self, '_internal_device_list'):
return tuple(self._internal_device_list.addressable_device_list)
return tuple(d for d in self._device_assignment
if d.process_index == d.client.process_index())
def shard_shape(self, global_shape: Shape) -> Shape:
"""Returns the shape of the data on each device.
The shard shape returned by this function is calculated from
``global_shape`` and the properties of the sharding.
"""
return _common_shard_shape(self, global_shape)
def is_equivalent_to(self: Sharding, other: Sharding, ndim: int) -> bool:
"""Returns ``True`` if two shardings are equivalent.
Two shardings are equivalent if they place the same logical array shards on
the same devices.
For example, a :class:`NamedSharding` may be equivalent
to a :class:`PositionalSharding` if both place the same shards of the array
on the same devices.
"""
try:
return (are_op_shardings_equal(self._to_xla_hlo_sharding(ndim),
other._to_xla_hlo_sharding(ndim))
and self._internal_device_list == other._internal_device_list and # type: ignore
self.memory_kind == other.memory_kind)
# NotImplementedError is raised by PmapSharding because it can't lower
# to OpSharding. So if `other` is a PmapSharding, default to a strict
# equality check.
except NotImplementedError:
return self == other