rocm_jax/jax/numpy/linalg.py
Stephan Hoyer 6cceb2c778
Faster gradient rules for {numpy,scipy}.linalg.solve (#2220)
Fixes GH1747

The implicit function theorem (via `lax.custom_linear_solve`) lets us
_directly_ define gradients for linear solves, in contrast to the current
implementations of gradient for `solve` which rely upon differentiating matrix
factorization.

In **theory**, JVPs of `cholesky` and `lu` involve the equivalent of ~3 dense
matrix-matrix multiplications, which makes them rather expensive: time
`O(n**3)`. In contrast, with `custom_linear_solve` we don't need to
differentiate the factorization. The JVP and VJP rules for linear solve (for a
single right-hand-side vector) now only use matrix-vector products and
triangular solves, which is time `O(n**2)`. We should also have reduced memory
usage, because we don't need to save any intermediate outputs.

In **practice**, these new gradient rules seem to make solves with large
arrays ~3x faster:

    from functools import partial
    import jax.scipy as jsp
    from jax import lax
    import jax.numpy as np
    import numpy as onp
    import jax

    def loss(solve):
      def f(a, b):
        return solve(a, b).sum()
      return f

    rs = onp.random.RandomState(0)
    N = 500
    K = 1
    a = rs.randn(N, N)
    a = jax.device_put(a.T @ a + 0.1 * np.eye(N))
    b = jax.device_put(rs.randn(N, K))

    # general matrix solve
    grad = jax.jit(jax.grad(loss(np.linalg.solve)))
    grad(a, b).block_until_ready()
    %timeit grad(a, b).block_until_ready()
    # N=500, K=1: 11.4 ms -> 3.63 ms

    # positive definite solve
    grad = jax.jit(jax.grad(loss(partial(jsp.linalg.solve, sym_pos=True))))
    grad(a, b).block_until_ready()
    %timeit grad(a, b).block_until_ready()
    # N=500, K=1: 9.22 ms -> 2.83 ms
2020-02-18 17:41:38 -08:00

369 lines
12 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import numpy as onp
import warnings
import textwrap
import operator
from typing import Tuple, Union, cast
from jax import jit, ops, vmap
from .. import lax
from .. import lax_linalg
from .. import dtypes
from .lax_numpy import _not_implemented
from .lax_numpy import _wraps
from .vectorize import vectorize
from . import lax_numpy as np
from ..api import custom_transforms, defjvp
from ..util import get_module_functions
from ..third_party.numpy.linalg import cond, tensorinv, tensorsolve
_T = lambda x: np.swapaxes(x, -1, -2)
def _promote_arg_dtypes(*args):
"""Promotes `args` to a common inexact type."""
def _to_inexact_type(type):
return type if np.issubdtype(type, np.inexact) else np.float_
inexact_types = [_to_inexact_type(np._dtype(arg)) for arg in args]
dtype = dtypes.canonicalize_dtype(np.result_type(*inexact_types))
args = [lax.convert_element_type(arg, dtype) for arg in args]
if len(args) == 1:
return args[0]
else:
return args
@_wraps(onp.linalg.cholesky)
def cholesky(a):
a = _promote_arg_dtypes(np.asarray(a))
return lax_linalg.cholesky(a)
@_wraps(onp.linalg.svd)
def svd(a, full_matrices=True, compute_uv=True):
a = _promote_arg_dtypes(np.asarray(a))
return lax_linalg.svd(a, full_matrices, compute_uv)
@_wraps(onp.linalg.matrix_power)
def matrix_power(a, n):
a = _promote_arg_dtypes(np.asarray(a))
if a.ndim < 2:
raise TypeError("{}-dimensional array given. Array must be at least "
"two-dimensional".format(a.ndim))
if a.shape[-2] != a.shape[-1]:
raise TypeError("Last 2 dimensions of the array must be square")
try:
n = operator.index(n)
except TypeError:
raise TypeError("exponent must be an integer, got {}".format(n))
if n == 0:
return np.broadcast_to(np.eye(a.shape[-2], dtype=a.dtype), a.shape)
elif n < 0:
a = inv(a)
n = np.abs(n)
if n == 1:
return a
elif n == 2:
return a @ a
elif n == 3:
return (a @ a) @ a
z = result = None
while n > 0:
z = a if z is None else (z @ z)
n, bit = divmod(n, 2)
if bit:
result = z if result is None else (result @ z)
return result
@_wraps(onp.linalg.matrix_rank)
def matrix_rank(M, tol=None):
M = _promote_arg_dtypes(np.asarray(M))
if M.ndim > 2:
raise TypeError("array should have 2 or fewer dimensions")
if M.ndim < 2:
return np.any(M != 0).astype(np.int32)
S = svd(M, full_matrices=False, compute_uv=False)
if tol is None:
tol = S.max() * np.max(M.shape) * np.finfo(S.dtype).eps
return np.sum(S > tol)
# TODO(pfau): make this work for complex types
def _jvp_slogdet(g, ans, x):
jvp_sign = np.zeros(x.shape[:-2])
jvp_logdet = np.trace(solve(x, g), axis1=-1, axis2=-2)
return jvp_sign, jvp_logdet
@_wraps(onp.linalg.slogdet)
@custom_transforms
@jit
def slogdet(a):
a = _promote_arg_dtypes(np.asarray(a))
dtype = lax.dtype(a)
a_shape = np.shape(a)
if len(a_shape) < 2 or a_shape[-1] != a_shape[-2]:
msg = "Argument to slogdet() must have shape [..., n, n], got {}"
raise ValueError(msg.format(a_shape))
lu, pivot = lax_linalg.lu(a)
diag = np.diagonal(lu, axis1=-2, axis2=-1)
is_zero = np.any(diag == np.array(0, dtype=dtype), axis=-1)
parity = np.count_nonzero(pivot != np.arange(a_shape[-1]), axis=-1)
if np.iscomplexobj(a):
sign = np.prod(diag / np.abs(diag), axis=-1)
else:
sign = np.array(1, dtype=dtype)
parity = parity + np.count_nonzero(diag < 0, axis=-1)
sign = np.where(is_zero,
np.array(0, dtype=dtype),
sign * np.array(-2 * (parity % 2) + 1, dtype=dtype))
logdet = np.where(
is_zero, np.array(-np.inf, dtype=dtype),
np.sum(np.log(np.abs(diag)), axis=-1))
return sign, np.real(logdet)
defjvp(slogdet, _jvp_slogdet)
@_wraps(onp.linalg.det)
def det(a):
sign, logdet = slogdet(a)
return sign * np.exp(logdet)
@_wraps(onp.linalg.eig)
def eig(a):
a = _promote_arg_dtypes(np.asarray(a))
w, vl, vr = lax_linalg.eig(a)
return w, vr
@_wraps(onp.linalg.eigvals)
def eigvals(a):
w, _ = eig(a)
return w
@_wraps(onp.linalg.eigh)
def eigh(a, UPLO=None, symmetrize_input=True):
if UPLO is None or UPLO == "L":
lower = True
elif UPLO == "U":
lower = False
else:
msg = "UPLO must be one of None, 'L', or 'U', got {}".format(UPLO)
raise ValueError(msg)
a = _promote_arg_dtypes(np.asarray(a))
v, w = lax_linalg.eigh(a, lower=lower, symmetrize_input=symmetrize_input)
return w, v
@_wraps(onp.linalg.eigvalsh)
def eigvalsh(a, UPLO='L'):
w, _ = eigh(a, UPLO)
return w
@_wraps(onp.linalg.pinv, lax_description=textwrap.dedent("""\
It differs only in default value of `rcond`. In `numpy.linalg.pinv`, the
default `rcond` is `1e-15`. Here the default is
`10. * max(num_rows, num_cols) * np.finfo(dtype).eps`.
"""))
def pinv(a, rcond=None):
# ported from https://github.com/numpy/numpy/blob/v1.17.0/numpy/linalg/linalg.py#L1890-L1979
a = np.conj(a)
# copied from https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/math/linalg.py#L442
if rcond is None:
max_rows_cols = max(a.shape[-2:])
rcond = 10. * max_rows_cols * np.finfo(a.dtype).eps
rcond = np.asarray(rcond)
u, s, v = svd(a, full_matrices=False)
# Singular values less than or equal to ``rcond * largest_singular_value``
# are set to zero.
cutoff = rcond[..., np.newaxis] * np.amax(s, axis=-1, keepdims=True)
large = s > cutoff
s = np.divide(1, s)
s = np.where(large, s, 0)
vT = np.swapaxes(v, -1, -2)
uT = np.swapaxes(u, -1, -2)
res = np.matmul(vT, np.multiply(s[..., np.newaxis], uT))
return lax.convert_element_type(res, a.dtype)
@_wraps(onp.linalg.inv)
def inv(a):
if np.ndim(a) < 2 or a.shape[-1] != a.shape[-2]:
raise ValueError("Argument to inv must have shape [..., n, n], got {}."
.format(np.shape(a)))
return solve(
a, lax.broadcast(np.eye(a.shape[-1], dtype=lax.dtype(a)), a.shape[:-2]))
@partial(jit, static_argnums=(1, 2, 3))
def _norm(x, ord, axis: Union[None, Tuple[int, ...], int], keepdims):
x = _promote_arg_dtypes(np.asarray(x))
x_shape = np.shape(x)
ndim = len(x_shape)
if axis is None:
# NumPy has an undocumented behavior that admits arbitrary rank inputs if
# `ord` is None: https://github.com/numpy/numpy/issues/14215
if ord is None:
return np.sqrt(np.sum(np.real(x * np.conj(x)), keepdims=keepdims))
axis = tuple(range(ndim))
elif isinstance(axis, tuple):
axis = tuple(np._canonicalize_axis(x, ndim) for x in axis)
else:
axis = (np._canonicalize_axis(axis, ndim),)
num_axes = len(axis)
if num_axes == 1:
if ord is None or ord == 2:
return np.sqrt(np.sum(np.real(x * np.conj(x)), axis=axis,
keepdims=keepdims))
elif ord == np.inf:
return np.amax(np.abs(x), axis=axis, keepdims=keepdims)
elif ord == -np.inf:
return np.amin(np.abs(x), axis=axis, keepdims=keepdims)
elif ord == 0:
return np.sum(x != 0, dtype=np.finfo(lax.dtype(x)).dtype,
axis=axis, keepdims=keepdims)
elif ord == 1:
# Numpy has a special case for ord == 1 as an optimization. We don't
# really need the optimization (XLA could do it for us), but the Numpy
# code has slightly different type promotion semantics, so we need a
# special case too.
return np.sum(np.abs(x), axis=axis, keepdims=keepdims)
else:
abs_x = np.abs(x)
ord = lax._const(abs_x, ord)
out = np.sum(abs_x ** ord, axis=axis, keepdims=keepdims)
return np.power(out, 1. / ord)
elif num_axes == 2:
row_axis, col_axis = cast(Tuple[int, ...], axis)
if ord is None or ord in ('f', 'fro'):
return np.sqrt(np.sum(np.real(x * np.conj(x)), axis=axis,
keepdims=keepdims))
elif ord == 1:
if not keepdims and col_axis > row_axis:
col_axis -= 1
return np.amax(np.sum(np.abs(x), axis=row_axis, keepdims=keepdims),
axis=col_axis, keepdims=keepdims)
elif ord == -1:
if not keepdims and col_axis > row_axis:
col_axis -= 1
return np.amin(np.sum(np.abs(x), axis=row_axis, keepdims=keepdims),
axis=col_axis, keepdims=keepdims)
elif ord == np.inf:
if not keepdims and row_axis > col_axis:
row_axis -= 1
return np.amax(np.sum(np.abs(x), axis=col_axis, keepdims=keepdims),
axis=row_axis, keepdims=keepdims)
elif ord == -np.inf:
if not keepdims and row_axis > col_axis:
row_axis -= 1
return np.amin(np.sum(np.abs(x), axis=col_axis, keepdims=keepdims),
axis=row_axis, keepdims=keepdims)
elif ord in ('nuc', 2, -2):
x = np.moveaxis(x, axis, (-2, -1))
if ord == 2:
reducer = np.amax
elif ord == -2:
reducer = np.amin
else:
reducer = np.sum
y = reducer(svd(x, compute_uv=False), axis=-1)
if keepdims:
result_shape = list(x_shape)
result_shape[axis[0]] = 1
result_shape[axis[1]] = 1
y = np.reshape(y, result_shape)
return y
else:
raise ValueError("Invalid order '{}' for matrix norm.".format(ord))
else:
raise ValueError(
"Invalid axis values ({}) for np.linalg.norm.".format(axis))
@_wraps(onp.linalg.norm)
def norm(x, ord=None, axis=None, keepdims=False):
return _norm(x, ord, axis, keepdims)
@_wraps(onp.linalg.qr)
def qr(a, mode="reduced"):
if mode in ("reduced", "r", "full"):
full_matrices = False
elif mode == "complete":
full_matrices = True
else:
raise ValueError("Unsupported QR decomposition mode '{}'".format(mode))
a = _promote_arg_dtypes(np.asarray(a))
q, r = lax_linalg.qr(a, full_matrices)
if mode == "r":
return r
return q, r
def _check_solve_shapes(a, b):
if not (a.ndim >= 2 and a.shape[-1] == a.shape[-2] and b.ndim >= 1):
msg = ("The arguments to solve must have shapes a=[..., m, m] and "
"b=[..., m, k] or b=[..., m]; got a={} and b={}")
raise ValueError(msg.format(a.shape, b.shape))
@partial(vectorize, signature='(n,m),(m)->(n)')
def _matvec_multiply(a, b):
return np.dot(a, b, precision=lax.Precision.HIGHEST)
@_wraps(onp.linalg.solve)
@jit
def solve(a, b):
a, b = _promote_arg_dtypes(np.asarray(a), np.asarray(b))
_check_solve_shapes(a, b)
# With custom_linear_solve, we can reuse the same factorization when
# computing sensitivities. This is considerably faster.
lu, pivots = lax.stop_gradient(lax_linalg.lu)(a)
custom_solve = partial(
lax.custom_linear_solve,
lambda x: _matvec_multiply(a, x),
solve=lambda _, x: lax_linalg.lu_solve(lu, pivots, x, trans=0),
transpose_solve=lambda _, x: lax_linalg.lu_solve(lu, pivots, x, trans=1))
if a.ndim == b.ndim + 1:
# b.shape == [..., m]
return custom_solve(b)
else:
# b.shape == [..., m, k]
return vmap(custom_solve, b.ndim - 1, max(a.ndim, b.ndim) - 1)(b)
for func in get_module_functions(onp.linalg):
if func.__name__ not in globals():
globals()[func.__name__] = _not_implemented(func)