mirror of
https://github.com/ROCm/jax.git
synced 2025-04-19 05:16:06 +00:00
1109 lines
44 KiB
Python
1109 lines
44 KiB
Python
# Copyright 2018 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Primitive dispatch and jit dispatch.
|
|
from __future__ import annotations
|
|
|
|
import atexit
|
|
import contextlib
|
|
from functools import partial
|
|
import itertools
|
|
import time
|
|
from typing import (
|
|
Any, Callable, Dict, Optional, Sequence, Set, Tuple, List, Type, Union)
|
|
from typing_extensions import Protocol
|
|
import os
|
|
import re
|
|
import threading
|
|
import warnings
|
|
|
|
from absl import logging
|
|
import numpy as np
|
|
|
|
import jax
|
|
from jax import core
|
|
from jax import linear_util as lu
|
|
from jax.errors import UnexpectedTracerError
|
|
import jax.interpreters.ad as ad
|
|
import jax.interpreters.batching as batching
|
|
import jax.interpreters.mlir as mlir
|
|
import jax.interpreters.xla as xla
|
|
import jax.interpreters.partial_eval as pe
|
|
from jax._src import device_array
|
|
from jax._src import dtypes
|
|
from jax._src import profiler
|
|
from jax._src import stages
|
|
from jax._src import traceback_util
|
|
from jax._src.abstract_arrays import array_types
|
|
from jax._src.config import config, flags
|
|
from jax._src.lib.mlir import ir
|
|
from jax._src.lib import xla_bridge as xb
|
|
from jax._src.lib import xla_client as xc
|
|
from jax._src.lib import xla_extension_version
|
|
import jax._src.util as util
|
|
from jax._src.util import flatten, unflatten
|
|
from etils import epath
|
|
|
|
FLAGS = flags.FLAGS
|
|
|
|
flags.DEFINE_string(
|
|
'jax_dump_ir_to', os.getenv('JAX_DUMP_IR_TO', ''),
|
|
help="Path to which HLO/MHLO IR that is emitted by JAX as input to the "
|
|
"compiler should be dumped as text files. Optional. If omitted, JAX "
|
|
"will not dump IR.")
|
|
|
|
|
|
traceback_util.register_exclusion(__file__)
|
|
|
|
MYPY = False # Are we currently type checking with mypy?
|
|
|
|
xe = xc._xla
|
|
|
|
Backend = xe.Client
|
|
Device = xc.Device
|
|
Buffer = xe.Buffer
|
|
|
|
XlaExecutable = xc.Executable
|
|
|
|
map, unsafe_map = util.safe_map, map
|
|
zip, unsafe_zip = util.safe_zip, zip
|
|
|
|
# This flag is set on exit; no logging should be attempted
|
|
_on_exit = False
|
|
|
|
### op-by-op execution
|
|
|
|
ArgSpec = Tuple[core.AbstractValue, Optional[Device]]
|
|
|
|
def arg_spec(x: Any) -> ArgSpec:
|
|
aval = xla.abstractify(x)
|
|
try:
|
|
return aval, x._device
|
|
except:
|
|
return aval, None
|
|
|
|
|
|
def apply_primitive(prim, *args, **params):
|
|
"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""
|
|
compiled_fun = xla_primitive_callable(prim, *unsafe_map(arg_spec, args),
|
|
**params)
|
|
return compiled_fun(*args)
|
|
|
|
# TODO(phawkins): update code referring to xla.apply_primitive to point here.
|
|
xla.apply_primitive = apply_primitive
|
|
|
|
RuntimeToken = Any
|
|
|
|
class RuntimeTokenSet(threading.local):
|
|
tokens: Dict[core.Effect, Tuple[RuntimeToken, Device]]
|
|
output_tokens: Dict[Device, RuntimeToken]
|
|
output_runtime_tokens: Dict[Device, RuntimeToken]
|
|
|
|
def __init__(self):
|
|
self.tokens = {}
|
|
# TODO(sharadmv): remove redundant output token dictionary when minimum
|
|
# jaxlib version is bumped to 0.3.16.
|
|
self.output_tokens = {}
|
|
self.output_runtime_tokens = {}
|
|
|
|
def get_token(self, eff: core.Effect, device: Device) -> RuntimeToken:
|
|
if eff not in self.tokens:
|
|
self.tokens[eff] = device_put(np.zeros(0, np.bool_), device), device
|
|
elif self.tokens[eff][1] != device:
|
|
(old_token,), _ = self.tokens[eff]
|
|
old_token.aval = core.ShapedArray((0,), np.bool_)
|
|
self.tokens[eff] = device_put(old_token, device), device
|
|
return self.tokens[eff][0]
|
|
|
|
def update_token(self, eff: core.Effect, token: RuntimeToken):
|
|
self.tokens[eff] = token, self.tokens[eff][1]
|
|
|
|
def set_output_token(self, device: Device, token: RuntimeToken):
|
|
# We're free to clobber the previous output token because on each
|
|
# device we have a total ordering of computations. Only the token
|
|
# from the latest computation matters. If this weren't the case
|
|
# we'd need to store a set of output tokens.
|
|
self.output_tokens[device] = token
|
|
|
|
def set_output_runtime_token(self, device: Device, token: RuntimeToken):
|
|
# TODO(sharadmv): remove this method when minimum jaxlib version is bumped
|
|
self.output_runtime_tokens[device] = token
|
|
|
|
def clear(self):
|
|
self.tokens = {}
|
|
self.output_tokens = {}
|
|
self.output_runtime_tokens = {}
|
|
|
|
def block_until_ready(self):
|
|
for token, _ in self.tokens.values():
|
|
token[0].block_until_ready()
|
|
for token in self.output_tokens.values():
|
|
token[0].block_until_ready()
|
|
for token in self.output_runtime_tokens.values():
|
|
token.block_until_ready()
|
|
|
|
runtime_tokens: RuntimeTokenSet = RuntimeTokenSet()
|
|
|
|
@atexit.register
|
|
def wait_for_tokens():
|
|
runtime_tokens.block_until_ready()
|
|
|
|
@util.cache()
|
|
def xla_primitive_callable(prim, *arg_specs: ArgSpec, **params):
|
|
avals, arg_devices = util.unzip2(arg_specs)
|
|
donated_invars = (False,) * len(arg_specs)
|
|
device = _device_from_arg_devices(arg_devices)
|
|
def prim_fun(*args):
|
|
out = prim.bind(*args, **params)
|
|
if prim.multiple_results:
|
|
return out
|
|
else:
|
|
return out,
|
|
compiled = _xla_callable_uncached(lu.wrap_init(prim_fun), device, None,
|
|
prim.name, donated_invars, False, *arg_specs)
|
|
if not prim.multiple_results:
|
|
return lambda *args, **kw: compiled(*args, **kw)[0]
|
|
else:
|
|
return compiled
|
|
|
|
|
|
def _device_from_arg_devices(devices: Sequence[Optional[Device]]) -> Optional[Device]:
|
|
"""Given devices of inputs, determine where to perform a computation.
|
|
|
|
Args:
|
|
devices: list where each element is a either a `Device` instance or `None`.
|
|
Returns:
|
|
A `Device` instance or None.
|
|
Raises:
|
|
ValueError if input devices are inconsistent.
|
|
"""
|
|
try:
|
|
device, = {d for d in devices if d is not None} or (None,)
|
|
return device
|
|
except ValueError as err:
|
|
msg = "primitive arguments must be colocated on the same device, got {}"
|
|
raise ValueError(msg.format(", ".join(map(str, devices)))) from err
|
|
|
|
|
|
# JIT execution
|
|
|
|
def _xla_call_impl(fun: lu.WrappedFun, *args, device, backend, name,
|
|
donated_invars, inline, keep_unused: bool):
|
|
del inline # Only used at tracing time
|
|
if fun.in_type is None:
|
|
arg_specs = unsafe_map(arg_spec, args)
|
|
else:
|
|
arg_specs = [(None, getattr(x, '_device', None)) for x in args]
|
|
compiled_fun = xla_callable(fun, device, backend, name, donated_invars,
|
|
keep_unused, *arg_specs)
|
|
try:
|
|
return compiled_fun(*args)
|
|
except FloatingPointError:
|
|
assert config.jax_debug_nans or config.jax_debug_infs # compiled_fun can only raise in this case
|
|
print("Invalid value encountered in the output of a jit-decorated function. "
|
|
"Calling the de-optimized version.")
|
|
# We want to run the wrapped function again (after xla_callable already ran
|
|
# it), but linear_util.WrappedFun instances are meant to be run only once.
|
|
# In addition to re-executing the Python code, which is usually undesirable
|
|
# but which config.jax_debug_nans is meant to opt into, we'll be
|
|
# re-executing any linear_util.py-style side effects, i.e. re-populating
|
|
# Stores created by any transformation_with_aux's applied to fun. Since this
|
|
# is intentional here, to avoid "Store occupied" errors we clone the
|
|
# WrappedFun with empty stores.
|
|
stores = [lu.Store() for _ in fun.stores]
|
|
clone = lu.WrappedFun(fun.f, fun.transforms, stores, fun.params,
|
|
fun.in_type)
|
|
|
|
with core.new_sublevel():
|
|
_ = clone.call_wrapped(*args) # may raise, not return
|
|
|
|
# If control reaches this line, we got a NaN on the output of `compiled_fun`
|
|
# but not `clone.call_wrapped` on the same arguments. Let's tell the user.
|
|
fun_info = pe.fun_sourceinfo(fun.f)
|
|
msg = ("An invalid value was encountered in the output of the "
|
|
f"`jit`-decorated function {fun_info}. Because "
|
|
"config.jax_debug_nans and/or config.jax_debug_infs is set, the "
|
|
"de-optimized function (i.e., the function as if the `jit` "
|
|
"decorator were removed) was called in an attempt to get a more "
|
|
"precise error message. However, the de-optimized function did not "
|
|
"produce invalid values during its execution. This behavior can "
|
|
"result from `jit` optimizations causing the invalud value to be "
|
|
"produced. It may also arise from having nan/inf constants as "
|
|
"outputs, like `jax.jit(lambda ...: jax.numpy.nan)(...)`. "
|
|
"\n\n"
|
|
"It may be possible to avoid the invalid value by removing the "
|
|
"`jit` decorator, at the cost of losing optimizations. "
|
|
"\n\n"
|
|
"If you see this error, consider opening a bug report at "
|
|
"https://github.com/google/jax.")
|
|
raise FloatingPointError(msg)
|
|
|
|
xla.xla_call_p.def_impl(_xla_call_impl)
|
|
|
|
|
|
def _xla_callable_uncached(fun: lu.WrappedFun, device, backend, name,
|
|
donated_invars, keep_unused, *arg_specs):
|
|
return lower_xla_callable(fun, device, backend, name, donated_invars, False,
|
|
keep_unused, *arg_specs).compile().unsafe_call
|
|
|
|
xla_callable = lu.cache(_xla_callable_uncached)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def log_elapsed_time(fmt: str):
|
|
if _on_exit:
|
|
yield
|
|
else:
|
|
log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
|
|
start_time = time.time()
|
|
yield
|
|
elapsed_time = time.time() - start_time
|
|
logging.log(log_priority, fmt.format(elapsed_time=elapsed_time))
|
|
|
|
|
|
@profiler.annotate_function
|
|
def lower_xla_callable(fun: lu.WrappedFun, device, backend, name,
|
|
donated_invars, always_lower: bool, keep_unused: bool,
|
|
*arg_specs):
|
|
"""Lower into XLA.
|
|
|
|
Args:
|
|
always_lower: If `True`, even trivial programs (not doing any computation
|
|
such as lambda x: x) will be lowered into an XLA program.
|
|
keep_unused: If `False` (the default), arguments that JAX determines to be
|
|
unused by `fun` *may* be dropped from resulting compiled XLA executables.
|
|
Such arguments will not be transferred to the device nor provided to the
|
|
underlying executable. If `True`, unused arguments will not be pruned.
|
|
"""
|
|
if device is not None and backend is not None:
|
|
raise ValueError("can't specify both a device and a backend for jit, "
|
|
"got device={} and backend={}".format(device, backend))
|
|
abstract_args, arg_devices = util.unzip2(arg_specs)
|
|
if fun.in_type is None:
|
|
# Add an annotation inferred from the arguments; no dynamic axes here.
|
|
in_type = tuple(unsafe_zip(abstract_args, itertools.repeat(True)))
|
|
fun = lu.annotate(fun, in_type)
|
|
else:
|
|
assert abstract_args == (None,) * len(abstract_args)
|
|
abstract_args = [aval for aval, _ in fun.in_type]
|
|
with log_elapsed_time(f"Finished tracing + transforming {fun.__name__} "
|
|
"for jit in {elapsed_time} sec"):
|
|
jaxpr, out_type, consts = pe.trace_to_jaxpr_final2(
|
|
fun, pe.debug_info_final(fun, "jit"))
|
|
out_avals, kept_outputs = util.unzip2(out_type)
|
|
if any(isinstance(c, core.Tracer) for c in consts):
|
|
raise UnexpectedTracerError("Encountered an unexpected tracer.")
|
|
|
|
if config.jax_dynamic_shapes:
|
|
keep_unused = True
|
|
has_outfeed = False
|
|
donated_invars = [False] * len(fun.in_type)
|
|
else:
|
|
has_outfeed = core.jaxpr_uses_outfeed(jaxpr)
|
|
jaxpr = apply_outfeed_rewriter(jaxpr)
|
|
|
|
if not keep_unused:
|
|
jaxpr, kept_const_idx, kept_var_idx = _prune_unused_inputs(jaxpr)
|
|
consts = [c for i, c in enumerate(consts) if i in kept_const_idx]
|
|
abstract_args, arg_devices = util.unzip2(
|
|
[a for i, a in enumerate(arg_specs) if i in kept_var_idx])
|
|
donated_invars = [x for i, x in enumerate(donated_invars)
|
|
if i in kept_var_idx]
|
|
del kept_const_idx
|
|
else:
|
|
kept_var_idx = set(range(len(fun.in_type)))
|
|
|
|
nreps = jaxpr_replicas(jaxpr)
|
|
device = _xla_callable_device(nreps, backend, device, arg_devices)
|
|
backend = xb.get_device_backend(device) if device else xb.get_backend(backend)
|
|
|
|
if config.jax_dynamic_shapes and jaxpr_has_bints(jaxpr):
|
|
jaxpr, consts = pe.pad_jaxpr(jaxpr, consts)
|
|
|
|
map(prefetch, itertools.chain(consts, jaxpr_literals(jaxpr)))
|
|
|
|
# Computations that only produce constants and/or only rearrange their inputs,
|
|
# which are often produced from partial evaluation, don't need compilation,
|
|
# and don't need to evaluate their arguments.
|
|
if (not always_lower and not (jaxpr.effects or has_outfeed) and
|
|
(not jaxpr.eqns and all(kept_outputs) or not jaxpr.outvars)):
|
|
return XlaComputation(
|
|
name, None, True, None, None, None, jaxpr=jaxpr, consts=consts,
|
|
device=device, in_avals=abstract_args, out_avals=out_avals,
|
|
has_unordered_effects=False, ordered_effects=[],
|
|
kept_var_idx=kept_var_idx, keepalive=None, host_callbacks=[])
|
|
|
|
if not _on_exit:
|
|
log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
|
|
if len(abstract_args) > 10:
|
|
msg = f"Compiling {fun.__name__} ({id(fun)}) for {len(abstract_args)} args."
|
|
else:
|
|
msg = f"Compiling {fun.__name__} ({id(fun)} for args {abstract_args}."
|
|
logging.log(log_priority, msg)
|
|
|
|
if nreps > 1:
|
|
warnings.warn(
|
|
f"The jitted function {name} includes a pmap. Using "
|
|
"jit-of-pmap can lead to inefficient data movement, as the outer jit "
|
|
"does not preserve sharded data representations and instead collects "
|
|
"input and output arrays onto a single device. "
|
|
"Consider removing the outer jit unless you know what you're doing. "
|
|
"See https://github.com/google/jax/issues/2926.")
|
|
|
|
if nreps > xb.device_count(backend):
|
|
raise ValueError(
|
|
f"compiling computation `{name}` that requires {nreps} replicas, but "
|
|
f"only {xb.device_count(backend)} XLA devices are available.")
|
|
|
|
if xb.process_count() > 1 and (nreps > 1 or
|
|
jaxpr_has_primitive(jaxpr, "xla_pmap")):
|
|
raise NotImplementedError(
|
|
"jit of multi-host pmap not implemented (and jit-of-pmap can cause "
|
|
"extra data movement anyway, so maybe you don't want it after all).")
|
|
|
|
# pass long arg lists as tuple for TPU
|
|
tuple_args = len(abstract_args) > 100
|
|
axis_env = xla.AxisEnv(nreps, (), ())
|
|
name_stack = util.new_name_stack(util.wrap_name(name, 'jit'))
|
|
closed_jaxpr = core.ClosedJaxpr(jaxpr, consts)
|
|
module_name = f"jit_{fun.__name__}"
|
|
unordered_effects = [eff for eff in closed_jaxpr.effects
|
|
if eff not in core.ordered_effects]
|
|
ordered_effects = [eff for eff in closed_jaxpr.effects
|
|
if eff in core.ordered_effects]
|
|
lowering_result = mlir.lower_jaxpr_to_module(
|
|
module_name, closed_jaxpr,
|
|
unordered_effects, ordered_effects, backend.platform,
|
|
mlir.ReplicaAxisContext(axis_env), name_stack, donated_invars)
|
|
module, keepalive, host_callbacks = (
|
|
lowering_result.module, lowering_result.keepalive,
|
|
lowering_result.host_callbacks)
|
|
return XlaComputation(
|
|
name, module, False, donated_invars, fun.in_type, out_type, nreps=nreps,
|
|
device=device, backend=backend, tuple_args=tuple_args,
|
|
in_avals=abstract_args, out_avals=out_avals,
|
|
has_unordered_effects=bool(unordered_effects),
|
|
ordered_effects=ordered_effects, kept_var_idx=kept_var_idx,
|
|
keepalive=keepalive, host_callbacks=host_callbacks)
|
|
|
|
|
|
def _backend_supports_unbounded_dynamic_shapes(backend: Backend) -> bool:
|
|
return backend.platform == 'iree'
|
|
|
|
|
|
def prefetch(x):
|
|
if isinstance(x, device_array.DeviceArray):
|
|
x.copy_to_host_async()
|
|
return x
|
|
|
|
|
|
def jaxpr_literals(jaxpr):
|
|
"""Generates all the literals inside a jaxpr, including nested subjaxprs."""
|
|
for eqn in jaxpr.eqns:
|
|
for v in eqn.invars:
|
|
if type(v) is core.Literal:
|
|
yield v.val
|
|
for subjaxpr in core.subjaxprs(jaxpr):
|
|
yield from jaxpr_literals(subjaxpr)
|
|
|
|
|
|
def jaxpr_has_primitive(jaxpr, prim_name: str):
|
|
"""Whether there is a primitive given by user anywhere inside a Jaxpr."""
|
|
for eqn in jaxpr.eqns:
|
|
if prim_name in eqn.primitive.name:
|
|
return True
|
|
for subjaxpr in core.subjaxprs(jaxpr):
|
|
if jaxpr_has_primitive(subjaxpr, prim_name):
|
|
return True
|
|
return False
|
|
|
|
def jaxpr_has_bints(jaxpr: core.Jaxpr) -> bool:
|
|
return (any(type(v.aval) is core.AbstractBInt for v in jaxpr.invars) or
|
|
any(type(v.aval) is core.AbstractBInt
|
|
for j in itertools.chain([jaxpr], core.subjaxprs(jaxpr))
|
|
for e in j.eqns for v in e.outvars))
|
|
|
|
def _prune_unused_inputs(
|
|
jaxpr: core.Jaxpr) -> Tuple[core.Jaxpr, Set[int], Set[int]]:
|
|
used = {v for v in jaxpr.outvars if isinstance(v, core.Var)}
|
|
# TODO(zhangqiaorjc): Improve the DCE algorithm by also pruning primitive
|
|
# applications that do not produce used outputs. Must handle side-effecting
|
|
# primitives and nested jaxpr.
|
|
used.update(
|
|
v for eqn in jaxpr.eqns for v in eqn.invars if isinstance(v, core.Var))
|
|
kept_const_idx, new_constvars = util.unzip2(
|
|
(i, v) for i, v in enumerate(jaxpr.constvars) if v in used)
|
|
kept_var_idx, new_invars = util.unzip2(
|
|
(i, v) for i, v in enumerate(jaxpr.invars) if v in used)
|
|
new_jaxpr = core.Jaxpr(new_constvars, new_invars, jaxpr.outvars, jaxpr.eqns,
|
|
jaxpr.effects)
|
|
return new_jaxpr, set(kept_const_idx), set(kept_var_idx)
|
|
|
|
|
|
# We can optionally set a Jaxpr rewriter that can be applied just before
|
|
# compilation. This mechanism is used for compiling id_tap, we can
|
|
# remove it once we bring the id_tap implementation into the core.
|
|
outfeed_rewriter: Optional[Callable[[core.Jaxpr], core.Jaxpr]] = None
|
|
def apply_outfeed_rewriter(jaxpr: core.Jaxpr) -> core.Jaxpr:
|
|
if outfeed_rewriter is not None:
|
|
return outfeed_rewriter(jaxpr)
|
|
else:
|
|
return jaxpr
|
|
|
|
|
|
def jaxpr_replicas(jaxpr) -> int:
|
|
"""The number of replicas needed for a jaxpr.
|
|
|
|
For a eqn, multiply the `axis_size` with the `jaxpr_replicas` of the
|
|
subjaxprs. For a list of eqns, take the maximum number of replicas.
|
|
"""
|
|
if isinstance(jaxpr, core.ClosedJaxpr):
|
|
jaxpr = jaxpr.jaxpr
|
|
return max(unsafe_map(eqn_replicas, jaxpr.eqns), default=1)
|
|
|
|
# TODO(mattjj): this function assumes that only pmap has a parameter named
|
|
# axis_size, and that it corresponds to cross-replica mapping
|
|
def eqn_replicas(eqn):
|
|
call_jaxpr = eqn.params.get("call_jaxpr")
|
|
if call_jaxpr:
|
|
return eqn.params.get('axis_size', 1) * jaxpr_replicas(call_jaxpr)
|
|
elif eqn.primitive in xla._initial_style_primitives:
|
|
return initial_style_primitive_replicas(eqn.params)
|
|
else:
|
|
return 1
|
|
|
|
def initial_style_primitive_replicas(params):
|
|
return max(core.traverse_jaxpr_params(jaxpr_replicas, params).values(), default=1)
|
|
|
|
|
|
def _xla_callable_device(nreps, backend, device,
|
|
arg_devices) -> Optional[Device]:
|
|
if nreps > 1:
|
|
if device is not None or backend is not None:
|
|
raise ValueError(f"can't specify device or backend for jit-of-pmap, "
|
|
f"got device={device} and backend={backend}")
|
|
return None
|
|
else:
|
|
# TODO(skye): dedup with C++ jit logic for determining jit device?
|
|
if device is not None:
|
|
assert backend is None
|
|
return device
|
|
|
|
if backend is not None:
|
|
return xb.get_backend(backend).get_default_device_assignment(1)[0]
|
|
|
|
arg_device = _device_from_arg_devices(arg_devices)
|
|
if arg_device is not None:
|
|
return arg_device
|
|
|
|
return config.jax_default_device
|
|
|
|
|
|
# Argument and result handlers
|
|
|
|
num_buffers_handlers: Dict[Type[core.AbstractValue],
|
|
Callable[[core.AbstractValue], int]] = {}
|
|
|
|
def aval_to_num_buffers(aval: core.AbstractValue) -> int:
|
|
"""Returns the number of buffers in the runtime representation of `aval`.
|
|
|
|
In general this may differ from the number of buffers in the compiler-IR
|
|
representation of the same value.
|
|
"""
|
|
try:
|
|
return num_buffers_handlers[type(aval)](aval)
|
|
except KeyError as err:
|
|
raise TypeError(f"No num_buffers handler for type: {type(aval)}") from err
|
|
|
|
num_buffers_handlers[core.AbstractToken] = lambda _: 1
|
|
num_buffers_handlers[core.ShapedArray] = lambda _: 1
|
|
num_buffers_handlers[core.DShapedArray] = lambda _: 1
|
|
num_buffers_handlers[core.ConcreteArray] = lambda _: 1
|
|
num_buffers_handlers[core.AbstractBInt] = lambda _: 1
|
|
|
|
|
|
def _input_handler(backend: Backend,
|
|
in_type: Optional[pe.InputType],
|
|
out_type: Optional[pe.OutputType],
|
|
) -> Optional[Callable]:
|
|
if in_type is None:
|
|
assert out_type is None
|
|
return None
|
|
in_avals, which_explicit = util.unzip2(in_type)
|
|
# Check whether we actually need an input_handler.
|
|
needs_implicit = which_explicit and not all(which_explicit)
|
|
needs_out_handling = any(type(d) is core.InDBIdx for a, _ in out_type or []
|
|
if type(a) is core.DShapedArray for d in a.shape)
|
|
|
|
if not needs_implicit and not needs_out_handling:
|
|
return None
|
|
assert config.jax_dynamic_shapes
|
|
|
|
# Precompute how to grab implicit inputs from explicit inputs' axis sizes.
|
|
which_explicit = which_explicit or [True] * len(in_avals)
|
|
implicit_idxs = {i for i, ex in enumerate(which_explicit) if not ex}
|
|
implicit_args_from_axes: List[Tuple[int, int, int]] = []
|
|
for arg_idx, aval in enumerate(in_avals):
|
|
if isinstance(aval, core.DShapedArray):
|
|
for axis_idx, d in enumerate(aval.shape):
|
|
if isinstance(d, core.DBIdx) and d.val in implicit_idxs:
|
|
implicit_args_from_axes.append((d.val, arg_idx, axis_idx))
|
|
assert {i for i, _, _ in implicit_args_from_axes} == implicit_idxs
|
|
|
|
# Precompute which input values are needed for output types.
|
|
inputs_needed_for_out_types = out_type and [
|
|
d.val for aval, _ in out_type if type(aval) is core.DShapedArray # type: ignore
|
|
for d in aval.shape if type(d) is core.InDBIdx]
|
|
|
|
def elaborate(explicit_args: Sequence[Any]) -> Tuple[Tuple, Optional[Tuple]]:
|
|
if needs_implicit:
|
|
# Build full argument list, leaving Nones for implicit arguments.
|
|
explicit_args_ = iter(explicit_args)
|
|
args = [next(explicit_args_) if ex else None for ex in which_explicit]
|
|
assert next(explicit_args_, None) is None
|
|
# Populate implicit arguments.
|
|
for i, j, k in implicit_args_from_axes:
|
|
if args[i] is None:
|
|
args[i] = args[j].shape[k] # type: ignore
|
|
else:
|
|
if args[i] != args[j].shape[k]:
|
|
raise Exception("inconsistent argument axis sizes for type")
|
|
else:
|
|
args = list(explicit_args)
|
|
|
|
if needs_out_handling:
|
|
# Make a list of inputs needed by output types, leaving unneeded as None.
|
|
out_type_env = [None] * len(args)
|
|
for i in inputs_needed_for_out_types or []:
|
|
out_type_env[i] = args[i]
|
|
else:
|
|
out_type_env = None # type: ignore
|
|
|
|
return tuple(args), out_type_env and tuple(out_type_env) # type: ignore
|
|
return elaborate
|
|
|
|
def _result_handler(backend: Backend,
|
|
sticky_device: Optional[Device],
|
|
out_type: Optional[pe.OutputType]
|
|
) -> Callable:
|
|
out_avals, kept_outputs = util.unzip2(out_type)
|
|
handlers = map(partial(aval_to_result_handler, sticky_device), out_avals)
|
|
dyn_outs = any(type(aval) is core.DShapedArray and
|
|
any(type(d) in (core.InDBIdx, core.OutDBIdx) for d in aval.shape)
|
|
for aval in out_avals)
|
|
if not dyn_outs:
|
|
return SimpleResultHandler(handlers)
|
|
assert config.jax_dynamic_shapes
|
|
|
|
def result_handler(input_env, lists_of_bufs):
|
|
results = []
|
|
for handler, bufs in unsafe_zip(handlers, lists_of_bufs):
|
|
results.append(handler((input_env, results), *bufs))
|
|
return [r for r, keep in unsafe_zip(results, kept_outputs) if keep]
|
|
return result_handler
|
|
|
|
class SimpleResultHandler:
|
|
handlers: Sequence[ResultHandler]
|
|
def __init__(self, handlers): self.handlers = handlers
|
|
def __iter__(self): return iter(self.handlers)
|
|
def __len__(self): return len(self.handlers)
|
|
def __call__(self, env, lists_of_bufs):
|
|
return tuple(h(env, *bs) for h, bs in zip(self.handlers, lists_of_bufs))
|
|
|
|
|
|
def _maybe_create_array_from_da(buf, aval, device):
|
|
if config.jax_array:
|
|
from jax.experimental.array import Array
|
|
from jax.experimental.sharding import SingleDeviceSharding
|
|
return Array(buf.shape, SingleDeviceSharding(buf.device()), [buf],
|
|
committed=(device is not None))
|
|
else:
|
|
return device_array.make_device_array(aval, device, buf)
|
|
|
|
|
|
if MYPY:
|
|
ResultHandler = Any
|
|
else:
|
|
class ResultHandler(Protocol):
|
|
def __call__(self, env: Optional[Sequence[Any]], *args: xla.Buffer) -> Any:
|
|
"""Boxes raw buffers into their user-facing representation."""
|
|
|
|
def aval_to_result_handler(sticky_device: Optional[Device],
|
|
aval: core.AbstractValue) -> ResultHandler:
|
|
try:
|
|
return result_handlers[type(aval)](sticky_device, aval)
|
|
except KeyError as err:
|
|
raise TypeError(f"No result handler for type: {type(aval)}") from err
|
|
|
|
def array_result_handler(sticky_device: Optional[Device],
|
|
aval: core.ShapedArray):
|
|
if aval.dtype == dtypes.float0:
|
|
return lambda _, __: np.zeros(aval.shape, dtypes.float0)
|
|
aval = core.raise_to_shaped(aval)
|
|
if type(aval.dtype) in core.custom_eltypes:
|
|
return aval.dtype.result_handler(sticky_device, aval)
|
|
handler = lambda _, b: _maybe_create_array_from_da(b, aval, sticky_device)
|
|
handler.args = aval, sticky_device # for C++ dispatch path in api.py
|
|
return handler
|
|
|
|
def dynamic_array_result_handler(sticky_device: Optional[Device],
|
|
aval: core.DShapedArray):
|
|
if aval.dtype == dtypes.float0:
|
|
return lambda _: np.zeros(aval.shape, dtypes.float0) # type: ignore
|
|
else:
|
|
return partial(_dynamic_array_result_handler, sticky_device, aval)
|
|
|
|
def _dynamic_array_result_handler(sticky_device, aval, env, buf):
|
|
in_env, out_env = env or (None, None)
|
|
shape = [in_env[d.val] if type(d) is core.InDBIdx else
|
|
out_env[d.val] if type(d) is core.OutDBIdx else d
|
|
for d in aval.shape]
|
|
if all(type(d) is int for d in shape):
|
|
aval = core.ShapedArray(tuple(shape), aval.dtype)
|
|
return _maybe_create_array_from_da(buf, aval, sticky_device)
|
|
elif any(type(d) is core.BInt for d in shape):
|
|
padded_shape = [d.bound if type(d) is core.BInt else d for d in shape]
|
|
buf_aval = core.ShapedArray(tuple(padded_shape), aval.dtype, aval.weak_type)
|
|
data = _maybe_create_array_from_da(buf, buf_aval, sticky_device)
|
|
return core.PaddedArray(aval.update(shape=tuple(shape)), data)
|
|
else:
|
|
aval = core.ShapedArray(tuple(shape), aval.dtype)
|
|
return _maybe_create_array_from_da(buf, aval, sticky_device)
|
|
|
|
|
|
|
|
result_handlers: Dict[
|
|
Type[core.AbstractValue],
|
|
Callable[[Optional[Device], Any], ResultHandler]] = {}
|
|
result_handlers[core.AbstractToken] = lambda _, __: lambda _, __: core.token
|
|
result_handlers[core.ShapedArray] = array_result_handler
|
|
result_handlers[core.DShapedArray] = dynamic_array_result_handler
|
|
result_handlers[core.ConcreteArray] = array_result_handler
|
|
result_handlers[core.AbstractBInt] = \
|
|
lambda _, a: lambda _, b: core.BInt(int(b), a.bound)
|
|
|
|
|
|
def needs_check_special():
|
|
return config.jax_debug_infs or config.jax_debug_nans
|
|
|
|
def check_special(name, bufs):
|
|
if needs_check_special():
|
|
for buf in bufs:
|
|
_check_special(name, buf.xla_shape(), buf)
|
|
|
|
def _check_special(name, xla_shape, buf):
|
|
assert not xla_shape.is_tuple()
|
|
if dtypes.issubdtype(xla_shape.element_type(), np.inexact):
|
|
if config.jax_debug_nans and np.any(np.isnan(buf.to_py())):
|
|
raise FloatingPointError(f"invalid value (nan) encountered in {name}")
|
|
if config.jax_debug_infs and np.any(np.isinf(buf.to_py())):
|
|
raise FloatingPointError(f"invalid value (inf) encountered in {name}")
|
|
|
|
def _add_tokens(has_unordered_effects: bool, ordered_effects: List[core.Effect],
|
|
device: Device, input_bufs):
|
|
tokens = [runtime_tokens.get_token(eff, device) for eff in ordered_effects]
|
|
tokens_flat = flatten(tokens)
|
|
input_bufs = [*tokens_flat, *input_bufs]
|
|
def _remove_tokens(output_bufs, runtime_token):
|
|
# TODO(sharadmv): simplify when minimum jaxlib version is bumped
|
|
num_output_tokens = len(ordered_effects) + (xla_extension_version < 81 and
|
|
has_unordered_effects)
|
|
token_bufs, output_bufs = util.split_list(output_bufs, [num_output_tokens])
|
|
if has_unordered_effects:
|
|
if xla_extension_version >= 81:
|
|
runtime_tokens.set_output_runtime_token(device, runtime_token)
|
|
else:
|
|
output_token_buf, *token_bufs = token_bufs
|
|
runtime_tokens.set_output_token(device, output_token_buf)
|
|
for eff, token_buf in zip(ordered_effects, token_bufs):
|
|
runtime_tokens.update_token(eff, token_buf)
|
|
return output_bufs
|
|
return input_bufs, _remove_tokens
|
|
|
|
|
|
def _execute_compiled(name: str, compiled: XlaExecutable,
|
|
input_handler: Optional[Callable],
|
|
output_buffer_counts: Sequence[int],
|
|
result_handler: Callable,
|
|
has_unordered_effects: bool,
|
|
ordered_effects: List[core.Effect],
|
|
kept_var_idx, *args):
|
|
device, = compiled.local_devices()
|
|
args, env = input_handler(args) if input_handler else (args, None)
|
|
in_flat = flatten(device_put(x, device) for i, x in enumerate(args)
|
|
if i in kept_var_idx)
|
|
if has_unordered_effects or ordered_effects:
|
|
in_flat, token_handler = _add_tokens(
|
|
has_unordered_effects, ordered_effects, device, in_flat)
|
|
if xla_extension_version >= 81:
|
|
out_flat, runtime_token = compiled.execute_with_token(in_flat)
|
|
else:
|
|
out_flat = compiled.execute(in_flat)
|
|
runtime_token = None
|
|
else:
|
|
out_flat = compiled.execute(in_flat)
|
|
check_special(name, out_flat)
|
|
out_bufs = unflatten(out_flat, output_buffer_counts)
|
|
if ordered_effects or has_unordered_effects:
|
|
out_bufs = token_handler(out_bufs, runtime_token)
|
|
return result_handler(env, out_bufs)
|
|
|
|
|
|
def _execute_replicated(name: str, compiled: XlaExecutable,
|
|
input_handler: Optional[Callable],
|
|
output_buffer_counts: Sequence[int],
|
|
result_handler: Callable,
|
|
has_unordered_effects: bool,
|
|
ordered_effects: List[core.Effect],
|
|
kept_var_idx, *args):
|
|
if has_unordered_effects or ordered_effects:
|
|
# TODO(sharadmv): support jit-of-pmap with effects
|
|
raise NotImplementedError(
|
|
"Cannot execute replicated computation with effects.")
|
|
if input_handler: raise NotImplementedError # TODO(mattjj, dougalm)
|
|
input_bufs = [flatten(device_put(x, device) for i, x in enumerate(args)
|
|
if i in kept_var_idx)
|
|
for device in compiled.local_devices()]
|
|
input_bufs_flip = list(unsafe_zip(*input_bufs))
|
|
out_bufs_flat_rep = compiled.execute_sharded_on_local_devices(input_bufs_flip)
|
|
out_flat = [bufs[0] for bufs in out_bufs_flat_rep]
|
|
check_special(name, out_flat)
|
|
out_bufs = unflatten(out_flat, output_buffer_counts)
|
|
return result_handler(None, out_bufs)
|
|
|
|
|
|
def _execute_trivial(jaxpr, device: Optional[Device], consts, avals, handlers,
|
|
has_unordered_effects: bool,
|
|
ordered_effects: List[core.Effect], kept_var_idx,
|
|
host_callbacks, *args):
|
|
env: Dict[core.Var, Any] = {}
|
|
pruned_args = (x for i, x in enumerate(args) if i in kept_var_idx)
|
|
map(env.setdefault, jaxpr.invars, pruned_args)
|
|
map(env.setdefault, jaxpr.constvars, consts)
|
|
outs = [xla.canonicalize_dtype(v.val) if type(v) is core.Literal else env[v]
|
|
for v in jaxpr.outvars]
|
|
return [_copy_device_array_to_device(x, device) if device_array.type_is_device_array(x)
|
|
else h(None, *device_put(x, device)) for h, x in zip(handlers, outs)]
|
|
|
|
|
|
class XlaComputation(stages.XlaLowering):
|
|
name: str
|
|
_is_trivial: bool
|
|
_executable: Optional[XlaCompiledComputation]
|
|
_donated_invars: Optional[Sequence[bool]]
|
|
|
|
def __init__(self, name: str, hlo, is_trivial: bool,
|
|
donated_invars: Optional[Sequence[bool]],
|
|
in_type: Optional[pe.InputType],
|
|
out_type: Optional[pe.OutputType],
|
|
**compile_args):
|
|
self.name = name
|
|
self._hlo = hlo
|
|
self._is_trivial = is_trivial
|
|
self._donated_invars = donated_invars
|
|
self._in_type = in_type
|
|
self._out_type = out_type
|
|
self._executable = None
|
|
self.compile_args = compile_args
|
|
|
|
def is_trivial(self):
|
|
return self._is_trivial
|
|
|
|
# -- stages.XlaLowering overrides
|
|
|
|
def hlo(self) -> xc.XlaComputation:
|
|
if self.is_trivial():
|
|
raise ValueError("A trivial computation has no HLO")
|
|
if isinstance(self._hlo, xc.XlaComputation):
|
|
return self._hlo
|
|
return xe.mlir.mlir_module_to_xla_computation(
|
|
mlir.module_to_string(self._hlo),
|
|
use_tuple_args=self.compile_args["tuple_args"])
|
|
|
|
def mhlo(self) -> ir.Module:
|
|
if self.is_trivial():
|
|
raise ValueError("A trivial computation has no MHLO")
|
|
if isinstance(self._hlo, xc.XlaComputation):
|
|
module_str = xe.mlir.xla_computation_to_mlir_module(self._hlo)
|
|
with mlir.make_ir_context():
|
|
return ir.Module.parse(module_str)
|
|
return self._hlo
|
|
|
|
def compile(self) -> XlaCompiledComputation:
|
|
if self._executable is None:
|
|
if self.is_trivial():
|
|
self._executable = XlaCompiledComputation.from_trivial_jaxpr(
|
|
**self.compile_args)
|
|
else:
|
|
self._executable = XlaCompiledComputation.from_xla_computation(
|
|
self.name, self._hlo, self._in_type, self._out_type,
|
|
**self.compile_args)
|
|
|
|
return self._executable
|
|
|
|
@profiler.annotate_function
|
|
def backend_compile(backend, built_c, options, host_callbacks):
|
|
# we use a separate function call to ensure that XLA compilation appears
|
|
# separately in Python profiling results
|
|
if host_callbacks:
|
|
return backend.compile(built_c, compile_options=options,
|
|
host_callbacks=host_callbacks)
|
|
# Some backends don't have `host_callbacks` option yet
|
|
# TODO(sharadmv): remove this fallback when all backends allow `compile`
|
|
# to take in `host_callbacks`
|
|
return backend.compile(built_c, compile_options=options)
|
|
|
|
# TODO(phawkins): update users.
|
|
xla.backend_compile = backend_compile
|
|
|
|
_ir_dump_counter = itertools.count()
|
|
|
|
def _make_string_safe_for_filename(s: str) -> str:
|
|
return re.sub(r'[^\w.)( -]', '', s)
|
|
|
|
def _dump_ir_to_file(name: str, ir: str):
|
|
id = next(_ir_dump_counter)
|
|
name = f"jax_ir{id}_{_make_string_safe_for_filename(name)}.mlir"
|
|
name = epath.Path(FLAGS.jax_dump_ir_to) / name
|
|
name.write_text(ir)
|
|
|
|
|
|
def compile_or_get_cached(backend, computation, compile_options,
|
|
host_callbacks):
|
|
# Avoid import cycle between jax and jax.experimental
|
|
from jax.experimental.compilation_cache import compilation_cache as cc
|
|
|
|
if isinstance(computation, ir.Module):
|
|
sym_name = computation.operation.attributes['sym_name']
|
|
module_name = ir.StringAttr(sym_name).value
|
|
# Convert ir.Module to str representation (the default), unless the
|
|
# back-end expliclity flags the ability to handle a module directly
|
|
# (avoiding the overhead of back and forth conversions)
|
|
if getattr(backend, "needs_str_ir", True):
|
|
computation = mlir.module_to_string(computation)
|
|
else:
|
|
module_name = computation.name()
|
|
|
|
# Persistent compilation cache only implemented on TPU.
|
|
# TODO(skye): add warning when initializing cache on unsupported default platform
|
|
if cc.is_initialized() and backend.platform == 'tpu':
|
|
cached_executable = cc.get_executable(computation, compile_options, backend)
|
|
if cached_executable is not None:
|
|
logging.info('Persistent compilation cache hit for %s.', module_name)
|
|
return cached_executable
|
|
else:
|
|
compiled = backend_compile(backend, computation, compile_options,
|
|
host_callbacks)
|
|
cc.put_executable(module_name, computation, compile_options, compiled,
|
|
backend)
|
|
return compiled
|
|
|
|
if FLAGS.jax_dump_ir_to:
|
|
if isinstance(computation, xc.XlaComputation):
|
|
ir_str = computation.as_hlo_text()
|
|
elif isinstance(computation, ir.Module):
|
|
ir_str = mlir.module_to_string(computation)
|
|
else:
|
|
assert isinstance(computation, str)
|
|
ir_str = computation
|
|
_dump_ir_to_file(module_name, ir_str)
|
|
return backend_compile(backend, computation, compile_options, host_callbacks)
|
|
|
|
|
|
class XlaCompiledComputation(stages.XlaExecutable):
|
|
def __init__(self, xla_executable, in_avals, kept_var_idx, unsafe_call,
|
|
keepalive: Any):
|
|
self._xla_executable = xla_executable
|
|
self.in_avals = in_avals
|
|
self._kept_var_idx = kept_var_idx
|
|
self.unsafe_call = unsafe_call
|
|
# Only the `unsafe_call` function is cached, so to avoid the `keepalive`
|
|
# being garbage collected we attach it to `unsafe_call`.
|
|
self.unsafe_call.keepalive = keepalive
|
|
|
|
@staticmethod
|
|
def from_xla_computation(name: str, xla_computation: Optional[ir.Module],
|
|
in_type: Optional[pe.InputType],
|
|
out_type: Optional[pe.OutputType], nreps: int,
|
|
device: Optional[Device], backend: Backend,
|
|
tuple_args: bool,
|
|
in_avals: Sequence[core.AbstractValue],
|
|
out_avals: Sequence[core.AbstractValue],
|
|
has_unordered_effects: bool,
|
|
ordered_effects: List[core.Effect],
|
|
kept_var_idx: Set[int], keepalive: Optional[Any],
|
|
host_callbacks: List[Any]) -> XlaCompiledComputation:
|
|
sticky_device = device
|
|
input_handler = _input_handler(backend, in_type, out_type)
|
|
result_handler = _result_handler(backend, sticky_device, out_type)
|
|
options = xb.get_compile_options(
|
|
num_replicas=nreps, num_partitions=1,
|
|
device_assignment=(sticky_device,) if sticky_device else None)
|
|
options.parameter_is_tupled_arguments = tuple_args
|
|
with log_elapsed_time(f"Finished XLA compilation of {name} "
|
|
"in {elapsed_time} sec"):
|
|
compiled = compile_or_get_cached(backend, xla_computation, options,
|
|
host_callbacks)
|
|
buffer_counts = [aval_to_num_buffers(aval) for aval in out_avals]
|
|
if ordered_effects or has_unordered_effects:
|
|
num_output_tokens = len(ordered_effects)
|
|
# TODO(sharadmv): remove check when minimum jaxlib version is bumped
|
|
if xla_extension_version < 81:
|
|
num_output_tokens += has_unordered_effects
|
|
buffer_counts = ([1] * num_output_tokens) + buffer_counts
|
|
execute = _execute_compiled if nreps == 1 else _execute_replicated
|
|
unsafe_call = partial(execute, name, compiled, input_handler, buffer_counts, # type: ignore # noqa: F811
|
|
result_handler, has_unordered_effects,
|
|
ordered_effects, kept_var_idx)
|
|
return XlaCompiledComputation(compiled, in_avals, kept_var_idx, unsafe_call,
|
|
keepalive)
|
|
|
|
def is_trivial(self):
|
|
return self._xla_executable == None
|
|
|
|
@property
|
|
def xla_executable(self):
|
|
# TODO(frostig): remove in favor of runtime_executable?
|
|
if self.is_trivial():
|
|
raise ValueError("A trivial compiled computation has no XLA executable")
|
|
return self._xla_executable
|
|
|
|
@staticmethod
|
|
def from_trivial_jaxpr(jaxpr, consts, device, in_avals, out_avals,
|
|
has_unordered_effects, ordered_effects, kept_var_idx,
|
|
keepalive: Optional[Any],
|
|
host_callbacks: List[Any]) -> XlaCompiledComputation:
|
|
assert keepalive is None
|
|
result_handlers = map(partial(aval_to_result_handler, device), out_avals)
|
|
unsafe_call = partial(_execute_trivial, jaxpr, device, consts, out_avals,
|
|
result_handlers, has_unordered_effects,
|
|
ordered_effects, kept_var_idx, host_callbacks)
|
|
return XlaCompiledComputation(None, in_avals, kept_var_idx, unsafe_call,
|
|
keepalive)
|
|
|
|
# -- stages.XlaExecutable overrides
|
|
|
|
def xla_extension_executable(self):
|
|
return self.xla_executable
|
|
|
|
def call(self, *args):
|
|
arg_specs = unsafe_map(arg_spec, args)
|
|
arg_avals = [spec[0] for i, spec in enumerate(arg_specs)
|
|
if i in self._kept_var_idx]
|
|
check_arg_avals_for_call(self.in_avals, arg_avals)
|
|
return self.unsafe_call(*args)
|
|
|
|
def check_arg_avals_for_call(ref_avals, arg_avals):
|
|
if len(ref_avals) != len(arg_avals):
|
|
raise TypeError(
|
|
f"Computation compiled for {len(ref_avals)} inputs "
|
|
f"but called with {len(arg_avals)}")
|
|
for ref_aval, arg_aval in zip(ref_avals, arg_avals):
|
|
if not core.typematch(ref_aval, arg_aval):
|
|
ref_avals_fmt = ', '.join(str(a) for a in ref_avals)
|
|
arg_avals_fmt = ', '.join(str(a) for a in arg_avals)
|
|
raise TypeError(
|
|
f"Computation compiled for input types:\n {ref_avals_fmt}\n"
|
|
f"called with:\n {arg_avals_fmt}")
|
|
|
|
|
|
def device_put(x, device: Optional[Device] = None) -> Tuple[Any]:
|
|
x = xla.canonicalize_dtype(x)
|
|
try:
|
|
return device_put_handlers[type(x)](x, device)
|
|
except KeyError as err:
|
|
raise TypeError(f"No device_put handler for type: {type(x)}") from err
|
|
|
|
# TODO(phawkins): update users.
|
|
xla.device_put = device_put
|
|
|
|
def _device_put_array(x, device: Optional[Device]):
|
|
backend = xb.get_device_backend(device)
|
|
if x.dtype == dtypes.float0:
|
|
x = np.zeros(x.shape, dtype=np.dtype(bool))
|
|
return (backend.buffer_from_pyval(x, device),)
|
|
|
|
def _device_put_scalar(x, device):
|
|
return _device_put_array(dtypes.coerce_to_array(x), device)
|
|
|
|
def _device_put_token(_, device):
|
|
backend = xb.get_device_backend(device)
|
|
return (backend.buffer_from_pyval(np.zeros((), dtype=np.dtype(np.bool_)),
|
|
device),)
|
|
|
|
_scalar_types = dtypes.python_scalar_dtypes.keys()
|
|
|
|
device_put_handlers: Dict[Any, Callable[[Any, Optional[Device]], Tuple[Any]]] = {}
|
|
device_put_handlers.update((t, _device_put_array) for t in array_types)
|
|
device_put_handlers.update((t, _device_put_scalar) for t in _scalar_types)
|
|
device_put_handlers[core.Token] = _device_put_token
|
|
device_put_handlers[core.BInt] = lambda x, d: _device_put_scalar(x.val, d)
|
|
|
|
|
|
def _device_put_device_array(x: Union[device_array.DeviceArrayProtocol, device_array._DeviceArray], device: Optional[Device]):
|
|
x = _copy_device_array_to_device(x, device)
|
|
return (x.device_buffer,)
|
|
for t in device_array.device_array_types:
|
|
device_put_handlers[t] = _device_put_device_array
|
|
device_put_handlers[core.PaddedArray] = lambda x, d: device_put(x._data, d)
|
|
|
|
def _copy_device_array_to_device(
|
|
x: Union[device_array.DeviceArrayProtocol, device_array._DeviceArray],
|
|
device: Optional[xc.Device]
|
|
) -> Union[device_array.DeviceArrayProtocol, device_array._DeviceArray]:
|
|
if device is None:
|
|
# no copying to be done because there's no target specified
|
|
return x
|
|
elif xb.get_device_backend(device).platform == x.device_buffer.platform():
|
|
# source and target platforms are the same
|
|
if x.device_buffer.device() == device:
|
|
# no copying to be done because source equals target
|
|
if x._device == device:
|
|
return x
|
|
else:
|
|
moved_buf = x.device_buffer # We need to change stickyness
|
|
else:
|
|
# move the buffer with a device-to-device copy
|
|
moved_buf = x.device_buffer.copy_to_device(device)
|
|
else:
|
|
# buffers from different XLA backends are passed through the host.
|
|
backend = xb.get_device_backend(device)
|
|
moved_buf = backend.buffer_from_pyval(x.device_buffer.to_py(), device)
|
|
return device_array.make_device_array(x.aval, device, moved_buf)
|
|
|
|
|
|
def _device_put_impl(x, device: Optional[Device] = None):
|
|
if device_array.type_is_device_array(x):
|
|
return _copy_device_array_to_device(x, device)
|
|
|
|
try:
|
|
a = xla.abstractify(x)
|
|
except TypeError as err:
|
|
raise TypeError(
|
|
f"Argument '{x}' of type {type(x)} is not a valid JAX type") from err
|
|
return aval_to_result_handler(device, a)(None, *device_put(x, device))
|
|
|
|
|
|
device_put_p = core.Primitive('device_put')
|
|
device_put_p.def_impl(_device_put_impl)
|
|
device_put_p.def_abstract_eval(lambda x, device=None: x)
|
|
ad.deflinear2(device_put_p, lambda cotangent, _, **kwargs: [cotangent])
|
|
batching.defvectorized(device_put_p)
|
|
|
|
def _device_put_lowering(ctx, x, *, device):
|
|
return [x]
|
|
|
|
|
|
mlir.register_lowering(device_put_p, _device_put_lowering)
|