1
0
mirror of https://github.com/ROCm/jax.git synced 2025-04-27 04:46:06 +00:00
Matthew Johnson 7c2f842353 shard_map and other fixes to direct-linearize
Co-authored-by: Dougal Maclaurin <dougalm@google.com>
2025-03-07 21:02:40 +00:00

2602 lines
113 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections import namedtuple
from collections.abc import Callable, Sequence, Hashable
from contextlib import contextmanager
from functools import partial
import itertools as it
import operator as op
from typing import Any, NamedTuple, Union
from weakref import ref
import numpy as np
from jax._src import ad_util
from jax._src import api_util
from jax._src import config
from jax._src import core
from jax._src import dtypes
from jax._src import effects
from jax._src import linear_util as lu
from jax._src import profiler
from jax._src import source_info_util
from jax._src import compute_on
from jax._src import xla_metadata as xla_metadata_lib
from jax._src.core import (Trace, Tracer, TraceTag, Jaxpr, Literal, get_aval,
AbstractValue, ClosedJaxpr, new_jaxpr_eqn,
Var, DropVar, Atom,
JaxprEqn, Primitive, ShapedArray, DShapedArray,
mapped_aval, unmapped_aval, DBIdx, InDBIdx, OutDBIdx,
InputType, OutputType, get_referent, JaxprEqnContext)
from jax._src.state.types import AbstractRef
from jax._src.tree_util import (PyTreeDef, treedef_tuple,
tree_flatten, tree_structure)
from jax._src.util import (unzip2, safe_zip, safe_map, toposort, split_list,
merge_lists, partition_list, OrderedSet,
as_hashable_function, weakref_lru_cache, subs_list,
HashableFunction)
map, unsafe_map = safe_map, map
zip, unsafe_zip = safe_zip, zip
def identity(x): return x
TracerId = int
AvalId = int
ConstId = int
def _update_annotation_known(
f: lu.WrappedFun,
orig_type: InputType | None,
in_knowns: list[bool]
) -> lu.WrappedFun:
if orig_type is None: return f
# orig_type might contain DBIdx, but we're tossing out some args so we have to
# re-index. moreover some of the implicit args may not be needed anymore.
# so we basically just re-infer the lambda input type
if (all(e for _, e in orig_type) and
not any(type(d) is DBIdx for a, _ in orig_type for d in a.shape
if type(a) is DShapedArray)):
new_type = [ty for ty, known in zip(orig_type, in_knowns) if known]
return lu.annotate(f, tuple(new_type))
# Replace DBIdx with names, prune down to explicit only.
class Name:
def __init__(self, a): self.a = a
names = [Name(a) for a, _ in orig_type]
avals = [a.update(shape=tuple(names[d.val] if type(d) is DBIdx else d
for d in a.shape))
if type(a) is DShapedArray else a for a, e in orig_type if e]
avals = [a for a, known in zip(avals, in_knowns) if known]
# Figure out the implicit part: names which aren't explicit and known.
expl_names = [o for o, (_, e) in zip(names, orig_type) if e]
expl_names = [o for o, k in zip(expl_names, in_knowns) if k]
expl_names_ = set(expl_names)
impl_names = {d for a in avals if type(a) is DShapedArray for d in a.shape
if type(d) is Name and d not in expl_names_}
impl_part = [(n.a, False) for n in impl_names] # type: ignore
# Figure out the explicit part: known explicit avals, replacing names w/ dbidx
name_map = {n: DBIdx(i) for i, n in enumerate((*impl_names, *expl_names))}
expl_part = [(a.update(shape=tuple(name_map.get(d, d) for d in a.shape))
if type(a) is DShapedArray else a, True) for a in avals]
return lu.annotate(f, (*impl_part, *expl_part))
class PartialVal(tuple):
"""Partial value: either a known value or an unknown (abstract) value.
Represented as a pair `(aval_opt, const)` of one of two kinds:
* `(None, <Constant>)` indicates a known value, where the constant is either a
Tracer or satisfies `core.valid_jaxtype(const)`;
* `(<AbstractValue>, None)` indicates an unknown value characterized by an
abstract value.
"""
def __new__(cls, xs: tuple[AbstractValue | None, core.Value]):
pv, const = xs
if config.enable_checks.value:
# type checks
assert isinstance(pv, (AbstractValue, type(None))), xs
assert (const is None or isinstance(const, core.Tracer) or
core.valid_jaxtype(const)), const
# invariant checks
assert (pv is None) ^ (const is None)
return tuple.__new__(cls, xs)
@classmethod
def known(cls, const: core.Value) -> PartialVal:
return PartialVal((None, const))
@classmethod
def unknown(cls, aval: AbstractValue) -> PartialVal:
return PartialVal((aval, None))
def is_known(self) -> bool:
return self[0] is None
def get_known(self) -> core.Value | None:
"""Get the known value, if known, else None."""
return self[1] if self[0] is None else None
def get_aval(self) -> AbstractValue:
"""Get AbstractValue directly (if unknown) or from the constant (known)."""
known = self.get_known()
if known is not None:
return get_aval(known)
else:
return self[0]
class JaxprTrace(Trace['JaxprTracer']):
def __init__(self, parent_trace:Trace, name_stack: source_info_util.NameStack, tag:TraceTag):
self.name_stack = name_stack
self.tag = tag
self.parent_trace = parent_trace
def to_jaxpr_tracer(self, x):
if isinstance(x, JaxprTracer) and x._trace.tag is self.tag:
if x._trace is self:
return x
else:
return JaxprTracer(self, x.pval, FreeVar(x))
else:
return self.new_const(x)
def new_const(self, val) -> JaxprTracer:
return JaxprTracer(self, PartialVal.known(val), None)
def new_instantiated_literal(self, val) -> JaxprTracer:
aval = get_aval(val)
return JaxprTracer(self, PartialVal.unknown(aval), Literal(val, aval))
def new_instantiated_const(self, val) -> JaxprTracer:
aval = get_aval(val)
return JaxprTracer(self, PartialVal.unknown(aval), ConstVar(val))
def new_arg(self, pval: PartialVal) -> JaxprTracer:
const = pval.get_known()
# XXX: Think twice before changing this constant argument pruning!
# This has really important consequences for partial_eval_jaxpr.
# Most importantly, this guarantees that the unknown jaxpr never uses
# known inputs (if it needs them, then they get passed through residuals).
if const is None:
aval = pval.get_aval()
if type(aval) is DShapedArray:
# TODO(dougalm): Fix the type error and remove the pytype pragmas.
# pytype: disable=attribute-error
shape = [self.new_instantiated_const(d)
if isinstance(d, Tracer) and d._trace.level < self.level else d
for d in aval.shape]
# pytype: enable=attribute-error
aval = aval.update(shape=tuple(shape))
return JaxprTracer(self, PartialVal.unknown(aval), LambdaBinding())
else:
return self.new_const(const)
def instantiate_const(self, tracer: JaxprTracer) -> JaxprTracer:
const = tracer.pval.get_known()
if const is None:
return tracer
else:
if type(const) in core.literalable_types and np.shape(const) == ():
return self.new_instantiated_literal(const)
else:
return self.new_instantiated_const(const)
def instantiate_const_abstracted(self, tracer) -> JaxprTracer:
const = tracer.pval.get_known()
if const is None:
return tracer
else:
aval = get_aval(const).update_weak_type(np.isscalar(const))
return JaxprTracer(self, PartialVal.unknown(aval), ConstVar(const))
def process_primitive(self, primitive, tracers, params):
with core.set_current_trace(self.parent_trace):
if primitive in custom_partial_eval_rules:
tracers = map(self.to_jaxpr_tracer, tracers)
return custom_partial_eval_rules[primitive](self, *tracers, **params)
else:
return self.default_process_primitive(primitive, tracers, params)
def default_process_primitive(self, primitive, tracers, params):
# By default, if all the input tracers are known, then bind the primitive
# and consider all outputs known. Otherwise, stage the application into the
# jaxpr and consider all outputs unknown.
tracers = map(self.to_jaxpr_tracer, tracers)
consts = [t.pval.get_known() for t in tracers]
if all(c is not None for c in consts):
return primitive.bind_with_trace(self.parent_trace, consts, params)
tracers = map(self.instantiate_const, tracers)
avals = [t.aval for t in tracers]
out_aval, effects = primitive.abstract_eval(*avals, **params)
name_stack = self._current_truncated_name_stack()
source = source_info_util.current().replace(name_stack=name_stack)
if primitive.multiple_results:
out_tracers = [JaxprTracer(self, PartialVal.unknown(aval), None)
for aval in out_aval]
eqn = new_eqn_recipe(tracers, out_tracers, primitive, params, effects,
source)
for t in out_tracers: t.recipe = eqn
return out_tracers
else:
out_tracer = JaxprTracer(self, PartialVal.unknown(out_aval), None)
out_tracer.recipe = new_eqn_recipe(tracers, [out_tracer], primitive,
params, effects, source)
return out_tracer
def process_call(self, primitive, f: lu.WrappedFun, tracers, params):
tracers = map(self.to_jaxpr_tracer, tracers)
rule = call_partial_eval_rules.get(primitive)
if rule:
return rule(self, primitive, f, tracers, params)
update_params = call_param_updaters.get(primitive) or (lambda p, _, __: p)
in_knowns, in_avals, in_consts = partition_pvals([t.pval for t in tracers])
# TODO(mattjj): check in_avals are consistent with f.in_type
# We want to partially evaluate this call into two calls: one evaluated now
# taking known values (in_consts) as inputs and producing known values
# (out_consts) as outputs, and the other staged out as an eqn into the jaxpr
# being built. The latter takes as input residuals (res) produced as outputs
# of the first call, shared closed-over values (env), and explicit arguments
# which were unknown to the first call (corresponding to in_avals).
# Wrap f to perform the partial evaluation and plumb out aux data.
f_ = trace_to_subjaxpr_nounits_fwd(f, self.tag, f.debug_info, False)
f_, aux = partial_eval_wrapper_nounits(f_, tuple(in_knowns), tuple(in_avals))
# Adjust parameters (e.g. donated_invars) for the call to be evaluated now.
const_params = update_params(params, in_knowns, 0)
# Run the call, getting known out vals and aux data used for staged-out call
fun_and_args = (_update_annotation_known(f_, f.in_type, in_knowns),) + tuple(in_consts)
out = primitive.bind_with_trace(self.parent_trace, fun_and_args, const_params)
fwds, out_knowns, out_type, jaxpr, env = aux()
# Split apart known outputs from the original call and non-fwded residuals.
out_consts, non_fwd_res = split_list(out, [sum(out_knowns)])
# Form the complete list of residuals by forwarding some inputs.
if config.dynamic_shapes.value:
# With dynamic shapes, we may need to forward implicit arguments.
assert f.in_type is not None, "f must be annotated with lu.annotate()"
in_consts_, in_knowns_ = iter(in_consts), iter(in_knowns)
in_consts_full = [None] * len(f.in_type)
for idx, (aval, explicit) in enumerate(f.in_type):
if explicit and next(in_knowns_):
c = in_consts_full[idx] = next(in_consts_)
if aval.shape:
for d1, d2 in zip(aval.shape, c.shape):
if type(d1) is DBIdx:
in_consts_full[d1.val] = d2
else:
in_consts_full = in_consts
res = subs_list(fwds, in_consts_full, non_fwd_res)
# Create the input tracers for the staged-out (unknown-value) call.
res_tracers = map(self.instantiate_const, map(self.new_const, res))
env_tracers = map(self.to_jaxpr_tracer, env)
unknown_arg_tracers = [t for t in tracers if not t.is_known()]
# Adjust parameters (e.g. donated_invars) for the staged-out call's args.
num_new_args = len(res_tracers) + len(env_tracers)
staged_params = dict(params, call_jaxpr=convert_constvars_jaxpr(jaxpr))
staged_params = update_params(staged_params, map(op.not_, in_knowns),
num_new_args)
# The outputs of the staged-out call are Tracers with the new eqn as recipe.
if config.dynamic_shapes.value:
# With dynamic shapes, we may need to substitute Tracers into avals.
out_tracers = []
for aval, _ in out_type:
if type(aval) is DShapedArray:
shape = [[*res_tracers, *env_tracers, *unknown_arg_tracers][d.val]
if type(d) is InDBIdx else d for d in aval.shape]
aval = aval.update(shape=tuple(shape))
out_tracers.append(JaxprTracer(self, PartialVal.unknown(aval), None))
else:
out_tracers = [JaxprTracer(self, PartialVal.unknown(a), None)
for a in out_type]
name_stack = self._current_truncated_name_stack()
source = source_info_util.current().replace(name_stack=name_stack)
eqn = new_eqn_recipe((*res_tracers, *env_tracers, *unknown_arg_tracers),
out_tracers, primitive, staged_params, jaxpr.effects,
source)
for t in out_tracers: t.recipe = eqn
return merge_lists(out_knowns, out_tracers, out_consts)
def process_map(self, primitive, f: lu.WrappedFun, tracers, params):
tracers = map(self.to_jaxpr_tracer, tracers)
update_params = call_param_updaters.get(primitive) or (lambda p, _, __: p)
in_knowns, in_avals, in_consts = partition_pvals([t.pval for t in tracers])
# This method is like process_call above, except:
# 1. we delete an axis from mapped-over input avals' shapes, and
# analogously add an axis to mapped-over output avals' shapes;
# 2. we update the in_axes and out_axes/out_axes_thunk parameters to
# reflect the inputs and outputs pruned from the unknown/known sides.
# Map (delete an axis from) unknown inputs' avals as dictated by in_axes.
unk_in_axes, const_in_axes = partition_list(in_knowns, params['in_axes'])
in_avals_mapped = [mapped_aval(params['axis_size'], ax, aval)
for ax, aval in zip(unk_in_axes, in_avals)]
# Wrap f to perform partial evaluation and plumb out aux data.
f = trace_to_subjaxpr_nounits2(f, self.tag, f.debug_info, False)
f, aux = partial_eval_wrapper_nounits(f, tuple(in_knowns),
tuple(in_avals_mapped))
# Adjust params for knowns (e.g. donated_invars, in_axes, out_axes_thunk)
const_params = update_params(params, in_knowns, 0) # handles donated_invars
out_axes_thunk = params['out_axes_thunk']
@as_hashable_function(closure=out_axes_thunk)
def const_out_axes_thunk():
out_knowns, _, jaxpr, _ = aux()
_, out_axes = partition_list(out_knowns, out_axes_thunk())
return tuple(out_axes) + (0,) * len(jaxpr.constvars) # res mapped axis 0
const_params = dict(const_params, in_axes=tuple(const_in_axes),
out_axes_thunk=const_out_axes_thunk)
# Run the map, getting known out vals and aux data used for staged-out map.
out = primitive.bind_with_trace(self.parent_trace, (f, *in_consts), const_params)
out_knowns, out_avals_mapped, jaxpr, env = aux()
# Split apart known outputs from the original call and residuals.
out_consts, res = split_list(out, [len(out) - len(jaxpr.constvars)])
# We can only check_jaxpr with the dynamic axis environment extended:
with core.extend_axis_env_nd([(params['axis_name'], params['axis_size'])]):
call_jaxpr = convert_constvars_jaxpr(jaxpr)
# Compute staged and const out_axes, taking into account residuals.
out_axes = params['out_axes_thunk']()
staged_out_axes, _ = partition_list(out_knowns, out_axes)
staged_in_axes = (0,) * len(res) + (None,) * len(env) + (*unk_in_axes,)
# Create the input tracers for the staged-out (unknown-value) call.
const_tracers = map(self.new_instantiated_const, res)
env_tracers = map(self.to_jaxpr_tracer, env)
unknown_arg_tracers = [t for t in tracers if not t.is_known()]
# Adjust params for staged-out call on unknown values.
num_new_args = len(const_tracers) + len(env_tracers)
staged_params = update_params(params, map(op.not_, in_knowns), num_new_args)
staged_params = dict(staged_params, in_axes=staged_in_axes,
out_axes=tuple(staged_out_axes), call_jaxpr=call_jaxpr)
del staged_params['out_axes_thunk']
# The outputs of the staged-out call are Tracers with the new eqn as recipe.
out_avals = [unmapped_aval(params['axis_size'], ax, a)
for ax, a in zip(staged_out_axes, out_avals_mapped)]
out_tracers = [JaxprTracer(self, PartialVal.unknown(a), None)
for a in out_avals]
effs = core.filter_named_axis_effects(jaxpr.effects, {params['axis_name']})
src_info = source_info_util.current()
eqn = new_eqn_recipe((*const_tracers, *env_tracers, *unknown_arg_tracers),
out_tracers, primitive, staged_params, effs, src_info)
for t in out_tracers: t.recipe = eqn
return merge_lists(out_knowns, out_tracers, out_consts)
def _current_truncated_name_stack(self):
return source_info_util.current_name_stack()[len(self.name_stack):]
def process_custom_jvp_call(self, prim, fun, jvp, tracers, symbolic_zeros):
tracers = map(self.to_jaxpr_tracer, tracers)
if all(t.is_known() for t in tracers):
with core.set_current_trace(self.parent_trace):
vals = [t.pval[1] for t in tracers]
return prim.bind(fun, jvp, *vals, symbolic_zeros=symbolic_zeros)
# We assume non-trivial partial evaluation is only performed to build linear
# functions, and hence we don't need to keep the custom JVP rule around
# anymore.
del jvp, symbolic_zeros
with core.set_current_trace(self):
return fun.call_wrapped(*tracers)
def process_custom_transpose(self, prim, call, tracers, **params):
tracers = map(self.to_jaxpr_tracer, tracers)
res_ts, lin_ts = split_list(tracers, [params['res_tree'].num_leaves])
assert all(t.is_known() for t in res_ts)
lin_all_known = all(t.is_known() for t in lin_ts)
if lin_all_known:
res_cvals = [t.pval[1] for t in res_ts]
lin_cvals = [t.pval[1] for t in lin_ts]
return prim.bind(call, *res_cvals, *lin_cvals, **params)
else:
out_tracers = [JaxprTracer(self, PartialVal.unknown(aval), None)
for aval in params['out_types']]
in_tracers = map(self.instantiate_const, tracers)
new_params = dict(params, call=call)
eqn = new_eqn_recipe(in_tracers, out_tracers, prim, new_params,
core.no_effects, source_info_util.current())
for t in out_tracers: t.recipe = eqn
return out_tracers
def process_custom_vjp_call(self, prim, f, fwd, bwd, tracers, out_trees, symbolic_zeros):
tracers = map(self.to_jaxpr_tracer, tracers)
if all(t.is_known() for t in tracers):
vals = [t.pval[1] for t in tracers]
with core.set_current_trace(self.parent_trace):
return prim.bind(f, fwd, bwd, *vals, out_trees=out_trees, symbolic_zeros=symbolic_zeros)
else:
# TODO(mattjj): remove non-ad users of partial eval, then drop this case.
# We stage out the whole thing, i.e. no nontrivial partial evaluation.
tracers = map(self.instantiate_const_abstracted, tracers)
# Because we instantiate all tracers, in_knowns is all False.
in_knowns, in_avals, () = partition_pvals([t.pval for t in tracers])
f = trace_to_subjaxpr_nounits(f, self, True, f.debug_info)
f, aux = partial_eval_wrapper_nounits(f, (*in_knowns,), (*in_avals,))
with core.set_current_trace(self.parent_trace):
out_flat = prim.bind(f, fwd, bwd, out_trees=out_trees,
symbolic_zeros=symbolic_zeros)
out_knowns, out_avals, jaxpr, env = aux()
out_consts, res = split_list(out_flat, [len(out_flat)-len(jaxpr.constvars)])
res_tracers = map(self.new_instantiated_const, res)
env_tracers = map(self.to_jaxpr_tracer, env)
out_tracers = [JaxprTracer(self, PartialVal.unknown(a), None)
for a in out_avals]
closed_jaxpr = core.ClosedJaxpr(convert_constvars_jaxpr(jaxpr), ())
@_memoize
def fwd_jaxpr_thunk(*zeros):
fwd_ = _interleave_fun(fwd, zeros)
fwd_ = trace_to_subjaxpr_nounits(fwd_, self, True, fwd_.debug_info)
fwd_, aux = partial_eval_wrapper_nounits(fwd_, (*in_knowns,), (*in_avals,))
out_flat = fwd_.call_wrapped()
out_knowns, out_avals, jaxpr, env = aux()
_, res = split_list(out_flat, [len(out_flat)-len(jaxpr.constvars)])
converted_jaxpr = convert_envvars_to_constvars(jaxpr, len(env))
return converted_jaxpr, (*res, *env)
name_stack = self._current_truncated_name_stack()
source = source_info_util.current().replace(name_stack=name_stack)
eqn = new_eqn_recipe((*res_tracers, *env_tracers, *tracers),
out_tracers, prim.initial_style,
dict(fun_jaxpr=closed_jaxpr,
fwd_jaxpr_thunk=fwd_jaxpr_thunk,
num_consts=len(res) + len(env),
bwd=bwd, out_trees=out_trees,
symbolic_zeros=symbolic_zeros),
jaxpr.effects, source)
for t in out_tracers: t.recipe = eqn
return merge_lists(out_knowns, out_tracers, out_consts)
def partition_pvals(
pvals: list[PartialVal]
) -> tuple[list[bool], list[AbstractValue], list[Any]]:
knowns = [pval.is_known() for pval in pvals ]
avals = [pval.get_aval() for pval in pvals if not pval.is_known()]
consts = [pval.get_known() for pval in pvals if pval.is_known()]
return knowns, avals, consts
@lu.transformation_with_aux2
def partial_eval_wrapper_nounits(
f: Callable,
store: lu.Store,
in_knowns: Sequence[bool],
in_avals: Sequence[AbstractValue],
*in_consts: Any):
in_avals_, in_consts_ = iter(in_avals), iter(in_consts)
in_pvals = [PartialVal.known(next(in_consts_)) if known else
PartialVal.unknown(next(in_avals_)) for known in in_knowns]
sentinel = object()
assert next(in_avals_, sentinel) is next(in_consts_, sentinel) is sentinel
jaxpr, (*maybe_fwds, out_pvals, res, env) = f(in_pvals)
out_knowns, out_avals, out_consts = partition_pvals(out_pvals)
store.store((*maybe_fwds, out_knowns, out_avals, jaxpr, env))
return (*out_consts, *res)
custom_partial_eval_rules: dict[Primitive, Callable] = {}
call_partial_eval_rules: dict[Primitive, Callable] = {}
call_param_updaters: dict[Primitive, Callable] = {}
def _closed_call_param_updater(params, _, __):
jaxpr = params.get('call_jaxpr')
if jaxpr is None: return params
assert type(jaxpr) is core.Jaxpr
return dict(params, call_jaxpr=core.ClosedJaxpr(jaxpr, ()))
call_param_updaters[core.closed_call_p] = _closed_call_param_updater
def abstract_eval_fun(fun: Callable, *avals,
debug_info: core.DebugInfo, **params):
_, avals_out, _, () = trace_to_jaxpr_dynamic(
lu.wrap_init(fun, params, debug_info=debug_info), avals)
assert all(isinstance(aval, AbstractValue) for aval in avals_out)
return avals_out
JaxprTracerRecipe = Union[
'JaxprEqnRecipe', 'LambdaBinding', 'FreeVar', 'ConstVar', Literal,
]
class JaxprTracer(Tracer):
__slots__ = ['pval', 'recipe']
def __init__(self, trace: JaxprTrace, pval: PartialVal,
recipe: JaxprTracerRecipe | None):
assert isinstance(pval, PartialVal)
pv, const = pval
self._trace = trace
self.pval = pval
self.recipe = recipe
def __repr__(self):
return f'Traced<{self.aval}:{self._trace}>'
@property
def aval(self) -> AbstractValue:
return self.pval.get_aval()
@property
def parents(self) -> Sequence[JaxprTracer]:
if isinstance(self.recipe, JaxprEqnRecipe):
# TODO broadcast_in_dim can create a new tracer...
return self.recipe.in_tracers
elif isinstance(self.aval, DShapedArray):
return [d for d in self.aval.shape if isinstance(d, JaxprTracer)]
else:
return []
def full_lower(self):
known = self.pval.get_known()
if known is not None:
return core.full_lower(known)
else:
return self
def is_known(self):
return self.pval.is_known()
def get_referent(self):
if self.pval.is_known():
return get_referent(self.pval.get_known())
elif isinstance(self.recipe, (FreeVar, ConstVar, Literal)):
return get_referent(self.recipe.val) # pytype: disable=attribute-error
else:
return self
@profiler.annotate_function
def trace_to_jaxpr_nounits(
fun: lu.WrappedFun, pvals: Sequence[PartialVal],
instantiate: bool | Sequence[bool] = False,
) -> tuple[Jaxpr, list[PartialVal], list[core.Value]]:
current_name_stack = source_info_util.current_name_stack()
with core.take_current_trace() as parent_trace:
trace = JaxprTrace(parent_trace, current_name_stack, TraceTag())
with core.ensure_no_leaks(trace):
fun = trace_to_subjaxpr_nounits(fun, trace, instantiate, fun.debug_info)
with core.set_current_trace(trace):
jaxpr, (out_pvals, consts, env) = fun.call_wrapped(pvals)
assert not env
del trace, fun
return jaxpr, out_pvals, consts
# TODO(mattjj): superfluous wrapper...?
@lu.transformation2
def trace_to_subjaxpr_nounits(
f: Callable,
trace: JaxprTrace,
instantiate: Sequence[bool] | bool,
debug_info: core.DebugInfo,
in_pvals: Sequence[PartialVal]):
assert all(isinstance(pv, PartialVal) for pv in in_pvals), in_pvals
out_tracers, jaxpr, out_consts, env = _trace_to_subjaxpr_nounits(
f, trace, instantiate, in_pvals, debug_info)
out_pvals = [t.pval for t in out_tracers]
del out_tracers
return jaxpr, (out_pvals, out_consts, env)
@lu.transformation2
def trace_to_subjaxpr_nounits2(
f: Callable,
tag: TraceTag,
debug_info: core.DebugInfo,
instantiate: bool | Sequence[bool],
in_pvals: Sequence[PartialVal]):
assert isinstance(tag, TraceTag)
assert all(isinstance(pv, PartialVal) for pv in in_pvals), in_pvals
current_name_stack = source_info_util.current_name_stack()
with core.take_current_trace() as parent_trace:
trace = JaxprTrace(parent_trace, current_name_stack, tag)
out_tracers, jaxpr, out_consts, env = _trace_to_subjaxpr_nounits(
f, trace, instantiate, in_pvals, debug_info)
out_pvals = [t.pval for t in out_tracers]
del out_tracers
return jaxpr, (out_pvals, out_consts, env)
def _trace_to_subjaxpr_nounits(f: Callable, trace: JaxprTrace,
instantiate: Sequence[bool] | bool,
in_pvals: Sequence[PartialVal],
debug_info: core.DebugInfo):
in_knowns = [pval.is_known() for pval in in_pvals]
in_consts = [pval.get_known() for pval in in_pvals if pval.is_known()]
in_tracers = [trace.new_arg(pval) for pval in in_pvals if not pval.is_known()]
in_args = merge_lists(in_knowns, in_tracers, in_consts)
with core.set_current_trace(trace):
ans = f(*in_args)
assert isinstance(ans, (list, tuple)), (
f"Got unexpected return type when tracing function to jaxpr: {ans}")
assert all(isinstance(x, core.Tracer) or core.valid_jaxtype(x) for x in ans), (
f"Got unexpected return type when tracing function to jaxpr: {ans}")
if isinstance(instantiate, bool):
instantiate = [instantiate] * len(ans)
out_tracers = map(trace.to_jaxpr_tracer, ans)
out_tracers = [trace.instantiate_const(t) if inst else t
for inst, t in zip(instantiate, out_tracers)]
out_tracers_ = [t for t in out_tracers if not t.is_known()]
jaxpr, out_consts, env = tracers_to_jaxpr(in_tracers, out_tracers_, debug_info)
return out_tracers, jaxpr, out_consts, env
# The below variant implements an optimization where residuals which are also
# inputs are indicated in auxiliary data rather than passed as outputs.
# TODO(mattjj): update all callers to use this version, delete other version.
@lu.transformation2
def trace_to_subjaxpr_nounits_fwd(
f: Callable,
tag: TraceTag,
debug_info: core.DebugInfo,
instantiate: bool | Sequence[bool],
in_pvals: Sequence[PartialVal]):
assert all(isinstance(pv, PartialVal) for pv in in_pvals), in_pvals
current_name_stack = source_info_util.current_name_stack()
with core.take_current_trace() as parent_trace:
trace = JaxprTrace(parent_trace, current_name_stack, tag)
with core.set_current_trace(trace):
out_tracers, jaxpr, out_consts, env = _trace_to_subjaxpr_nounits(
f, trace, instantiate, in_pvals, debug_info)
out_pvals = [t.pval for t in out_tracers]
# Which out_consts (aka residuals) are just forwarded inputs? Check obj id.
in_consts = [pval.get_known() for pval in in_pvals if pval.is_known()]
id_map = {id(c): i for i, c in enumerate(in_consts)}
fwds: list[int | None] = [id_map.get(id(c)) for c in out_consts]
pruned_consts = [c for c, fwd in zip(out_consts, fwds) if fwd is None]
del out_tracers
return jaxpr, (fwds, out_pvals, pruned_consts, env)
# The below variant implements two optimizations:
# 1. residuals that are also primal inputs are indicated in aux data rather
# than passed as outputs;
# 2. residuals that are also primal outputs are indicated in aux data rather
# than passed as redundant outputs.
@lu.transformation2
def trace_to_subjaxpr_nounits_fwd2(
f: Callable,
tag: TraceTag,
debug_info: core.DebugInfo,
instantiate: bool | Sequence[bool],
in_pvals: Sequence[PartialVal]):
assert all(isinstance(pv, PartialVal) for pv in in_pvals), in_pvals
current_name_stack = source_info_util.current_name_stack()
with core.take_current_trace() as parent_trace:
trace = JaxprTrace(parent_trace, current_name_stack, tag)
out_tracers, jaxpr, consts, env = _trace_to_subjaxpr_nounits(
f, trace, instantiate, in_pvals, debug_info)
out_pvals = [t.pval for t in out_tracers]
# Which consts (aka residuals) are just forwarded inputs? Check obj id.
in_consts = [pval.get_known() for pval in in_pvals if pval.is_known()]
id_map = {id(c): i for i, c in enumerate(in_consts)}
input_fwds: list[int | None] = [id_map.get(id(c)) for c in consts]
# Which consts (aka residuals) are already primal outputs? Check obj id.
out_consts = [pval.get_known() for pval in out_pvals if pval.is_known()]
id_map = {id(c): i for i, c in enumerate(out_consts)}
output_fwds: list[int | None] = [id_map.get(id(c)) for c in consts]
pruned_consts = [c for c, f1, f2 in zip(consts, input_fwds, output_fwds)
if f1 is None and f2 is None]
del out_tracers
return jaxpr, (input_fwds, output_fwds, out_pvals, pruned_consts, env)
FreeVar = namedtuple('FreeVar', ['val'])
ConstVar = namedtuple('ConstVar', ['val'])
LambdaBinding = namedtuple('LambdaBinding', [])
class JaxprEqnRecipe(NamedTuple):
eqn_id: Any
in_tracers: Sequence[JaxprTracer]
out_tracer_refs: Sequence[ref[JaxprTracer]]
out_avals: Sequence[core.AbstractValue]
primitive: Primitive
params: dict[str, Any]
effects: core.Effects
source_info: source_info_util.SourceInfo
ctx: JaxprEqnContext
def new_eqn_recipe(in_tracers: Sequence[JaxprTracer],
out_tracers: Sequence[JaxprTracer],
primitive: Primitive,
params: dict[str, Any],
effects: core.Effects,
source_info: source_info_util.SourceInfo,
ctx: JaxprEqnContext | None = None) -> JaxprEqnRecipe:
# TODO(necula): move these checks to core.check_jaxpr, and call in more places
if primitive.call_primitive or primitive.map_primitive:
assert "call_jaxpr" in params
assert ("donated_invars" not in params or
len(params["donated_invars"]) == len(params["call_jaxpr"].invars))
if primitive.map_primitive:
assert ("in_axes" in params and
len(params["in_axes"]) == len(params["call_jaxpr"].invars))
assert ("donated_invars" in params and
len(params["donated_invars"]) == len(params["call_jaxpr"].invars))
out_avals = [t.aval for t in out_tracers]
ctx = ctx or JaxprEqnContext(
compute_on.current_compute_type(),
config.threefry_partitionable.value,
xla_metadata_lib.current_xla_metadata(),
)
return JaxprEqnRecipe(object(), tuple(in_tracers), map(ref, out_tracers),
out_avals, primitive, params, effects, source_info,
ctx)
def recipe_to_eqn(getvar: Callable[[JaxprTracer], Atom],
recipe: JaxprEqnRecipe) -> core.JaxprEqn:
(_, in_tracers, out_tracer_refs, out_avals, prim, params, eff, src,
ctx) = recipe
invars = [getvar(t) for t in in_tracers]
out_tracers = [t_ref() for t_ref in out_tracer_refs]
outvars = [DropVar(a) if t is None else getvar(t)
for a, t in zip(out_avals, out_tracers)]
return new_jaxpr_eqn(invars, outvars, prim, params, eff, src, ctx)
def tracers_to_jaxpr(
in_tracers: Sequence[JaxprTracer],
out_tracers: Sequence[JaxprTracer],
debug_info: core.DebugInfo,
) -> tuple[Jaxpr, tuple[Any, ...], tuple[Any, ...]]:
"""Constructs Jaxpr given tracers for inputs and outputs.
Params:
in_tracers: the tracers that were created for the function inputs
out_tracers: the tracers that were output by the function.
debug_info: the debug info for the function.
Returns: a triple of a `Jaxpr`, a list of constant values corresponding to
the `constvars` in the returned Jaxps, and a list of environment values.
The vars for the environment values have been prepended to the Jaxpr's
`invars`.
"""
gensym = core.gensym()
t_to_var: dict[TracerId, Var] = {}
consts: dict[Var, Any] = {}
env: dict[Var, JaxprTracer] = {}
constid_to_var: dict[ConstId, Var] = {} # for deduplication
def get_atom(t: JaxprTracer) -> Atom:
return t.recipe if type(t.recipe) is Literal else t_to_var[id(t)]
def newvar(t: JaxprTracer | None) -> Var:
assert t is not None
var = gensym(type_substitute(t.aval))
var_ = t_to_var.setdefault(id(t), var)
assert var is var_
return var
def type_substitute(aval: AbstractValue) -> AbstractValue:
if isinstance(aval, DShapedArray):
# Replace any Tracers in aval.shape with Vars or Literal values
shape = [get_atom(d) if type(d) is JaxprTracer else d for d in aval.shape]
shape = [d.val if type(d) is Literal else d for d in shape]
aval = aval.update(shape=tuple(shape))
return aval
processed_eqn_ids = set()
eqns: list[core.JaxprEqn] = []
for t in toposort([*in_tracers, *out_tracers]):
r = t.recipe
if isinstance(r, JaxprEqnRecipe):
# TODO broadcast_in_dim can create a new tracer, not present in parents
if r.eqn_id not in processed_eqn_ids:
in_atoms = map(get_atom, r.in_tracers)
outvars = [DropVar(type_substitute(a)) if rf() is None else newvar(rf())
for a, rf in zip(r.out_avals, r.out_tracer_refs)]
eqns.append(new_jaxpr_eqn(in_atoms, outvars, r.primitive, r.params,
r.effects, r.source_info, r.ctx))
processed_eqn_ids.add(r.eqn_id)
elif isinstance(r, LambdaBinding):
if not any(t is in_tracer for in_tracer in in_tracers):
raise core.escaped_tracer_error(t, f"Tracer not in input tracers: {t}")
newvar(t)
elif isinstance(r, ConstVar):
var = constid_to_var.get(id(r.val))
if var is None:
var = constid_to_var[id(r.val)] = newvar(t)
consts[var] = r.val
t_to_var[id(t)] = var
elif isinstance(r, FreeVar):
env[newvar(t)] = r.val
elif isinstance(r, Literal):
pass
elif r is None:
assert False
else:
raise TypeError(r)
env_vars, env_vals = unzip2(env.items())
invars = [*env_vars, *map(get_atom, in_tracers)]
const_vars, const_vals = unzip2(consts.items())
outvars = map(get_atom, out_tracers) # type: ignore[arg-type]
jaxpr_effects = make_jaxpr_effects(const_vars, invars, outvars, eqns)
jaxpr = Jaxpr(const_vars, invars, # type: ignore[arg-type]
outvars, eqns, jaxpr_effects,
debug_info)
config.enable_checks.value and core.check_jaxpr(jaxpr)
# del getvar # needed to avoid cyclic-reference closure, apparently!
return jaxpr, const_vals, env_vals
@weakref_lru_cache
def move_envvars(jaxpr: Jaxpr, which: tuple[bool, ...]) -> Jaxpr:
constvars, envvars = partition_list(which, jaxpr.constvars)
return jaxpr.replace(constvars=constvars, invars=[*envvars, *jaxpr.invars])
@weakref_lru_cache
def convert_constvars_jaxpr(jaxpr: Jaxpr) -> Jaxpr:
"""Moves the constvars to the start of invars."""
config.enable_checks.value and core.check_jaxpr(jaxpr)
dbg = jaxpr.debug_info._replace(
arg_names=("",) * len(jaxpr.constvars) + jaxpr.debug_info.arg_names)
lifted_jaxpr = Jaxpr(constvars=(),
invars=jaxpr.constvars + jaxpr.invars,
outvars=jaxpr.outvars, eqns=jaxpr.eqns,
effects=jaxpr.effects, debug_info=dbg)
config.enable_checks.value and core.check_jaxpr(lifted_jaxpr)
return lifted_jaxpr
@weakref_lru_cache
def convert_invars_to_constvars(jaxpr: Jaxpr, n: int) -> Jaxpr:
"""Move n invars to constvars. Like an inverse of convert_constvars_jaxpr."""
if n == 0:
return jaxpr.replace() # 'return jaxpr' would create cache reference cycle
config.enable_checks.value and core.check_jaxpr(jaxpr)
constvars, invars = split_list(jaxpr.invars, [n])
dbg = jaxpr.debug_info._replace(
arg_names=jaxpr.debug_info.arg_names[n:])
lifted_jaxpr = jaxpr.replace(constvars=tuple(constvars), invars=invars,
debug_info=dbg)
config.enable_checks.value and core.check_jaxpr(lifted_jaxpr)
return lifted_jaxpr
def convert_envvars_to_constvars(jaxpr: Jaxpr, num_env_vars: int) -> Jaxpr:
if any(isinstance(eff, effects.JaxprInputEffect) for eff in jaxpr.effects):
raise NotImplementedError
config.enable_checks.value and core.check_jaxpr(jaxpr)
env_vars, invars = split_list(jaxpr.invars, [num_env_vars])
converted_jaxpr = Jaxpr(constvars=jaxpr.constvars + env_vars,
invars=invars, outvars=jaxpr.outvars, eqns=jaxpr.eqns,
effects=jaxpr.effects, debug_info=jaxpr.debug_info)
config.enable_checks.value and core.check_jaxpr(converted_jaxpr)
return converted_jaxpr
def partial_eval_jaxpr_nounits(
jaxpr: ClosedJaxpr, unknowns: Sequence[bool],
instantiate: bool | Sequence[bool],
) -> tuple[ClosedJaxpr, ClosedJaxpr, list[bool], list[AbstractValue]]:
"""Unzip a jaxpr in two by data dependence into 'known' and 'unknown' parts.
That is, given a jaxpr and a sequence of booleans indicating which jaxpr
inputs (i.e. invars) are considered unknown, produce two jaxprs, a list of
booleans representing which of the original jaxpr's outputs are unknown (i.e.
have a data dependence on an unknown input), and a list of abstract values
representing residuals (part of the first jaxpr's output and the second
jaxpr's input). The two jaxprs result from partitioning the original jaxpr's
first-order primitive applications based on whether all the inputs to the
application are known (in which case the application is represented in the
'known' jaxpr and its result is considered known) or whether any inputs to the
application are unknown (in which case the application is represented in the
'unknown' jaxpr and its result is considered unknown). Higher-order primitives
are recursively unzipped in two.
The `instantiate` argument can be used to ensure some outputs are lifted into
the 'unknown' jaxpr.
For example, give an input jaxpr:
{ lambda ; a:f32[] b:f32[]. let
c:f32[] = cos a
d:f32[] = sin a
e:f32[] = neg d
f:f32[] = mul e b
in (c, f) }
then applying this function with `unknowns=[False, True]` and
`instantiate=False` produces as an output triple:
# jaxpr_known
{ lambda ; a:f32[]. let
b:f32[] = cos a
c:f32[] = sin a
d:f32[] = neg c
in (b, d) }
# jaxpr_unknown
{ lambda ; a:f32[] b:f32[]. let c:f32[] = mul b a in (c,) }
# out_unknowns
[False, True]
Notice in particular that the first output (jaxpr_known) contains all the
primitive applications which do not have a data dependence on an unknown
input. Also notice the input and output types: the input type of the first
jaxpr produced represents the type of the known inputs of the original jaxpr,
and the output type of the second jaxpr produced represents the type of the
unknown outputs of the original jaxpr.
In the above example, the output of jaxpr_known named `d` is a _residual_
output, and corresponds to the input named `a` in jaxpr_unknown. In general,
jaxpr_known will produce extra outputs (at the end of its output list)
corresponding to intermediate values of the original jaxpr which must be
passed to jaxpr_unknown (as leading inputs).
"""
instantiate = tuple(instantiate) if isinstance(instantiate, list) else instantiate
return _partial_eval_jaxpr_nounits(jaxpr, tuple(unknowns), instantiate)
@weakref_lru_cache
def _partial_eval_jaxpr_nounits(jaxpr: ClosedJaxpr,
in_unknowns: Sequence[bool],
instantiate: bool | Sequence[bool]):
f = lu.wrap_init(core.jaxpr_as_fun(jaxpr),
debug_info=jaxpr.jaxpr.debug_info)
cell = []
def fun(*known_vals_in):
known_vals_in = iter(known_vals_in)
unknown_avals = (a for a, uk in zip(jaxpr.in_avals, in_unknowns) if uk)
in_pvals = [PartialVal.unknown(next(unknown_avals)) if uk
else PartialVal.known(next(known_vals_in)) for uk in in_unknowns]
assert next(known_vals_in, None) is next(unknown_avals, None) is None
jaxpr_unknown_, out_pvals, residuals = trace_to_jaxpr_nounits(
f, in_pvals, instantiate=instantiate)
jaxpr_unknown = convert_constvars_jaxpr(jaxpr_unknown_)
out_unknowns = [not pval.is_known() for pval in out_pvals]
res_avals = [core.get_aval(r) for r in residuals]
cell.append((out_unknowns, jaxpr_unknown, res_avals))
known_vals_out = [pval.get_known() for pval in out_pvals if pval.is_known()]
return [*known_vals_out, *residuals]
known_avals = [a for a, uk in zip(jaxpr.in_avals, in_unknowns) if not uk]
jaxpr_known, _, consts_known, () = trace_to_jaxpr_dynamic(
lu.wrap_init(fun, debug_info=f.debug_info),
known_avals)
(out_unknowns, jaxpr_unknown, res_avals), = cell # pytype: disable=bad-unpacking
# check jaxpr_known and jaxpr_unknown in isolation
# TODO(mattjj): enable weak type checking here
if config.enable_checks.value:
core.check_jaxpr(jaxpr_known)
core.check_jaxpr(jaxpr_unknown)
def check(first, second):
for f, s in zip(first, second):
if (not isinstance(f, core.ShapedArray) and
not isinstance(s, core.ShapedArray)):
assert f == s
elif f.sharding.mesh.empty or s.sharding.mesh.empty:
assert (f.shape, f.dtype) == (s.shape, s.dtype)
else:
assert f == s, (f, s)
# check jaxpr_known has input type corresponding to known inputs of jaxpr
assert ([v.aval for v in jaxpr_known.invars] ==
[a for a, uk in zip(jaxpr.in_avals, in_unknowns) if not uk])
# check jaxpr_known has out type corresponding to known outs of jaxpr plus res
# Change this to `assert ... == ...` and remove the check function.
# See https://github.com/jax-ml/jax/issues/26474
check([v.aval.strip_weak_type() for v in jaxpr_known.outvars],
[a.strip_weak_type() for a, uk in zip(jaxpr.out_avals, out_unknowns)
if not uk] + [a.strip_weak_type() for a in res_avals])
# check jaxpr_unknown has input type corresponding to res plus unknown inputs
assert ([v.aval.strip_weak_type() for v in jaxpr_unknown.invars] ==
[a.strip_weak_type() for a in res_avals] +
[a.strip_weak_type() for a, uk in zip(jaxpr.in_avals, in_unknowns)
if uk])
# check jaxpr_unknown has output type corresponding to unknown outputs
check([v.aval.strip_weak_type() for v in jaxpr_unknown.outvars],
[a.strip_weak_type() for a, uk in zip(jaxpr.out_avals, out_unknowns)
if uk])
closed_jaxpr_known = ClosedJaxpr(jaxpr_known, consts_known)
closed_jaxpr_unknown = ClosedJaxpr(jaxpr_unknown, ())
return closed_jaxpr_known, closed_jaxpr_unknown, out_unknowns, res_avals
def partial_eval_jaxpr_custom(
jaxpr: Jaxpr,
in_unknowns: Sequence[bool],
in_inst: bool | Sequence[bool],
ensure_out_unknowns: bool | Sequence[bool],
ensure_out_inst: bool | Sequence[bool],
saveable: Callable[..., RematCases_],
) -> tuple[Jaxpr, Jaxpr, list[bool], list[bool], int]:
*outs, num_res_ref = partial_eval_jaxpr_stateful(
jaxpr, in_unknowns, in_inst, ensure_out_unknowns, ensure_out_inst, saveable)
if num_res_ref:
raise ValueError("Cannot use `partial_eval_jaxpr_custom` with stateful jaxprs.")
return *outs, # type: ignore
def partial_eval_jaxpr_stateful(
jaxpr: Jaxpr,
in_unknowns: Sequence[bool],
in_inst: bool | Sequence[bool],
ensure_out_unknowns: bool | Sequence[bool],
ensure_out_inst: bool | Sequence[bool],
saveable: Callable[..., RematCases_] | None,
) -> tuple[Jaxpr, Jaxpr, list[bool], list[bool], int, int]:
if type(in_inst) is bool:
in_inst = (in_inst,) * len(jaxpr.invars)
if type(ensure_out_unknowns) is bool:
ensure_out_unknowns = (ensure_out_unknowns,) * len(jaxpr.outvars)
if type(ensure_out_inst) is bool:
ensure_out_inst = (ensure_out_inst,) * len(jaxpr.outvars)
if saveable is None:
saveable = everything_saveable
jaxpr_known, jaxpr_staged, out_unknowns, out_inst, num_res, num_res_ref = \
_partial_eval_jaxpr_custom_cached(
jaxpr, tuple(in_unknowns), tuple(in_inst), tuple(ensure_out_unknowns),
tuple(ensure_out_inst), saveable)
return jaxpr_known, jaxpr_staged, out_unknowns, out_inst, num_res, num_res_ref
everything_saveable = lambda *_, **__: True
@weakref_lru_cache
def _partial_eval_jaxpr_custom_cached(
jaxpr: Jaxpr,
in_unknowns: tuple[bool, ...],
in_inst: tuple[bool, ...],
ensure_out_unknowns: tuple[bool, ...],
ensure_out_inst: tuple[bool, ...],
saveable: Callable[..., RematCases_],
) -> tuple[Jaxpr, Jaxpr, list[bool], list[bool], int, int]:
env: dict[Var, tuple[bool, bool]] = {}
residuals: OrderedSet[Var] = OrderedSet()
residual_refs: OrderedSet[Var] = OrderedSet()
def read(x: Atom) -> tuple[bool, bool]:
if type(x) is Var:
return env[x]
return (False, True)
def write(unk: bool, inst: bool, v: Var) -> None:
assert (unk, inst) != (True, False)
env[v] = (unk, inst)
def ensure_instantiated(inst: bool, x: Atom) -> Atom:
if type(x) is Var and not inst:
residuals.add(x)
return x
def has_effects(effects) -> bool:
return bool({e for e in effects if not isinstance(e, core.NamedAxisEffect)})
newvar = core.gensym(suffix='_offload')
known_eqns, staged_eqns = [], []
map(write, in_unknowns, in_inst, jaxpr.invars)
map(partial(write, False, True), jaxpr.constvars)
for eqn in jaxpr.eqns:
unks_in, inst_in = unzip2(map(read, eqn.invars))
rule = partial_eval_jaxpr_custom_rules.get(eqn.primitive)
if rule:
eqn1, eqn2, unks_out, inst_out, res = rule(saveable, unks_in, inst_in, eqn)
eqn1 and known_eqns.append(eqn1); eqn2 and staged_eqns.append(eqn2) # type: ignore
for r in res:
if isinstance(r.aval, AbstractRef):
residual_refs.add(r)
else:
residuals.add(r)
map(write, unks_out, inst_out, eqn.outvars)
elif any(unks_in):
inputs = map(ensure_instantiated, inst_in, eqn.invars)
staged_eqns.append(eqn.replace(invars=inputs))
map(partial(write, True, True), eqn.outvars)
else:
known_eqns.append(eqn)
# If it's an effectful primitive, we always to run and avoid staging it.
policy = ensure_enum(saveable(
eqn.primitive, *[x.aval for x in eqn.invars], **eqn.params))
if has_effects(eqn.effects) or isinstance(policy, SaveableType):
map(partial(write, False, False), eqn.outvars)
elif isinstance(policy, Offloadable):
# TODO(slebedev): This is a legit error which requires a BUILD fix.
from jax._src.dispatch import device_put_p, TransferToMemoryKind, CopySemantics # pytype: disable=import-error
resvars = [newvar(v.aval) for v in eqn.outvars]
outvars_copy = list[Atom](eqn.outvars)
offload_eqn = core.JaxprEqn(
outvars_copy, resvars, device_put_p,
dict(devices=[TransferToMemoryKind(policy.dst)
] * len(outvars_copy), srcs=[None],
copy_semantics=[CopySemantics.COPY]),
set(), source_info_util.new_source_info(),
JaxprEqnContext(None, False))
known_eqns.append(offload_eqn)
# resvars are known and available in the backward jaxpr.
map(partial(write, False, True), resvars)
residuals.update(resvars)
reload_eqn = core.JaxprEqn(
resvars, eqn.outvars, device_put_p,
dict(devices=[TransferToMemoryKind(policy.src)
] * len(resvars), srcs=[None],
copy_semantics=[CopySemantics.COPY]),
set(), source_info_util.new_source_info(),
JaxprEqnContext(None, False))
staged_eqns.append(reload_eqn)
# outvars are known and available in the backward jaxpr.
map(partial(write, False, True), eqn.outvars)
else:
assert isinstance(policy, RecomputeType)
inputs = map(ensure_instantiated, inst_in, eqn.invars)
staged_eqns.append(eqn.replace(invars=inputs))
map(partial(write, False, True), eqn.outvars)
unzipped = unzip2(map(read, jaxpr.outvars))
out_unknowns, out_inst = list(unzipped[0]), list(unzipped[1])
assert all(type(v) is Var for v in residuals), residuals
for x, inst, ensure_inst in zip(jaxpr.outvars, out_inst, ensure_out_inst):
if ensure_inst: ensure_instantiated(inst, x)
out_unknowns = map(op.or_, out_unknowns, ensure_out_unknowns)
out_inst = map(op.or_, out_inst, ensure_out_inst)
ins_known, _ = partition_list(in_unknowns, jaxpr.invars)
outs_known, _ = partition_list(out_unknowns, jaxpr.outvars)
ref_res_is_input = [r in ins_known for r in residual_refs]
non_input_res_refs, _ = partition_list(ref_res_is_input, list(residual_refs))
ins_known_and_ref_res = [*ins_known, *non_input_res_refs]
known_outvars = [*outs_known, *residuals]
known_effects = make_jaxpr_effects(jaxpr.constvars, ins_known_and_ref_res,
known_outvars, known_eqns)
jaxpr_known = Jaxpr(jaxpr.constvars, ins_known_and_ref_res, known_outvars,
known_eqns, known_effects, jaxpr.debug_info)
config.enable_checks.value and core.check_jaxpr(jaxpr_known)
_, ins_staged = partition_list(in_inst, jaxpr.invars)
_, outs_staged = partition_list(out_inst, jaxpr.outvars)
staged_invars = [*residuals, *non_input_res_refs, *ins_staged]
staged_effects = make_jaxpr_effects(jaxpr.constvars, staged_invars,
outs_staged, staged_eqns)
jaxpr_staged = Jaxpr(jaxpr.constvars, staged_invars,
outs_staged, staged_eqns, staged_effects,
jaxpr.debug_info)
config.enable_checks.value and core.check_jaxpr(jaxpr_staged)
return (jaxpr_known, jaxpr_staged, out_unknowns, out_inst, len(residuals),
len(non_input_res_refs))
MemoryKind = str
class RecomputeType: pass
Recompute = RecomputeType()
class SaveableType: pass
Saveable = SaveableType()
class Offloadable(NamedTuple):
src: MemoryKind
dst: MemoryKind
RematCases = Union[RecomputeType, SaveableType, Offloadable]
RematCases_ = Union[RematCases, bool]
def ensure_enum(case: bool | RematCases) -> RematCases:
if isinstance(case, bool):
return Saveable if case else Recompute
return case
# A primitive rule for policy-driven partial evaluation returns a 5-tuple
# with the components representing, respectively:
# * the JaxprEqn for the 'known' side (or None if there is no known component),
# * the JaxprEqn for the 'unknown' side (or None),
# * a list of booleans indicating which of the original outputs are unknown,
# * a list of booleans indicating which of the original outputs are
# instantiated (i.e. available) in the 'unknown' side,
# * a list of Var instances representing residuals to be added (i.e. to be
# plumbed as outputs of the 'known' side jaxpr and added as input binders to
# the 'unknown' jaxpr).
PartialEvalCustomResult = tuple[Union[JaxprEqn, None], Union[JaxprEqn, None],
Sequence[bool], Sequence[bool], list[Var]]
PartialEvalCustomRule = Callable[
[Callable[..., RematCases_], Sequence[bool], Sequence[bool], JaxprEqn],
PartialEvalCustomResult]
partial_eval_jaxpr_custom_rules: dict[Primitive, PartialEvalCustomRule] = {}
def partial_eval_jaxpr_custom_rule_not_implemented(
name: str, saveable: Callable[..., RematCases_], unks_in: Sequence[bool],
inst_in: Sequence[bool], eqn: JaxprEqn) -> PartialEvalCustomResult:
msg = (f'custom-policy remat rule not implemented for {name}, '
'open a feature request at https://github.com/jax-ml/jax/issues!')
raise NotImplementedError(msg)
ParamsUpdater = Callable[[Sequence[bool], Sequence[bool], Sequence[bool],
Sequence[bool], int, dict, dict],
tuple[dict, dict]]
ResAvalUpdater = Callable[[dict[str, Any], AbstractValue], AbstractValue]
def _default_res_aval_updater(
params: dict[str, Any], aval: AbstractValue) -> AbstractValue:
return aval
@contextmanager
def trivial_ctx(_): yield
def call_partial_eval_custom_rule(
jaxpr_param_name: str, params_updater: ParamsUpdater,
saveable: Callable[..., RematCases_], unks_in: list[bool], inst_in: list[bool],
eqn: JaxprEqn, *, res_aval: ResAvalUpdater = _default_res_aval_updater,
ctx = trivial_ctx,
) -> tuple[JaxprEqn, JaxprEqn, Sequence[bool], Sequence[bool], list[Var]]:
jaxpr = eqn.params[jaxpr_param_name]
with ctx(eqn.params):
jaxpr_known, jaxpr_staged, unks_out, inst_out, num_res = \
partial_eval_jaxpr_custom(jaxpr, unks_in, inst_in, False, False, saveable)
ins_known, _ = partition_list(unks_in, eqn.invars)
out_binders_known, _ = partition_list(unks_out, eqn.outvars)
_, ins_staged = partition_list(inst_in, eqn.invars)
_, out_binders_staged = partition_list(inst_out, eqn.outvars)
newvar = core.gensym()
params_known = {**eqn.params, jaxpr_param_name: jaxpr_known}
params_staged = {**eqn.params, jaxpr_param_name: jaxpr_staged}
params_known, params_staged = params_updater(
unks_in, inst_in, map(op.not_, unks_out), inst_out, num_res, params_known,
params_staged)
residuals = [newvar(res_aval(params_known, var.aval))
for var in jaxpr_staged.invars[:num_res]]
eqn_known = new_jaxpr_eqn(ins_known, [*out_binders_known, *residuals],
eqn.primitive, params_known, jaxpr_known.effects,
eqn.source_info, eqn.ctx)
eqn_staged = new_jaxpr_eqn([*residuals, *ins_staged], out_binders_staged,
eqn.primitive, params_staged,
jaxpr_staged.effects, eqn.source_info, eqn.ctx)
assert len(eqn_staged.invars) == len(jaxpr_staged.invars)
new_inst = [x for x, inst in zip(eqn.invars, inst_in)
if type(x) is Var and not inst]
return eqn_known, eqn_staged, unks_out, inst_out, new_inst + residuals
# TODO(mattjj): unify with ParamsUpdater (this one takes an extra int)
ParamsUpdater2 = Callable[[Sequence[bool], Sequence[bool], Sequence[bool],
Sequence[bool], int, int, dict, dict],
tuple[dict, dict]]
def closed_call_partial_eval_custom_rule(
jaxpr_param_name: str, params_updater: ParamsUpdater2,
saveable: Callable[..., RematCases_], unks_in: list[bool], inst_in: list[bool],
eqn: JaxprEqn, *, res_aval: ResAvalUpdater = _default_res_aval_updater,
) -> tuple[JaxprEqn, JaxprEqn, Sequence[bool], Sequence[bool], list[Var]]:
# TODO(sharadmv,mattjj): dedup this rule with call_partial_eval_custom_rule.
dropvars = tuple(isinstance(v, DropVar) for v in eqn.outvars)
jaxpr_known, jaxpr_staged, unks_out, inst_out, num_res_ref, num_res_val, out_fwd = \
_closed_jaxpr_partial_eval_custom_cached(
eqn.params[jaxpr_param_name], (*unks_in,), (*inst_in,), dropvars, saveable)
num_res = num_res_ref + num_res_val
out_binders_known, _ = partition_list(unks_out, eqn.outvars)
ins_known, _ = partition_list(unks_in, eqn.invars)
_, ins_staged = partition_list(inst_in, eqn.invars)
_, out_binders_staged = partition_list(inst_out, eqn.outvars)
newvar = core.gensym()
params_known = {**eqn.params, jaxpr_param_name: jaxpr_known}
params_staged = {**eqn.params, jaxpr_param_name: jaxpr_staged}
params_known, params_staged = params_updater(
unks_in, inst_in, map(op.not_, unks_out), inst_out,
sum(f is None for f in out_fwd), num_res, params_known, params_staged)
res_val_binders, res_ref_binders = split_list(
[newvar(res_aval(params_known, v))
for v in jaxpr_staged.in_avals[:num_res]], [num_res_val])
res_val_binders = [v for v, f in zip(res_val_binders, out_fwd) if f is None]
res_val_vars = subs_list(out_fwd, out_binders_known, res_val_binders)
eqn_known = new_jaxpr_eqn([*ins_known, *res_ref_binders],
[*out_binders_known, *res_val_binders],
eqn.primitive, params_known, jaxpr_known.effects,
eqn.source_info, eqn.ctx)
eqn_staged = new_jaxpr_eqn([*res_val_vars, *res_ref_binders, *ins_staged],
out_binders_staged,
eqn.primitive, params_staged, jaxpr_staged.effects,
eqn.source_info, eqn.ctx)
assert len(eqn_staged.invars) == len(jaxpr_staged.in_avals)
assert len(ins_known) + len(res_ref_binders) == len(jaxpr_known.jaxpr.invars)
assert len(ins_staged) + len(res_ref_binders) + len(res_val_vars) == len(jaxpr_staged.jaxpr.invars)
assert len(out_binders_known) + len(res_val_binders) == len(jaxpr_known.jaxpr.outvars)
new_inst = [x for x, inst in zip(eqn.invars, inst_in)
if type(x) is Var and not inst]
new_vars = [*new_inst, *res_val_vars, *res_ref_binders]
return eqn_known, eqn_staged, unks_out, inst_out, new_vars
@weakref_lru_cache
def _closed_jaxpr_partial_eval_custom_cached(
jaxpr: ClosedJaxpr, unks_in: tuple[bool, ...], inst_in: tuple[bool, ...],
dropvars: tuple[bool, ...], saveable: Callable
) -> tuple[ClosedJaxpr, ClosedJaxpr, Sequence[bool], Sequence[bool],
int, int, Sequence[int | None]]:
jaxpr_known_, jaxpr_staged_, unks_out, inst_out, num_res_val, num_res_ref = \
partial_eval_jaxpr_stateful(jaxpr.jaxpr, unks_in, inst_in,
False, False, saveable)
# Compute which residual value outputs are also *undropped* primal outputs.
num_out_primals = len(jaxpr_known_.outvars) - num_res_val
out_vars, res_vars = split_list(jaxpr_known_.outvars, [num_out_primals])
out_dropvars_known, _ = partition_list(unks_out, dropvars)
idx_map = {id(v): i for i, (v, b) in enumerate(zip(out_vars, out_dropvars_known))
if not b}
out_fwd = [idx_map.get(id(v)) for v in res_vars]
# Prune jaxpr_known_ outputs by removing forwards.
jaxpr_known_ = prune_jaxpr_outputs(
jaxpr_known_, [True] * num_out_primals + [f is None for f in out_fwd])
jaxpr_known = core.ClosedJaxpr(jaxpr_known_, jaxpr.consts)
jaxpr_staged = core.ClosedJaxpr(jaxpr_staged_, jaxpr.consts)
return jaxpr_known, jaxpr_staged, unks_out, inst_out, num_res_ref, num_res_val, out_fwd
partial_eval_jaxpr_custom_rules[core.call_p] = \
partial(call_partial_eval_custom_rule, 'call_jaxpr',
lambda _, __, ___, ____, _____, x, y: (x, y))
partial_eval_jaxpr_custom_rules[core.closed_call_p] = \
partial(closed_call_partial_eval_custom_rule, 'call_jaxpr',
lambda _, __, ___, ____, _____, ______, x, y: (x, y))
def _jaxpr_forwarding(jaxpr: Jaxpr) -> list[int | None]:
# Compute which inputs are just forwarded to outputs.
fwds: dict[Var, Var] = dict(zip(jaxpr.invars, jaxpr.invars))
for eqn in jaxpr.eqns:
if eqn.primitive in forwarding_rules:
eqn = eqn.replace(invars=[a if type(a) is Literal else fwds.get(a, a) # type: ignore
for a in eqn.invars])
fwd_vars, _ = forwarding_rules[eqn.primitive](eqn)
for v_orig, v_new in zip(eqn.outvars, fwd_vars):
if v_new is not None:
fwds[v_orig] = v_new
idxs: dict[Var, int] = {v: i for i, v in enumerate(jaxpr.invars)}
return [None if type(v) is Literal else idxs.get(fwds.get(v)) # type: ignore
for v in jaxpr.outvars]
def prune_jaxpr_outputs(jaxpr: Jaxpr, used_outputs: Sequence[bool]) -> Jaxpr:
return _prune_jaxpr_outputs_cached(jaxpr, tuple(used_outputs))
def _prune_jaxpr_outputs(jaxpr: Jaxpr, used_outputs: tuple[bool, ...]) -> Jaxpr:
outvars = [v for v, b in zip(jaxpr.outvars, used_outputs) if b]
dbg = core.DebugInfo(
jaxpr.debug_info.traced_for, jaxpr.debug_info.func_src_info,
jaxpr.debug_info.arg_names,
jaxpr.debug_info.filter_result_paths(used_outputs))
new_jaxpr = jaxpr.replace(outvars=outvars, debug_info=dbg)
config.enable_checks.value and core.check_jaxpr(new_jaxpr)
return new_jaxpr
_prune_jaxpr_outputs_cached = weakref_lru_cache(_prune_jaxpr_outputs)
def prune_closed_jaxpr_outputs(
jaxpr: ClosedJaxpr, used_outputs: Sequence[bool]
) -> ClosedJaxpr:
return _prune_closed_jaxpr_outputs(jaxpr, tuple(used_outputs))
@partial(weakref_lru_cache, trace_context_in_key=False)
def _prune_closed_jaxpr_outputs(
jaxpr: ClosedJaxpr, used_outputs: tuple[bool, ...]
) -> ClosedJaxpr:
return ClosedJaxpr(_prune_jaxpr_outputs(jaxpr.jaxpr, used_outputs),
jaxpr.consts)
def dce_jaxpr(jaxpr: Jaxpr, used_outputs: Sequence[bool],
instantiate: bool | Sequence[bool] = False,
) -> tuple[Jaxpr, list[bool]]:
"""Runs dead-code elementation on a given jaxpr.
Args:
jaxpr: The jaxpr to DCE.
used_outputs: A list of bools indicating which outputs are used.
instantiate: A bool or a list of bools indicating which inputs should be
considered used, regardless of whether they are actually used in a jaxpr.
If a bool, the same value is used for all inputs.
Returns:
A tuple of ``(new_jaxpr, used_inputs)``.
"""
if type(instantiate) is bool:
instantiate = (instantiate,) * len(jaxpr.invars)
return _dce_jaxpr(jaxpr, tuple(used_outputs), tuple(instantiate))
def dce_jaxpr_consts(jaxpr: Jaxpr, used_outputs: Sequence[bool],
instantiate: bool | Sequence[bool] = False,
) -> tuple[Jaxpr, list[bool], list[bool]]:
jaxpr_ = convert_constvars_jaxpr(jaxpr)
new_jaxpr, used_inputs_ = dce_jaxpr(jaxpr_, used_outputs, instantiate)
used_consts, used_inputs = split_list(used_inputs_, [len(jaxpr.constvars)])
if sum(used_consts):
new_jaxpr = convert_invars_to_constvars(new_jaxpr, sum(used_consts))
return new_jaxpr, used_consts, used_inputs
def has_effects(eqn: JaxprEqn) -> bool:
effs = {e for e in eqn.effects if not isinstance(e, core.NamedAxisEffect)}
return bool(effs)
@weakref_lru_cache
def _dce_jaxpr(jaxpr: Jaxpr, used_outputs: tuple[bool, ...],
instantiate: tuple[bool, ...]
) -> tuple[Jaxpr, list[bool]]:
env: dict[Var, bool] = {}
def read(v: Var) -> bool:
return env.get(v, False)
def write(x: Atom, b: bool) -> None:
if type(x) is Var:
env[x] = read(x) or b
new_eqns = []
map(write, jaxpr.outvars, used_outputs)
for eqn in jaxpr.eqns[::-1]:
used_outs = map(read, eqn.outvars)
rule = dce_rules.get(eqn.primitive, _default_dce_rule)
used_ins, new_eqn = rule(used_outs, eqn)
if new_eqn is not None:
new_eqns.append(new_eqn)
map(write, eqn.invars, used_ins)
used_inputs = map(read, jaxpr.invars)
used_inputs = map(op.or_, instantiate, used_inputs)
invars = [v for v, b in zip(jaxpr.invars, used_inputs) if b]
outvars = [v for v, b in zip(jaxpr.outvars, used_outputs) if b]
eqns = new_eqns[::-1]
jaxpr_effects = make_jaxpr_effects(jaxpr.constvars, invars, outvars, eqns)
dbg = core.DebugInfo(
jaxpr.debug_info.traced_for, jaxpr.debug_info.func_src_info,
jaxpr.debug_info.filter_arg_names(used_inputs),
jaxpr.debug_info.filter_result_paths(used_outputs))
new_jaxpr = Jaxpr(jaxpr.constvars, invars, outvars, eqns, jaxpr_effects, dbg)
config.enable_checks.value and core.check_jaxpr(new_jaxpr)
return new_jaxpr, used_inputs
DCERule = Callable[[list[bool], JaxprEqn],
tuple[list[bool], Union[JaxprEqn, None]]]
def _default_dce_rule(
used_outs: list[bool], eqn: JaxprEqn
) -> tuple[list[bool], JaxprEqn | None]:
if not any(used_outs) and not has_effects(eqn):
return [False] * len(eqn.invars), None
return [True] * len(eqn.invars), eqn
dce_rules: dict[Primitive, DCERule] = {}
def dce_jaxpr_call_rule(used_outputs: list[bool], eqn: JaxprEqn
) -> tuple[list[bool], JaxprEqn | None]:
if not any(used_outputs) and not has_effects(eqn):
return [False] * len(eqn.invars), None
new_jaxpr, used_inputs = dce_jaxpr(eqn.params['call_jaxpr'], used_outputs)
new_params = dict(eqn.params, call_jaxpr=new_jaxpr)
update_params = call_param_updaters.get(eqn.primitive)
if update_params:
new_params = update_params(new_params, used_inputs, 0)
if not any(used_inputs) and not any(used_outputs) and not new_jaxpr.effects:
return used_inputs, None
else:
new_eqn = new_jaxpr_eqn(
[v for v, used in zip(eqn.invars, used_inputs) if used],
[v for v, used in zip(eqn.outvars, used_outputs) if used],
eqn.primitive, new_params, new_jaxpr.effects, eqn.source_info, eqn.ctx)
return used_inputs, new_eqn
dce_rules[core.call_p] = dce_jaxpr_call_rule
@weakref_lru_cache
def _cached_closed_call_dce(jaxpr_, used_outputs: tuple[bool, ...]
) -> tuple[core.ClosedJaxpr, list[bool]]:
jaxpr, consts = jaxpr_.jaxpr, jaxpr_.consts
new_jaxpr, used_inputs = dce_jaxpr(jaxpr, used_outputs)
return core.ClosedJaxpr(new_jaxpr, consts), used_inputs
def dce_jaxpr_closed_call_rule(used_outputs: list[bool], eqn: JaxprEqn
) -> tuple[list[bool], JaxprEqn | None]:
# TODO(mattjj): de-duplicate with above rule?
if not any(used_outputs) and not has_effects(eqn):
return [False] * len(eqn.invars), None
jaxpr_ = eqn.params['call_jaxpr']
closed_jaxpr, used_inputs = _cached_closed_call_dce(jaxpr_, tuple(used_outputs))
new_params = dict(eqn.params, call_jaxpr=closed_jaxpr)
new_eqn = new_jaxpr_eqn(
[v for v, used in zip(eqn.invars, used_inputs) if used],
[v for v, used in zip(eqn.outvars, used_outputs) if used],
eqn.primitive, new_params, closed_jaxpr.effects, eqn.source_info, eqn.ctx)
return used_inputs, new_eqn
dce_rules[core.closed_call_p] = dce_jaxpr_closed_call_rule
@weakref_lru_cache
def close_jaxpr(jaxpr: Jaxpr) -> ClosedJaxpr:
return ClosedJaxpr(jaxpr, ())
def move_binders_to_front(closed_jaxpr: ClosedJaxpr, to_move: Sequence[bool]
) -> ClosedJaxpr:
"""Reorder `invars` by moving those indicated in `to_move` to the front."""
return _move_binders_to_front(closed_jaxpr, tuple(to_move))
@weakref_lru_cache
def _move_binders_to_front(closed_jaxpr: ClosedJaxpr, to_move: tuple[bool, ...]
) -> ClosedJaxpr:
assert len(closed_jaxpr.in_avals) == len(to_move)
new_invars = _move_to_front(closed_jaxpr.jaxpr.invars, to_move)
new_jaxpr = Jaxpr(closed_jaxpr.jaxpr.constvars, new_invars,
closed_jaxpr.jaxpr.outvars, closed_jaxpr.jaxpr.eqns,
closed_jaxpr.jaxpr.effects,
closed_jaxpr.jaxpr.debug_info)
new_closed_jaxpr = core.ClosedJaxpr(new_jaxpr, closed_jaxpr.consts)
return new_closed_jaxpr
def _move_to_front(lst: Sequence, to_move: Sequence[bool]) -> Sequence:
return ([elt for elt, move in zip(lst, to_move) if move] +
[elt for elt, move in zip(lst, to_move) if not move])
def move_binders_to_back(closed_jaxpr: ClosedJaxpr, to_move: Sequence[bool]
) -> ClosedJaxpr:
"""Reorder `invars` by moving those indicated in `to_move` to the back."""
return move_binders_to_front(closed_jaxpr, map(op.not_, to_move))
class DynamicJaxprTracer(core.Tracer):
__slots__ = ['aval', '_debug_info']
def __init__(self, trace: DynamicJaxprTrace,
aval: core.AbstractValue,
line_info: source_info_util.SourceInfo | None = None):
self._trace = trace
self._line_info = line_info
self._debug_info = self._trace.frame.debug_info # for UnexpectedTracerError
self.aval = aval # type: ignore[misc]
def full_lower(self):
var = self._trace.frame.tracer_to_var.get(id(self))
if var is None: return self
val = self._trace.frame.constvar_to_val.get(var)
if val is None: return self
return core.full_lower(val)
def _contents(self):
return ()
def _origin_msg(self):
invar_pos, progenitor_eqns = self._trace.frame.find_progenitors(self)
dbg = self._debug_info
if dbg is None:
return ""
origin = ("The error occurred while tracing the function "
f"{dbg.func_src_info} for {dbg.traced_for}. ")
if invar_pos:
try:
arg_names = [dbg.arg_names[i] for i in invar_pos]
except IndexError:
return "" # TODO(mattjj): figure out when not (invar_pos < len(arg_info))
if len(arg_names) == 1:
arg_info_str = f"the argument {arg_names[0]}"
elif len(arg_names) == 2:
arg_info_str = f"the arguments {arg_names[0]} and {arg_names[1]}"
else:
*rest, last = arg_names
arg_info_str = f"the arguments {', '.join(rest)}, and {last}"
origin += ("This concrete value was not available in Python because it "
f"depends on the value{'s' if len(invar_pos) > 1 else ''} "
f"of {arg_info_str}.")
elif progenitor_eqns:
msts = [" operation "
f"{core.pp_eqn(eqn, core.JaxprPpContext(), core.JaxprPpSettings(print_shapes=True))}\n"
f" from line {source_info_util.summarize(eqn.source_info)}"
for eqn in progenitor_eqns[:5]] # show at most 5
origin += ("This value became a tracer due to JAX operations on these lines:"
"\n\n" + "\n\n".join(msts))
if len(progenitor_eqns) > 5:
origin += "\n\n(Additional originating lines are not shown.)"
return "\n" + origin
def get_referent(self):
frame = self._trace.frame
val = frame.constvar_to_val.get(frame.tracer_to_var.get(id(self)))
return self if val is None else get_referent(val)
core.pytype_aval_mappings[DynamicJaxprTracer] = lambda x: x.aval
def make_jaxpr_effects(constvars, invars, outvars, eqns) -> effects.Effects:
sentinel = object()
jaxpr_effects = set()
all_vars = {v: i for i, v in enumerate(it.chain(constvars, invars))}
mut_arrays = set()
for eqn in eqns:
if eqn.primitive is core.mutable_array_p:
outvar, = eqn.outvars
all_vars[outvar] = None # type: ignore
mut_arrays.add(outvar)
for eff in eqn.effects:
if isinstance(eff, effects.JaxprInputEffect):
if eff.input_index >= len(eqn.invars):
raise ValueError(
f"`JaxprInputEffect` {eff} is invalid."
f"\n Equation: {eqn}\n"
"\n Jaxpr: "
f"{core.Jaxpr(constvars, invars, outvars, eqns, set())}")
invar = eqn.invars[eff.input_index]
if invar in mut_arrays:
continue
if (input_index := all_vars.get(invar, sentinel)) is sentinel:
raise ValueError(
f"`JaxprInputEffect` {eff} does not have "
f"corresponding input: {invar}."
f"\n Equation: {eqn}\n"
"\n Jaxpr: "
f"{core.Jaxpr(constvars, invars, outvars, eqns, set())}")
eff = eff.replace(input_index=input_index)
jaxpr_effects.add(eff)
return jaxpr_effects
class JaxprStackFrame:
gensym: Callable[[AbstractValue], Var]
tracer_to_var: dict[TracerId, Var]
constid_to_tracer: dict[ConstId, Tracer]
constvar_to_val: dict[Var, Any]
tracers: list[DynamicJaxprTracer] # hold onto strong refs for all tracers
eqns: list[JaxprEqn]
invars: list[Var]
effects: core.Effects
attrs_tracked: list[tuple[Any, str]]
attrs_inits: list
attrs_vars: list[Var]
debug_info: core.DebugInfo
def __init__(self, debug_info: core.DebugInfo):
self.gensym = core.gensym()
self.tracer_to_var = {}
self.constid_to_tracer = {}
self.constvar_to_val = {}
self.tracers = [] # circ refs, frame->tracer->trace->main->frame,
self.eqns = [] # cleared when we pop frame from main
self.invars = []
self.effects = set()
self.attrs_tracked = []
self.attrs_inits = []
self.attrs_vars = []
self.debug_info = debug_info
def add_eqn(self, eqn: core.JaxprEqn):
self.eqns.append(eqn)
def to_jaxpr(self, trace: DynamicJaxprTrace,
out_tracers: Sequence[Tracer],
debug_info: core.DebugInfo,
) -> tuple[Jaxpr, list[Any], list[tuple[PyTreeDef, PyTreeDef, tuple[Any, str]]]]:
# It's not necessary, but we keep the tracer-to-var mapping injective:
assert len(self.tracer_to_var) == len(set(self.tracer_to_var.values()))
invars = self.attrs_vars + self.invars
state_ans, end_trees = unzip2(
tree_flatten(t) for t in get_states(self.attrs_tracked))
state_outvars = [self.tracer_to_var[id(trace.to_jaxpr_tracer(x))]
for xs in state_ans for x in xs]
explicit_outvars = [self.tracer_to_var[id(t)] for t in out_tracers]
outvars = state_outvars + explicit_outvars
constvars, constvals = unzip2(self.constvar_to_val.items())
jaxpr_effects = make_jaxpr_effects(constvars, self.invars, explicit_outvars, self.eqns)
jaxpr = Jaxpr(constvars, invars, outvars, self.eqns, jaxpr_effects,
debug_info)
jaxpr, constvals = _const_folding_and_forwarding(jaxpr, constvals)
jaxpr, constvals = _inline_literals(jaxpr, constvals)
init_trees = [tree_structure(init_val) for init_val in self.attrs_inits]
set_states(self.attrs_tracked, self.attrs_inits)
return jaxpr, list(constvals), zip(init_trees, end_trees, self.attrs_tracked)
def to_jaxpr2(self, out_tracers: Sequence[core.Tracer],
debug_info: core.DebugInfo):
# It's not necessary, but we keep the tracer-to-var mapping injective:
assert len(self.tracer_to_var) == len(set(self.tracer_to_var.values()))
constvars, constvals = unzip2(self.constvar_to_val.items())
expl_outvars = [self.tracer_to_var[id(t)] for t in out_tracers]
jaxpr_effects = make_jaxpr_effects(constvars, self.invars, expl_outvars,
self.eqns)
jaxpr = Jaxpr(constvars, self.invars, expl_outvars, self.eqns,
jaxpr_effects, debug_info)
# We can't run check_jaxpr until after we normalize.
jaxpr, constvals = _const_folding_and_forwarding(jaxpr, constvals)
jaxpr, constvals = _inline_literals(jaxpr, constvals)
jaxpr, out_type = _add_implicit_outputs(jaxpr)
config.enable_checks.value and core.check_jaxpr(jaxpr)
return jaxpr, out_type, constvals
def newvar(self, aval):
if isinstance(aval, DShapedArray):
# this aval may have tracers in it, so we replace those with variables
new_shape = [self.tracer_to_var[id(d)] if isinstance(d, Tracer) else d
for d in aval.shape]
aval = aval.update(shape=tuple(new_shape))
return self.gensym(aval)
def find_progenitors(self, tracer):
var = self.tracer_to_var.get(id(tracer))
if not var:
return None, None
active_vars = {var}
for eqn in self.eqns[::-1]:
produced = set(eqn.outvars) & active_vars
if produced:
active_vars.difference_update(produced)
active_vars.update({v for v in eqn.invars if type(v) is Var})
invar_positions = [i for i, v in enumerate(self.invars) if v in active_vars]
constvars = active_vars & set(self.constvar_to_val)
const_eqns = [eqn for eqn in self.eqns
if {v for v in eqn.invars if type(v) is Var} & constvars]
return invar_positions, const_eqns
def _const_folding_and_forwarding(
jaxpr: Jaxpr, constvals: Sequence[Any]) -> tuple[Jaxpr, tuple[Any, ...]]:
consts: dict[Var, Any] = dict(zip(jaxpr.constvars, constvals))
var_subs: dict[Var, Var] = {} # not Dict[Var, Atom] b/c literals not inlined
new_eqns = []
def apply_var_sub(a: Atom) -> Atom:
return var_subs.get(a, a) if isinstance(a, Var) else a
for eqn in jaxpr.eqns:
# always apply invar substitutions
eqn = eqn.replace(invars=[apply_var_sub(v) for v in eqn.invars])
# if any inputs are constants and we have a constant-folding rule, apply it
has_input_effect = any(isinstance(eff, effects.JaxprInputEffect)
for eff in eqn.effects)
if (eqn.primitive in const_fold_rules and
any(v in consts for v in eqn.invars if isinstance(v, Var)) and
not has_input_effect):
consts_in = [consts.get(v) if isinstance(v, Var) else None
for v in eqn.invars]
consts_out, new_eqn = const_fold_rules[eqn.primitive](consts_in, eqn)
assert (new_eqn is None) == all(c is not None for c in consts_out)
for v, c in zip(eqn.outvars, consts_out):
if c is not None: consts[v] = c
if new_eqn is None: continue
else: eqn = new_eqn
# if the application trivially maps some inputs to outputs, simplify
if eqn.primitive in forwarding_rules and not has_input_effect:
fwd_vars, new_eqn = forwarding_rules[eqn.primitive](eqn)
for v_orig, v_new in zip(eqn.outvars, fwd_vars):
if v_new is not None: var_subs[v_orig] = v_new
if new_eqn is None: continue
else: eqn = new_eqn
new_eqns.append(eqn)
new_constvars, new_constvals = unzip2(consts.items())
new_outvars = [apply_var_sub(v) for v in jaxpr.outvars]
jaxpr_effects = make_jaxpr_effects(new_constvars, jaxpr.invars, new_outvars,
new_eqns)
new_jaxpr = Jaxpr(new_constvars, jaxpr.invars, new_outvars, new_eqns,
jaxpr_effects, jaxpr.debug_info)
return new_jaxpr, new_constvals
ConstFoldRule = Callable[
[list[Union[Any, None]], JaxprEqn],
tuple[list[Union[Any, None]], Union[JaxprEqn, None]],
]
const_fold_rules: dict[Primitive, ConstFoldRule] = {}
ForwardingRule = Callable[
[JaxprEqn],
tuple[list[Union[Var, None]], Union[JaxprEqn, None]]
]
forwarding_rules: dict[Primitive, ForwardingRule] = {}
def _inline_literals(
jaxpr: Jaxpr, constvals: Sequence[Any]
) -> tuple[Jaxpr, list[Any]]:
# This function also prunes unused constants and inserts `dropvar` symbols.
input_effects = {eff for eff in jaxpr.effects
if isinstance(eff, effects.JaxprInputEffect)}
# Don't inline any literal with an input effect
has_input_effect = [any(eff.input_index == i for eff in input_effects)
for i in range(len(constvals))]
lits = {v: Literal(c, v.aval) for v, c, e in zip(jaxpr.constvars, constvals,
has_input_effect)
if type(c) in core.literalable_types and not np.shape(c) and not e}
def lit(a: Atom) -> Literal | None:
return (a if isinstance(a, Literal) else lits.get(a) if isinstance(a, Var)
else None)
newname: Callable[[AbstractValue], Var] = core.gensym()
newvars: dict[Var, Var] = {}
newvar = lambda aval: newname(_substitute_vars_in_type(lits, newvars, aval))
var = lambda v: newvars.get(v) or newvars.setdefault(v, newvar(v.aval))
lit_or_var = (
lambda a: a if isinstance(a, Literal) else (lit(a) or var(a))
)
dropvar = lambda aval: DropVar(_substitute_vars_in_type(lits, newvars, aval))
def vars_in_shape(aval: AbstractValue) -> Sequence[Var]:
if isinstance(aval, DShapedArray):
return [d for d in aval.shape if isinstance(d, Var)]
return []
used = {v for eqn in jaxpr.eqns for atom in eqn.invars
for v in it.chain([atom], vars_in_shape(atom.aval))
if isinstance(atom, Var)}
used |= {v for outvar in jaxpr.outvars
for v in it.chain([outvar], vars_in_shape(outvar.aval))}
new_constvars = [var(v) for v in jaxpr.constvars if v in used and not lit(v)]
new_constvals = [c for v, c in zip(jaxpr.constvars, constvals)
if v in used and not lit(v)]
new_invars = [var(v) for v in jaxpr.invars]
new_eqns = []
for eqn in jaxpr.eqns:
invars = [lit_or_var(x) for x in eqn.invars]
outvars = [var(v) if v in used else dropvar(v.aval) for v in eqn.outvars]
new_eqns.append(eqn.replace(invars=invars, outvars=outvars))
new_outvars = [lit_or_var(v) for v in jaxpr.outvars]
jaxpr_effects = make_jaxpr_effects(new_constvars, new_invars, new_outvars,
new_eqns)
new_jaxpr = Jaxpr(new_constvars, new_invars, new_outvars, new_eqns,
jaxpr_effects, jaxpr.debug_info)
return new_jaxpr, new_constvals
class DynamicJaxprTrace(core.Trace):
__slots__ = ("frame", "tag")
def __init__(self, debug_info: core.DebugInfo):
self.frame = JaxprStackFrame(debug_info)
def invalidate(self):
# avoid cyclic refs
self.frame.tracers = []
self.frame.constid_to_tracer = {}
def to_jaxpr_tracer(self, x):
as_local_var = self.frame.tracer_to_var.get(id(x))
if as_local_var is None:
if hasattr(x, "dimension_as_value"): # Used for shape_poly._DimExpr
with core.set_current_trace(self):
x = x.dimension_as_value()
return self.to_jaxpr_tracer(x)
else:
return self.new_const(x)
else:
return x
def new_arg(self, aval):
tracer = DynamicJaxprTracer(self, aval, source_info_util.current())
self.frame.tracers.append(tracer)
self.frame.tracer_to_var[id(tracer)] = var = self.frame.newvar(aval)
self.frame.invars.append(var)
return tracer
def new_const(self, c):
# TODO(mattjj): for ints, or hashable consts, don't rely on id
tracer = self.frame.constid_to_tracer.get(id(c))
if tracer is None:
aval = get_aval(c)
if hasattr(aval, "weak_type"):
aval = aval.update_weak_type(dtypes.is_weakly_typed(c))
aval = self._lift_tracers_in_aval(aval)
tracer = self._new_const(aval, c)
return tracer
pure = lift = new_const
def _new_const(self, aval, c) -> DynamicJaxprTracer:
tracer = DynamicJaxprTracer(self, aval, source_info_util.current())
self.frame.tracers.append(tracer)
self.frame.tracer_to_var[id(tracer)] = var = self.frame.newvar(aval)
self.frame.constid_to_tracer[id(c)] = tracer
self.frame.constvar_to_val[var] = c
return tracer
def _lift_tracers_in_aval(self, aval):
if (not isinstance(aval, DShapedArray) or
not any(isinstance(d, Tracer) for d in aval.shape)):
return aval
shape = [self.to_jaxpr_tracer(d) if isinstance(d, Tracer) else d
for d in aval.shape]
return aval.update(shape=tuple(shape))
def getvar(self, tracer):
var = self.frame.tracer_to_var.get(id(tracer))
if var is None:
raise core.escaped_tracer_error(tracer)
return var
def makevar(self, tracer):
var = self.frame.tracer_to_var.get(id(tracer))
assert var is None, "a jaxpr variable must be created only once per tracer"
self.frame.tracers.append(tracer)
var = self.frame.tracer_to_var[id(tracer)] = self.frame.newvar(tracer.aval)
return var
def is_const(self, tracer):
return self.frame.tracer_to_var.get(id(tracer)) is None
def process_primitive(self, primitive, tracers, params):
if (config.eager_constant_folding.value and all(map(self.is_const, tracers))):
return primitive.bind_with_trace(core.eval_trace, tracers, params)
jaxpr_tracers = map(self.to_jaxpr_tracer, tracers)
if primitive in custom_staging_rules:
return custom_staging_rules[primitive](self, *jaxpr_tracers, **params)
return self.default_process_primitive(primitive, jaxpr_tracers, params)
def default_process_primitive(self, primitive, tracers, params):
avals = [t.aval for t in tracers]
out_avals, effects = primitive.abstract_eval(*avals, **params)
if isinstance(out_avals, (tuple, list)) != primitive.multiple_results:
raise ValueError(f"{primitive}.abstract_eval() method should return "
f"a tuple or a list iff {primitive}.multiple_results.")
out_avals = [out_avals] if not primitive.multiple_results else out_avals
source_info = source_info_util.current()
out_tracers = [DynamicJaxprTracer(self, a, source_info) for a in out_avals]
invars = map(self.getvar, tracers)
outvars = map(self.makevar, out_tracers)
eqn = new_jaxpr_eqn(invars, outvars, primitive, params, effects,
source_info)
self.frame.add_eqn(eqn)
return out_tracers if primitive.multiple_results else out_tracers.pop()
def process_call(self, call_primitive, f: lu.WrappedFun,
explicit_tracers, params):
if f.in_type is None:
f = lu.annotate(f, tuple((get_aval(t), True) for t in explicit_tracers))
assert f.in_type is not None
implicit_tracers = _extract_implicit_args(self, f.in_type, explicit_tracers)
in_tracers = map(self.to_jaxpr_tracer, [*implicit_tracers, *explicit_tracers])
# TODO(mattjj): check in_tracers are consistent with f.in_type annotation
jaxpr, out_type, consts = trace_to_jaxpr_dynamic2(f)
if params.get('inline', False):
return core.eval_jaxpr(jaxpr, consts, *in_tracers,
propagate_source_info=False)
source_info = source_info_util.current()
out_tracers: list[Tracer] = []
for aval, _ in out_type:
if type(aval) is DShapedArray:
shape = [[*consts, *in_tracers][d.val] if type(d) is InDBIdx else
out_tracers[d.val] if type(d) is OutDBIdx else
d for d in aval.shape]
aval = aval.update(shape=tuple(get_referent(d) for d in shape))
out_tracers.append(DynamicJaxprTracer(self, aval, source_info))
invars = map(self.getvar, in_tracers)
constvars = map(self.getvar, map(self.to_jaxpr_tracer, consts))
outvars = map(self.makevar, out_tracers)
new_params = dict(params, call_jaxpr=convert_constvars_jaxpr(jaxpr))
update_params = call_param_updaters.get(call_primitive)
if update_params:
new_params = update_params(new_params, [True] * len(explicit_tracers),
len(consts) + len(implicit_tracers))
eqn = new_jaxpr_eqn([*constvars, *invars], outvars, call_primitive,
new_params, new_params['call_jaxpr'].effects, source_info)
self.frame.add_eqn(eqn)
return [t for t, (_, keep) in zip(out_tracers, out_type) if keep]
def process_map(self, map_primitive, f: lu.WrappedFun, tracers, params):
tracers = map(self.to_jaxpr_tracer, tracers)
in_avals = [t.aval for t in tracers]
axis_name, axis_size = params['axis_name'], params['axis_size']
reduced_in_avals = [core.mapped_aval(axis_size, in_axis, a)
if in_axis is not None else a
for a, in_axis in zip(in_avals, params['in_axes'])]
with core.extend_axis_env_nd([(axis_name, params["global_axis_size"])]):
jaxpr, reduced_out_avals, consts, () = trace_to_jaxpr_dynamic(
f, reduced_in_avals)
jaxpr, consts = _linearize_of_pmap_hack(f, jaxpr, consts)
ordered_effects = effects.ordered_effects.filter_in(jaxpr.effects)
if ordered_effects:
raise ValueError("Ordered effects not supported for "
f"map primitives: {ordered_effects}")
out_axes = params['out_axes_thunk']()
out_avals = [core.unmapped_aval(axis_size, out_axis, a)
if out_axis is not None else a
for a, out_axis in zip(reduced_out_avals, out_axes)]
source_info = source_info_util.current()
out_tracers = [DynamicJaxprTracer(self, a, source_info) for a in out_avals]
invars = map(self.getvar, tracers)
constvars = map(self.getvar, map(self.to_jaxpr_tracer, consts))
outvars = map(self.makevar, out_tracers)
new_in_axes = (None,) * len(consts) + params['in_axes']
new_params = dict(params, in_axes=new_in_axes, out_axes=out_axes,
call_jaxpr=convert_constvars_jaxpr(jaxpr))
del new_params['out_axes_thunk']
update_params = call_param_updaters.get(map_primitive)
if update_params:
new_params = update_params(new_params, [True] * len(tracers), len(consts))
effs = core.filter_named_axis_effects(jaxpr.effects, {axis_name})
eqn = new_jaxpr_eqn([*constvars, *invars], outvars, map_primitive,
new_params, effs, source_info)
self.frame.add_eqn(eqn)
return out_tracers
def process_custom_jvp_call(self, prim, fun: lu.WrappedFun,
jvp: lu.WrappedFun, tracers,
symbolic_zeros: bool):
tracers = map(self.to_jaxpr_tracer, tracers)
in_avals = [t.aval for t in tracers]
in_tangent_avals = [t.to_tangent_aval() for t in in_avals]
fun_jaxpr, out_avals, consts, () = trace_to_jaxpr_dynamic(fun, in_avals)
closed_fun_jaxpr = core.ClosedJaxpr(convert_constvars_jaxpr(fun_jaxpr), ())
@_memoize
def jvp_jaxpr_thunk(*in_zeros):
for store in jvp.stores: store and store.reset()
nz_tangent_avals, zero_avals = partition_list(in_zeros, in_tangent_avals)
jvp_, out_zeros = _jvp_jaxpr_zeros(jvp, in_zeros, tuple(zero_avals))
in_avals_ = (*in_avals, *nz_tangent_avals)
jaxpr, _, out_consts, () = trace_to_jaxpr_dynamic(jvp_, in_avals_)
return jaxpr, out_consts, out_zeros()
out_tracers = [DynamicJaxprTracer(self, a) for a in out_avals]
invars = map(self.getvar, tracers)
constvars = map(self.getvar, map(self.to_jaxpr_tracer, consts))
outvars = map(self.makevar, out_tracers)
eqn = new_jaxpr_eqn([*constvars, *invars], outvars, prim,
dict(call_jaxpr=closed_fun_jaxpr,
jvp_jaxpr_fun=lu.wrap_init(jvp_jaxpr_thunk,
debug_info=jvp.debug_info),
num_consts=len(consts),
symbolic_zeros=symbolic_zeros),
fun_jaxpr.effects,
source_info_util.current())
self.frame.add_eqn(eqn)
return out_tracers
def process_custom_vjp_call(self, prim: core.Primitive,
fun: lu.WrappedFun,
fwd: lu.WrappedFun, bwd: lu.WrappedFun, tracers,
out_trees: Callable[[], Sequence[PyTreeDef]],
symbolic_zeros: bool):
tracers = map(self.to_jaxpr_tracer, tracers)
in_avals = [t.aval for t in tracers]
fun_jaxpr, out_avals, consts, _ = trace_to_jaxpr_dynamic(fun, in_avals)
closed_fun_jaxpr = core.ClosedJaxpr(convert_constvars_jaxpr(fun_jaxpr), ())
@_memoize
def fwd_jaxpr_from_zeros(*zeros):
for store in fwd.stores: store and store.reset()
fwd_ = _interleave_fun(fwd, zeros)
jaxpr, _, consts, attrs = trace_to_jaxpr_dynamic(fwd_, in_avals)
if attrs: raise NotImplementedError
return jaxpr, consts
out_tracers = [DynamicJaxprTracer(self, a) for a in out_avals]
invars = map(self.getvar, tracers)
constvars = map(self.getvar, map(self.to_jaxpr_tracer, consts))
outvars = map(self.makevar, out_tracers)
eqn = new_jaxpr_eqn([*constvars, *invars], outvars,
prim.initial_style, # pytype: disable=attribute-error
dict(fun_jaxpr=closed_fun_jaxpr,
fwd_jaxpr_thunk=fwd_jaxpr_from_zeros,
num_consts=len(consts),
bwd=bwd, out_trees=out_trees,
symbolic_zeros=symbolic_zeros),
fun_jaxpr.effects,
source_info_util.current())
self.frame.add_eqn(eqn)
return out_tracers
def process_custom_transpose(self, prim: core.Primitive, # type: ignore[override]
call: lu.WrappedFun, tracers, *,
transpose: lu.WrappedFun,
out_types,
lin_tree: PyTreeDef,
res_tree: PyTreeDef, out_tree: PyTreeDef):
tracers = map(self.to_jaxpr_tracer, tracers)
tracers_res, tracers_lin = split_list(tracers, [res_tree.num_leaves])
in_avals_p = [t.aval for t in tracers]
in_avals_t = [*[t.aval for t in tracers_res], *out_types]
call_jaxpr, out_avals, call_consts, _ = trace_to_jaxpr_dynamic(call, in_avals_p)
closed_call_jaxpr = core.ClosedJaxpr(
convert_constvars_jaxpr(call_jaxpr), ())
transpose_flat, in_tree2 = api_util.flatten_fun_nokwargs(
transpose, treedef_tuple((res_tree, out_tree)))
# the following thunk evaluates to a pair: transpose_jaxpr, transpose_consts
@_memoize
def transpose_jaxpr_thunk():
for store in transpose_flat.stores: store.reset()
jaxpr, _, consts, () = trace_to_jaxpr_dynamic(transpose_flat, in_avals_t)
return jaxpr, consts
out_tracers = [DynamicJaxprTracer(self, a) for a in out_avals]
invars = map(self.getvar, tracers)
constvars = map(self.getvar, map(self.to_jaxpr_tracer, call_consts))
outvars = map(self.makevar, out_tracers)
eqn = new_jaxpr_eqn([*constvars, *invars], outvars, prim,
dict(call_jaxpr=closed_call_jaxpr,
transpose_jaxpr_thunk=transpose_jaxpr_thunk,
out_types=out_types, res_tree=res_tree,
lin_tree=lin_tree, out_tree=out_tree),
closed_call_jaxpr.effects,
source_info_util.current())
self.frame.add_eqn(eqn)
return out_tracers
def to_jaxpr(self, out_tracers: Sequence[Tracer],
debug_info: core.DebugInfo):
return self.frame.to_jaxpr(self, out_tracers, debug_info)
custom_staging_rules: dict[Primitive, Callable] = {}
@lu.transformation2
def _interleave_fun(f, every_others, *args, **kwargs):
args_ = [x for pair in zip(args, every_others) for x in pair]
return f(*args_, **kwargs)
# TODO: consider renaming to "lazy_thunk"
def _memoize(fn):
cells = {}
sentinel = object()
def memoized(*args):
out = cells.get(args, sentinel)
if out is sentinel:
with core.set_current_trace(None):
out = cells[args] = fn(*args)
return out
return memoized
@lu.transformation_with_aux2
def _jvp_jaxpr_zeros(f, store, in_zeros, zero_avals, *primal_tangent_avals):
in_primals, nz_in_tangents = split_list(primal_tangent_avals, [len(in_zeros)])
symbolic_zeros = map(ad_util.SymbolicZero, zero_avals)
tangents = merge_lists(in_zeros, nz_in_tangents, symbolic_zeros)
out = f(*in_primals, *tangents)
n, ragged = divmod(len(out), 2)
assert not ragged
out_primals, out_tangents = out[:n], out[n:]
out_zeros = [type(t) is ad_util.SymbolicZero for t in out_tangents]
out_nz_tangents, _ = partition_list(out_zeros, out_tangents)
store.store(out_zeros)
return [*out_primals, *out_nz_tangents]
@profiler.annotate_function
def trace_to_jaxpr_dynamic(
fun: lu.WrappedFun,
in_avals: Sequence[AbstractValue],
*,
keep_inputs: list[bool] | None = None,
) -> tuple[Jaxpr, list[AbstractValue], list[Any],
list[tuple[PyTreeDef, PyTreeDef, tuple[Any, str]]]]:
keep_inputs = [True] * len(in_avals) if keep_inputs is None else keep_inputs
trace = DynamicJaxprTrace(fun.debug_info)
with core.ensure_no_leaks(trace), source_info_util.reset_name_stack():
in_tracers = _input_type_to_tracers(trace.new_arg, in_avals)
in_tracers = [t for t, keep in zip(in_tracers, keep_inputs) if keep]
with core.set_current_trace(trace):
ans = fun.call_wrapped(*in_tracers)
out_tracers = map(trace.to_jaxpr_tracer, ans)
_check_no_returned_refs(fun.debug_info, out_tracers)
jaxpr, consts, attrs_tracked = trace.to_jaxpr(out_tracers, fun.debug_info)
del trace, fun, in_tracers, out_tracers, ans
config.enable_checks.value and core.check_jaxpr(jaxpr)
return jaxpr, [v.aval for v in jaxpr.outvars], consts, attrs_tracked
def _check_no_returned_refs(
dbg: core.DebugInfo,
out_tracers: Sequence[DynamicJaxprTracer]
) -> None:
if not config.mutable_array_checks.value: return
for i, t in enumerate(out_tracers):
a = t.aval
if isinstance(a, AbstractRef):
result_paths = dbg.resolve_result_paths().safe_result_paths(len(out_tracers))
loc = result_paths[i] and f' at output tree path {result_paths[i]}'
frame = t._trace.frame
v = frame.tracer_to_var.get(id(t))
eqn = next((e for e in frame.eqns if v in e.outvars), None)
if eqn:
assert eqn.primitive is core.mutable_array_p
origin_info = ('\n\nThe returned mutable array was created on line '
f'{source_info_util.summarize(eqn.source_info)}.')
elif v in frame.invars:
arg_name = dbg.safe_arg_names(len(frame.invars))[frame.invars.index(v)]
origin_info = ('\n\nThe returned mutable array was passed in as the '
f'argument {arg_name}.')
else:
origin_info = ''
raise ValueError(
f"function {dbg.func_src_info} traced for {dbg.traced_for} returned "
f"a mutable array reference of type {a.str_short()}{loc}, but "
f"mutable array references cannot be returned.{origin_info}")
@profiler.annotate_function
def trace_to_jaxpr_dynamic2(
fun: lu.WrappedFun,
) -> tuple[Jaxpr, OutputType, list[Any]]:
assert fun.in_type is not None, "fun must be annotated with lu.annotate()"
trace = DynamicJaxprTrace(fun.debug_info)
with core.ensure_no_leaks(trace), source_info_util.reset_name_stack():
in_avals, keep_inputs = unzip2(fun.in_type)
in_tracers = _input_type_to_tracers(trace.new_arg, in_avals)
in_tracers = [t for t, keep in zip(in_tracers, keep_inputs) if keep]
with core.set_current_trace(trace):
ans = fun.call_wrapped(*in_tracers)
out_tracers = map(trace.to_jaxpr_tracer, ans)
jaxpr = trace.frame.to_jaxpr2(out_tracers, fun.debug_info)
del trace, in_tracers, out_tracers, ans
return jaxpr
AbstractedAxisName = Hashable
AbstractedAxesSpec = Union[
dict[int, AbstractedAxisName],
tuple[AbstractedAxisName, ...],
]
AttrsTracked = list[tuple[Any, str]]
AttrStates = list
def set_states(attrs_tracked: AttrsTracked, vals: AttrStates):
for ((obj, attr), val) in zip(attrs_tracked, vals):
setattr(obj, attr, val)
def get_states(attrs_tracked: AttrsTracked):
return [getattr(obj, attr) for (obj, attr) in attrs_tracked]
def infer_lambda_input_type(
axes_specs: Sequence[AbstractedAxesSpec] | None,
args: Sequence[Any]
) -> InputType:
ndims = [getattr(get_aval(x), 'ndim', 0) for x in args]
partial_specs = _canonicalize_specs(ndims, axes_specs)
specs = _complete_specs(args, partial_specs)
idxs, implicit_types = _collect_implicit(args, specs)
implicit_sig = [(ty, False) for ty in implicit_types]
explicit_sig = [(_arg_type(idxs, x, s), True) for x, s in zip(args, specs)]
input_type = (*implicit_sig, *explicit_sig)
lu._check_input_type(input_type)
return input_type
def _spec_to_dict(spec: AbstractedAxesSpec) -> dict[int, AbstractedAxisName]:
if isinstance(spec, tuple):
return {i: d for i, d in enumerate(spec) if d is not None}
else:
return spec
def _canonicalize_specs(
ndims: Sequence[int], specs: Sequence[AbstractedAxesSpec] | None
) -> list[dict[int, AbstractedAxisName]]:
if specs is None:
return [{}] * len(ndims)
else:
return [_spec_to_dict(s) for n, s in zip(ndims, specs)]
def _complete_specs(
args: Sequence[Any], partial_specs: list[dict[int, AbstractedAxisName]]
) -> list[dict[int, AbstractedAxisName]]:
# The abstracted axes specification in `partial_specs` is partial in the sense
# that there could be additional axis abstraction represented in `args` due to
# Tracers existing in the shapes of elements of `args`. The purpose of this
# function is to produce a full specification, for each argument mapping any
# abstracted axis positions to a name, introducing new names as needed for
# Tracers in axis sizes which don't already correspond to abstracted axis
# names (with one new name per unique Tracer object id).
# Identify each user-supplied name in partial_specs with a size.
sizes: dict[AbstractedAxisName, int | DynamicJaxprTracer] = {}
for x, spec in zip(args, partial_specs):
for i, name in spec.items():
d = sizes.setdefault(name, x.shape[i])
if d is not x.shape[i] and d != x.shape[i]:
raise TypeError(f"Provided size {d} for {name} does not match prior associated name for {name} : {x.shape[i]}")
# Introduce new names as needed for Tracers in shapes.
named_tracers: dict[TracerId, AbstractedAxisName] = {
id(d): name for name, d in sizes.items() if isinstance(d, Tracer)}
specs: list[dict[int, AbstractedAxisName]] = []
for x, spec in zip(args, partial_specs):
if isinstance(get_aval(x), DShapedArray):
spec = dict(spec)
for i, d in enumerate(x.shape):
if isinstance(d, Tracer):
spec[i] = named_tracers.get(id(d), TracerAsName(d))
specs.append(spec)
# Assert that `specs` is now complete in the sense that there are no Tracers
# which don't correspond to an AbstractedAxisName.
assert all(not spec or not any(isinstance(d, Tracer) and i not in spec
for i, d in enumerate(x.shape))
for x, spec in zip(args, specs))
return specs
def _collect_implicit(
args: Sequence[Any], specs: list[dict[int, AbstractedAxisName]]
) -> tuple[dict[AbstractedAxisName, DBIdx], list[AbstractValue]]:
# Given an explicit argument list and a specification of abstracted axes, we
# want to produce an InputType by identifying AbstractedAxisNames with DBIdxs
# and figuring out which AbstractedAxisNames correspond to implicit arguments.
idxs: dict[AbstractedAxisName, DBIdx] = {}
implicit_types: list[AbstractValue] = []
explicit_tracers: dict[TracerId, int] = {}
counter = it.count()
# Add implicit arguments to idxs.
for explicit_idx, (x, spec) in enumerate(zip(args, specs)):
for i, name in spec.items():
if name not in idxs and id(x.shape[i]) not in explicit_tracers:
idxs[name] = DBIdx(next(counter))
implicit_types.append(get_aval(x.shape[i]))
if isinstance(x, Tracer):
explicit_tracers.setdefault(id(x), explicit_idx) # use the first
# Now that we know the implicit args, add explicit args to idxs.
offset = len(implicit_types)
for x, spec in zip(args, specs):
for i, name in spec.items():
if id(x.shape[i]) in explicit_tracers:
idxs.setdefault(name, DBIdx(offset + explicit_tracers[id(x.shape[i])]))
return idxs, implicit_types
def _arg_type(
idxs: dict[AbstractedAxisName, DBIdx], x: Any,
spec: dict[int, AbstractedAxisName]
) -> AbstractValue:
# Produce an AbstractValue by substituting DBIdxs for AbstractedAxisNames.
aval = get_aval(x) # aval.shape could contain Tracers
if not spec: return aval
shape: list[int | DBIdx] = [idxs[spec[i]] if i in spec else d
for i, d in enumerate(aval.shape)]
assert not any(isinstance(d, Tracer) for d in shape)
return DShapedArray(tuple(shape), aval.dtype, False)
def _add_implicit_outputs(jaxpr: Jaxpr) -> tuple[Jaxpr, OutputType]:
invars = [*jaxpr.constvars, *jaxpr.invars]
expl_outvars = jaxpr.outvars
# First do a pass to collect implicit outputs, meaning variables which occur
# in explicit_outvars types but not in invars or to the left in outvars.
seen: set[Var] = set(invars)
impl_outvars = [seen.add(d) or d for x in expl_outvars if type(x) is Var and # type: ignore
(seen.add(x) or type(x.aval) is DShapedArray) # type: ignore
for d in x.aval.shape if type(d) is Var and d not in seen]
outvars = [*impl_outvars, *expl_outvars]
# Now assemble an OutputType by mapping vars in shapes to InDBIdx/OutDBIdx.
in_map : dict[Var, InDBIdx] = {v: InDBIdx(i) for i, v in enumerate( invars)}
out_map: dict[Var, OutDBIdx] = {x: OutDBIdx(i) for i, x in enumerate(outvars)
if type(x) is Var}
out_avals_ = (x.aval for x in outvars)
out_avals = [a.update(shape=tuple(in_map.get(d, out_map.get(d))
if type(d) is Var else d for d in a.shape))
if type(a) is DShapedArray else a for a in out_avals_]
kept_outs = [False] * len(impl_outvars) + [True] * len(expl_outvars)
out_type = tuple(zip(out_avals, kept_outs))
new_jaxpr = Jaxpr(jaxpr.constvars, jaxpr.invars, outvars, jaxpr.eqns,
jaxpr.effects, jaxpr.debug_info)
config.enable_checks.value and core.check_jaxpr(jaxpr)
return new_jaxpr, out_type
class TracerAsName:
ref: Any
def __init__(self, tracer):
self.ref = core.get_referent(tracer)
def __eq__(self, other):
return isinstance(other, TracerAsName) and self.ref is other.ref
def __hash__(self):
return id(self.ref)
def _extract_implicit_args(
trace: DynamicJaxprTrace, in_type: Sequence[tuple[AbstractValue, bool]],
explicit_tracers: Sequence[DynamicJaxprTracer]
) -> Sequence[DynamicJaxprTracer]:
# First, construct a list to represent the full argument list, leaving the
# implicit arguments as Nones for now.
explicit_tracers_ = iter(explicit_tracers)
tracers = [next(explicit_tracers_) if expl else None for _, expl in in_type]
assert next(explicit_tracers_, None) is None
del explicit_tracers_
# Next, populate the implicit arguments using DBIdxs in in_type.
for i, (aval, explicit) in enumerate(in_type):
if not explicit or not isinstance(aval, DShapedArray):
continue # can't populate an implicit argument
tracer = tracers[i]
assert tracer is not None
for d1, d2 in zip(aval.shape, tracer.aval.shape):
if isinstance(d1, DBIdx):
if tracers[d1.val] is None:
tracers[d1.val] = trace.to_jaxpr_tracer(d2)
assert tracers[d1.val] is trace.to_jaxpr_tracer(d2)
assert all(t is not None for t in tracers)
return [t for t, (_, e) in zip(tracers, in_type) if not e] # type: ignore
def _input_type_to_tracers(
new_arg: Callable[[AbstractValue], Tracer],
in_avals: Sequence[AbstractValue]
) -> Sequence[Tracer]:
# Create input Tracers given input AbstractValues, each of which can contain
# DeBruijn indices which refer to positions in the input argument list. That
# is, each element `a` of `in_avals` can have DBIdx instances in its shape,
# which must refer to positions left of `a`'s.
in_tracers: list[Tracer] = []
def _substitute_tracers_in_aval(a: AbstractValue) -> AbstractValue:
if isinstance(a, DShapedArray) and any(type(d) is DBIdx for d in a.shape):
shape = [in_tracers[d.val] if type(d) is DBIdx else d for d in a.shape]
return a.update(shape=tuple(shape))
return a
for a in in_avals:
in_tracers.append(new_arg(_substitute_tracers_in_aval(a)))
return in_tracers
def _substitute_vars_in_type(
consts: dict[Var, Literal], env: dict[Var, Var], a: AbstractValue
) -> AbstractValue:
if isinstance(a, DShapedArray) and any(isinstance(d, Var) for d in a.shape):
shape = [consts[d].val if d in consts else env[d] # type: ignore
if isinstance(d, Var) else d for d in a.shape]
return a.update(shape=tuple(shape))
else:
return a
Const = Any
Val = Any
def pad_jaxpr(jaxpr: Jaxpr, consts: Sequence[Const]
) -> tuple[Jaxpr, list[Const]]:
bounds = {v: v.aval.dtype.bound for v in jaxpr.invars
if isinstance(v.aval, core.UnshapedArray) and
type(v.aval.dtype) is core.bint and not v.aval.shape}
idxs = {v: DBIdx(i) for i, v in enumerate(jaxpr.invars)}
def substitute(aval: AbstractValue) -> AbstractValue:
if (isinstance(aval, core.UnshapedArray) and type(aval.dtype) is core.bint
and not aval.shape):
return ShapedArray((), dtypes._scalar_type_to_dtype(int))
elif isinstance(aval, DShapedArray):
shape = [bounds.get(d, idxs.get(d, d)) for d in aval.shape] # type: ignore
typ = ShapedArray if all(type(d) is int for d in shape) else DShapedArray
return typ(tuple(shape), aval.dtype, aval.weak_type)
else:
return aval
in_avals = [substitute(v.aval) for v in jaxpr.invars]
eval_padded = lu.wrap_init(partial(_eval_jaxpr_padded, jaxpr, consts),
debug_info=jaxpr.debug_info)
padded_jaxpr, _, padded_consts, () = trace_to_jaxpr_dynamic(eval_padded, in_avals)
return padded_jaxpr, padded_consts
class BoundedAxisSize(NamedTuple):
val: int | DynamicJaxprTracer
bound: int
def _eval_jaxpr_padded(
jaxpr: Jaxpr, consts: Sequence[Const], *args: DynamicJaxprTracer
) -> list[Const | DynamicJaxprTracer]:
env: dict[Var, Val] = {}
def read(x):
return x.val if type(x) is Literal else env[x]
def write(v, val) -> None:
env[v] = val
map(write, jaxpr.constvars, consts)
map(write, jaxpr.invars, args)
last_used = core.last_used(jaxpr)
for eqn in jaxpr.eqns:
in_avals = [_substitute_axis_sizes(env, v.aval) for v in eqn.invars]
out_avals = [_substitute_axis_sizes(env, v.aval) for v in eqn.outvars]
rule = padding_rules[eqn.primitive]
outs = rule(in_avals, out_avals, *map(read, eqn.invars), **eqn.params)
map(write, eqn.outvars, outs)
core.clean_up_dead_vars(eqn, env, last_used)
return map(read, jaxpr.outvars)
def _substitute_axis_sizes(env: dict, aval: AbstractValue) -> AbstractValue:
if isinstance(aval, DShapedArray):
shp = []
for d in aval.shape:
if isinstance(d, core.DArray):
assert not d.shape and type(d.dtype) is core.bint
shp.append(BoundedAxisSize(int(d._data), int(d.dtype.bound)))
elif (type(d) is core.Var and isinstance(d.aval, core.DShapedArray) and
type(d.aval.dtype) is core.bint):
assert not d.aval.shape
shp.append(BoundedAxisSize(env[d], d.aval.dtype.bound))
else:
shp.append(env.get(d, d))
return DShapedArray(tuple(shp), aval.dtype, aval.weak_type)
else:
return aval
def _is_bint_axis_size(d: int | core.DArray | core.Var) -> bool:
if isinstance(d, core.DArray):
assert not d.shape # pytype: disable=attribute-error
return type(d.dtype) is core.bint # pytype: disable=attribute-error
elif isinstance(d, core.Var):
return (isinstance(d.aval, core.DShapedArray) and # pytype: disable=attribute-error
type(d.aval.dtype) is core.bint) # pytype: disable=attribute-error
return False
padding_rules: dict[Primitive, Callable] = {}
def def_trivial_padding(prim: Primitive) -> None:
if prim.multiple_results:
padding_rules[prim] = partial(_trivial_padding_rule_multi, prim)
else:
padding_rules[prim] = partial(_trivial_padding_rule, prim)
def _trivial_padding_rule(prim, _, __, *args, **params):
return [prim.bind(*args, **params)]
def _trivial_padding_rule_multi(prim, _, __, *args, **params):
return prim.bind(*args, **params)
def call_padding_rule(prim, in_avals, out_avals, *args, call_jaxpr, **params):
if call_jaxpr.constvars: raise NotImplementedError
padded_jaxpr, padded_consts = pad_jaxpr(call_jaxpr, ())
if padded_consts: raise NotImplementedError
new_params = dict(params, call_jaxpr=padded_jaxpr)
subfuns, bind_params = prim.get_bind_params(new_params)
return prim.bind(*subfuns, *args, **bind_params)
def instantiate_const_at(trace: JaxprTrace, instantiate: bool, tracer):
if instantiate:
return trace.instantiate_const(tracer)
else:
return tracer
def inline_jaxpr_into_trace(
trace: DynamicJaxprTrace, jaxpr: Jaxpr, consts: Sequence[Any],
*arg_tracers: DynamicJaxprTracer) -> list[Any]:
# This function is conceptually the same thing as just calling eval_jaxpr,
const_tracers = map(trace.new_const, consts)
constvars = map(trace.getvar, const_tracers)
argvars = map(trace.getvar, arg_tracers)
env: dict[Var, Var] = dict(zip([*jaxpr.constvars, *jaxpr.invars],
[*constvars, *argvars]))
src = source_info_util.current()
for eqn in jaxpr.eqns:
invars = [x if isinstance(x, Literal) else env[x] for x in eqn.invars]
outvars = [Var('', v.aval) for v in eqn.outvars]
src_ = (src if not eqn.source_info.name_stack else
src.replace(name_stack=src.name_stack + eqn.source_info.name_stack))
trace.frame.add_eqn(eqn.replace(invars, outvars, source_info=src_))
map(env.setdefault, eqn.outvars, outvars)
tracer_env: dict[Var, Any] = dict(zip([*jaxpr.constvars, *jaxpr.invars],
[*consts, *arg_tracers]))
def new_tracer(atom):
tracer = tracer_env[atom] = DynamicJaxprTracer(trace, atom.aval, src)
trace.frame.tracers.append(tracer)
trace.frame.tracer_to_var[id(tracer)] = env[atom]
return tracer
return [x.val if isinstance(x, Literal) else tracer_env[x] if x in tracer_env
else new_tracer(x) for x in jaxpr.outvars]
# TODO(mattjj,dougalm): this special handling is to avoid round-tripping the
# jaxpr when we do grad-of-pmap. The tag is set by LinearizeTrace.process_call's
# handling of pmap. Remove when we replace the pmap implementation.
def _linearize_of_pmap_hack(f: lu.WrappedFun, jaxpr, consts) -> tuple[Jaxpr, list]:
if (not f.transforms and type(f.f) is HashableFunction and
getattr(f.f, '_pmap_tag', None)):
_, jaxpr = f.f.closure
return convert_constvars_jaxpr(jaxpr), []
return jaxpr, consts