mirror of
https://github.com/ROCm/jax.git
synced 2025-04-17 20:36:05 +00:00
1031 lines
42 KiB
Python
1031 lines
42 KiB
Python
from __future__ import annotations
|
|
|
|
|
|
import builtins
|
|
from collections.abc import Callable, Sequence
|
|
import os
|
|
from typing import Any, IO, Literal, NamedTuple, Protocol, TypeVar, Union, overload
|
|
|
|
from jax._src import core as _core
|
|
from jax._src import dtypes as _dtypes
|
|
from jax._src.lax.lax import PrecisionLike
|
|
from jax._src.lax.slicing import GatherScatterMode
|
|
from jax._src.lib import Device
|
|
from jax._src.numpy.index_tricks import _Mgrid, _Ogrid, CClass as _CClass, RClass as _RClass
|
|
from jax._src.numpy.array_api_metadata import ArrayNamespaceInfo
|
|
from jax._src.typing import (
|
|
Array, ArrayLike, DType, DTypeLike, DeprecatedArg,
|
|
DimSize, DuckTypedArray, Shape, StaticScalar,
|
|
)
|
|
from jax.numpy import fft as fft, linalg as linalg
|
|
from jax.sharding import Sharding as _Sharding
|
|
import numpy as _np
|
|
|
|
_T = TypeVar('_T')
|
|
|
|
_Axis = Union[None, int, Sequence[int]]
|
|
|
|
_Device = Device
|
|
|
|
ComplexWarning: type
|
|
|
|
class ufunc:
|
|
def __init__(self, func: Callable[..., Any], /,
|
|
nin: int, nout: int, *,
|
|
name: str | None = None,
|
|
nargs: int | None = None,
|
|
identity: Any = None,
|
|
call: Callable[..., Any] | None = None,
|
|
reduce: Callable[..., Any] | None = None,
|
|
accumulate: Callable[..., Any] | None = None,
|
|
at: Callable[..., Any] | None = None,
|
|
reduceat: Callable[..., Any] | None = None,
|
|
): ...
|
|
@property
|
|
def nin(self) -> int: ...
|
|
@property
|
|
def nout(self) -> int: ...
|
|
@property
|
|
def nargs(self) -> int: ...
|
|
@property
|
|
def identity(self) -> builtins.bool | int | float: ...
|
|
def __call__(self, *args: ArrayLike) -> Any: ...
|
|
def reduce(self, a: ArrayLike, /, *,
|
|
axis: int | None = 0,
|
|
dtype: DTypeLike | None = None,
|
|
out: None = None,
|
|
keepdims: builtins.bool = False,
|
|
initial: ArrayLike | None = None,
|
|
where: ArrayLike | None = None) -> Array: ...
|
|
def accumulate(self, a: ArrayLike, /, *,
|
|
axis: int = 0,
|
|
dtype: DTypeLike | None = None,
|
|
out: None = None) -> Array: ...
|
|
def at(self, a: ArrayLike, indices: Any, b: ArrayLike | None = None, /, *,
|
|
inplace: builtins.bool = True) -> Array: ...
|
|
def reduceat(self, a: ArrayLike, indices: Any, *,
|
|
axis: int = 0,
|
|
dtype: DTypeLike | None = None,
|
|
out: None = None) -> Array: ...
|
|
def outer(self, a: ArrayLike, b: ArrayLike, /) -> Array: ...
|
|
|
|
class BinaryUfunc(Protocol):
|
|
@property
|
|
def nin(self) -> int: ...
|
|
@property
|
|
def nout(self) -> int: ...
|
|
@property
|
|
def nargs(self) -> int: ...
|
|
@property
|
|
def identity(self) -> builtins.bool | int | float: ...
|
|
def __call__(self, x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def reduce(self, a: ArrayLike, /, *,
|
|
axis: int | None = 0,
|
|
dtype: DTypeLike | None = None,
|
|
out: None = None,
|
|
keepdims: builtins.bool = False,
|
|
initial: ArrayLike | None = None,
|
|
where: ArrayLike | None = None) -> Array: ...
|
|
def accumulate(self, a: ArrayLike, /, *,
|
|
axis: int = 0,
|
|
dtype: DTypeLike | None = None,
|
|
out: None = None) -> Array: ...
|
|
def at(self, a: ArrayLike, indices: Any, b: ArrayLike | None = None, /, *,
|
|
inplace: builtins.bool = True) -> Array: ...
|
|
def reduceat(self, a: ArrayLike, indices: Any, *,
|
|
axis: int = 0,
|
|
dtype: DTypeLike | None = None,
|
|
out: None = None) -> Array: ...
|
|
def outer(self, a: ArrayLike, b: ArrayLike, /) -> Array: ...
|
|
|
|
__array_api_version__: str
|
|
def __array_namespace_info__() -> ArrayNamespaceInfo: ...
|
|
|
|
_deprecations: dict[str, tuple[str, Any]]
|
|
def abs(x: ArrayLike, /) -> Array: ...
|
|
def absolute(x: ArrayLike, /) -> Array: ...
|
|
def acos(x: ArrayLike, /) -> Array: ...
|
|
def acosh(x: ArrayLike, /) -> Array: ...
|
|
add: BinaryUfunc
|
|
def amax(a: ArrayLike, axis: _Axis = ..., out: None = ...,
|
|
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
def amin(a: ArrayLike, axis: _Axis = ..., out: None = ...,
|
|
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
def all(a: ArrayLike, axis: _Axis = ..., out: None = ...,
|
|
keepdims: builtins.bool = ..., *, where: ArrayLike | None = ...) -> Array: ...
|
|
def allclose(a: ArrayLike, b: ArrayLike, rtol: ArrayLike = ...,
|
|
atol: ArrayLike = ..., equal_nan: builtins.bool = ...) -> Array: ...
|
|
def angle(z: ArrayLike, deg: builtins.bool = ...) -> Array: ...
|
|
def any(a: ArrayLike, axis: _Axis = ..., out: None = ...,
|
|
keepdims: builtins.bool = ..., *, where: ArrayLike | None = ...) -> Array: ...
|
|
def append(
|
|
arr: ArrayLike, values: ArrayLike, axis: int | None = ...
|
|
) -> Array: ...
|
|
def apply_along_axis(func1d: Callable, axis: int, arr: ArrayLike, *args,
|
|
**kwargs) -> Array: ...
|
|
def apply_over_axes(
|
|
func: Callable, a: ArrayLike, axes: Sequence[int]
|
|
) -> Array: ...
|
|
def arange(
|
|
start: ArrayLike | DimSize,
|
|
stop: ArrayLike | DimSize | None = ...,
|
|
step: ArrayLike | None = ...,
|
|
dtype: DTypeLike | None = ..., *,
|
|
device: _Device | _Sharding | None = ...,
|
|
) -> Array: ...
|
|
def arccos(x: ArrayLike, /) -> Array: ...
|
|
def arccosh(x: ArrayLike, /) -> Array: ...
|
|
def arcsin(x: ArrayLike, /) -> Array: ...
|
|
def arcsinh(x: ArrayLike, /) -> Array: ...
|
|
def arctan(x: ArrayLike, /) -> Array: ...
|
|
def arctan2(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def arctanh(x: ArrayLike, /) -> Array: ...
|
|
def argmax(
|
|
a: ArrayLike,
|
|
axis: int | None = ...,
|
|
out: None = ...,
|
|
keepdims: builtins.bool | None = ...,
|
|
) -> Array: ...
|
|
def argmin(
|
|
a: ArrayLike,
|
|
axis: int | None = ...,
|
|
out: None = ...,
|
|
keepdims: builtins.bool | None = ...,
|
|
) -> Array: ...
|
|
def argpartition(a: ArrayLike, kth: int, axis: int = ...) -> Array: ...
|
|
def argsort(
|
|
a: ArrayLike,
|
|
axis: int | None = ...,
|
|
*,
|
|
stable: builtins.bool = ...,
|
|
descending: builtins.bool = ...,
|
|
kind: str | None = ...,
|
|
order: None = ...,
|
|
) -> Array: ...
|
|
def argwhere(
|
|
a: ArrayLike,
|
|
*,
|
|
size: int | None = ...,
|
|
fill_value: ArrayLike | None = ...,
|
|
) -> Array: ...
|
|
def around(a: ArrayLike, decimals: int = ..., out: None = ...) -> Array: ...
|
|
def array(object: Any, dtype: DTypeLike | None = ..., copy: builtins.bool = True,
|
|
order: str | None = ..., ndmin: int = ..., *,
|
|
device: _Device | _Sharding | None = None) -> Array: ...
|
|
def array_equal(
|
|
a1: ArrayLike, a2: ArrayLike, equal_nan: builtins.bool = ...
|
|
) -> Array: ...
|
|
def array_equiv(a1: ArrayLike, a2: ArrayLike) -> Array: ...
|
|
array_repr = _np.array_repr
|
|
def array_split(
|
|
ary: ArrayLike,
|
|
indices_or_sections: int | Sequence[int] | ArrayLike,
|
|
axis: int = ...,
|
|
) -> list[Array]: ...
|
|
array_str = _np.array_str
|
|
def asarray(
|
|
a: Any, dtype: DTypeLike | None = ..., order: str | None = ...,
|
|
*, copy: builtins.bool | None = ...,
|
|
device: _Device | _Sharding | None = ...,
|
|
) -> Array: ...
|
|
def asin(x: ArrayLike, /) -> Array: ...
|
|
def asinh(x: ArrayLike, /) -> Array: ...
|
|
def astype(a: ArrayLike, dtype: DTypeLike | None, /, *, copy: builtins.bool = ..., device: _Device | _Sharding | None = ...) -> Array: ...
|
|
def atan(x: ArrayLike, /) -> Array: ...
|
|
def atan2(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def atanh(x: ArrayLike, /) -> Array: ...
|
|
@overload
|
|
def atleast_1d() -> list[Array]: ...
|
|
@overload
|
|
def atleast_1d(x: ArrayLike, /) -> Array: ...
|
|
@overload
|
|
def atleast_1d(x: ArrayLike, y: ArrayLike, /, *arys: ArrayLike) -> list[Array]: ...
|
|
|
|
@overload
|
|
def atleast_2d() -> list[Array]: ...
|
|
@overload
|
|
def atleast_2d(x: ArrayLike, /) -> Array: ...
|
|
@overload
|
|
def atleast_2d(x: ArrayLike, y: ArrayLike, /, *arys: ArrayLike) -> list[Array]: ...
|
|
|
|
@overload
|
|
def atleast_3d() -> list[Array]: ...
|
|
@overload
|
|
def atleast_3d(x: ArrayLike, /) -> Array: ...
|
|
@overload
|
|
def atleast_3d(x: ArrayLike, y: ArrayLike, /, *arys: ArrayLike) -> list[Array]: ...
|
|
|
|
@overload
|
|
def average(a: ArrayLike, axis: _Axis = ..., weights: ArrayLike | None = ...,
|
|
returned: Literal[False] = False, keepdims: builtins.bool = False) -> Array: ...
|
|
@overload
|
|
def average(a: ArrayLike, axis: _Axis = ..., weights: ArrayLike | None = ..., *,
|
|
returned: Literal[True], keepdims: builtins.bool = False) -> tuple[Array, Array]: ...
|
|
@overload
|
|
def average(a: ArrayLike, axis: _Axis = ..., weights: ArrayLike | None = ...,
|
|
returned: builtins.bool = False, keepdims: builtins.bool = False) -> Array | tuple[Array, Array]: ...
|
|
|
|
def bartlett(M: int) -> Array: ...
|
|
bfloat16: Any
|
|
def bincount(x: ArrayLike, weights: ArrayLike | None = ...,
|
|
minlength: int = ..., *, length: int | None = ...) -> Array: ...
|
|
bitwise_and: BinaryUfunc
|
|
def bitwise_count(x: ArrayLike, /) -> Array: ...
|
|
def bitwise_invert(x: ArrayLike, /) -> Array: ...
|
|
def bitwise_left_shift(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def bitwise_not(x: ArrayLike, /) -> Array: ...
|
|
bitwise_or: BinaryUfunc
|
|
def bitwise_right_shift(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
bitwise_xor: BinaryUfunc
|
|
def blackman(M: int) -> Array: ...
|
|
def block(arrays: ArrayLike | Sequence[ArrayLike] | Sequence[Sequence[ArrayLike]]) -> Array: ...
|
|
bool: Any
|
|
bool_: Any
|
|
def broadcast_arrays(*args: ArrayLike) -> list[Array]: ...
|
|
|
|
@overload
|
|
def broadcast_shapes(*shapes: Sequence[int]) -> tuple[int, ...]: ...
|
|
|
|
@overload
|
|
def broadcast_shapes(*shapes: Sequence[int | _core.Tracer]
|
|
) -> tuple[int | _core.Tracer, ...]: ...
|
|
|
|
def broadcast_to(array: ArrayLike, shape: DimSize | Shape) -> Array: ...
|
|
c_: _CClass
|
|
can_cast = _np.can_cast
|
|
def cbrt(x: ArrayLike, /) -> Array: ...
|
|
cdouble: Any
|
|
def ceil(x: ArrayLike, /) -> Array: ...
|
|
character = _np.character
|
|
def choose(a: ArrayLike, choices: Array | _np.ndarray | Sequence[ArrayLike],
|
|
out: None = ..., mode: str = ...) -> Array: ...
|
|
def clip(
|
|
x: ArrayLike | None = ...,
|
|
/,
|
|
min: ArrayLike | None = ...,
|
|
max: ArrayLike | None = ...,
|
|
a: ArrayLike | DeprecatedArg | None = ...,
|
|
a_min: ArrayLike | DeprecatedArg | None = ...,
|
|
a_max: ArrayLike | DeprecatedArg | None = ...
|
|
) -> Array: ...
|
|
def column_stack(
|
|
tup: _np.ndarray | Array | Sequence[ArrayLike]
|
|
) -> Array: ...
|
|
complex128: Any
|
|
complex64: Any
|
|
complex_: Any
|
|
complexfloating = _np.complexfloating
|
|
def compress(condition: ArrayLike, a: ArrayLike, axis: int | None = ...,
|
|
size: int | None = ..., fill_value: ArrayLike = ..., out: None = ...) -> Array: ...
|
|
def concat(arrays: Sequence[ArrayLike], /, *, axis: int | None = 0) -> Array: ...
|
|
def concatenate(
|
|
arrays: _np.ndarray | Array | Sequence[ArrayLike],
|
|
axis: int | None = ...,
|
|
dtype: DTypeLike | None = ...,
|
|
) -> Array: ...
|
|
def conjugate(x: ArrayLike, /) -> Array: ...
|
|
def conj(x: ArrayLike, /) -> Array: ...
|
|
def convolve(a: ArrayLike, v: ArrayLike, mode: str = ..., *,
|
|
precision: PrecisionLike = ...,
|
|
preferred_element_type: DTypeLike | None = ...) -> Array: ...
|
|
def copy(a: ArrayLike, order: str | None = ...) -> Array: ...
|
|
def copysign(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def corrcoef(x: ArrayLike, y: ArrayLike | None = ..., rowvar: builtins.bool = ...) -> Array: ...
|
|
def correlate(a: ArrayLike, v: ArrayLike, mode: str = ..., *,
|
|
precision: PrecisionLike = ...,
|
|
preferred_element_type: DTypeLike | None = ...) -> Array: ...
|
|
def cos(x: ArrayLike, /) -> Array: ...
|
|
def cosh(x: ArrayLike, /) -> Array: ...
|
|
def count_nonzero(a: ArrayLike, axis: _Axis = ...,
|
|
keepdims: builtins.bool = ...) -> Array: ...
|
|
def cov(m: ArrayLike, y: ArrayLike | None = ..., rowvar: builtins.bool = ...,
|
|
bias: builtins.bool = ..., ddof: int | None = ...,
|
|
fweights: ArrayLike | None = ...,
|
|
aweights: ArrayLike | None = ...) -> Array: ...
|
|
def cross(
|
|
a: ArrayLike,
|
|
b: ArrayLike,
|
|
axisa: int = -1,
|
|
axisb: int = -1,
|
|
axisc: int = -1,
|
|
axis: int | None = ...,
|
|
) -> Array: ...
|
|
csingle: Any
|
|
def cumprod(a: ArrayLike, axis: int | None = ..., dtype: DTypeLike = ...,
|
|
out: None = ...) -> Array: ...
|
|
def cumsum(a: ArrayLike, axis: int | None = ..., dtype: DTypeLike = ...,
|
|
out: None = ...) -> Array: ...
|
|
def cumulative_prod(x: ArrayLike, /, *, axis: int | None = ...,
|
|
dtype: DTypeLike | None = ...,
|
|
include_initial: builtins.bool = ...) -> Array: ...
|
|
def cumulative_sum(x: ArrayLike, /, *, axis: int | None = ...,
|
|
dtype: DTypeLike | None = ...,
|
|
include_initial: builtins.bool = ...) -> Array: ...
|
|
|
|
def deg2rad(x: ArrayLike, /) -> Array: ...
|
|
def degrees(x: ArrayLike, /) -> Array: ...
|
|
def delete(
|
|
arr: ArrayLike,
|
|
obj: ArrayLike | slice,
|
|
axis: int | None = ...,
|
|
*,
|
|
assume_unique_indices: builtins.bool = ...,
|
|
) -> Array: ...
|
|
def diag(v: ArrayLike, k: int = 0) -> Array: ...
|
|
def diag_indices(n: int, ndim: int = ...) -> tuple[Array, ...]: ...
|
|
def diag_indices_from(arr: ArrayLike) -> tuple[Array, ...]: ...
|
|
def diagflat(v: ArrayLike, k: int = 0) -> Array: ...
|
|
def diagonal(
|
|
a: ArrayLike, offset: ArrayLike = ..., axis1: int = ..., axis2: int = ...
|
|
): ...
|
|
def diff(a: ArrayLike, n: int = ..., axis: int = ...,
|
|
prepend: ArrayLike | None = ...,
|
|
append: ArrayLike | None = ...) -> Array: ...
|
|
def digitize(x: ArrayLike, bins: ArrayLike, right: builtins.bool = ..., *,
|
|
method: str | None = ...) -> Array: ...
|
|
def divide(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def divmod(x: ArrayLike, y: ArrayLike, /) -> tuple[Array, Array]: ...
|
|
def dot(
|
|
a: ArrayLike, b: ArrayLike, *, precision: PrecisionLike = ...,
|
|
preferred_element_type: DTypeLike | None = ...) -> Array: ...
|
|
double: Any
|
|
def dsplit(
|
|
ary: ArrayLike, indices_or_sections: int | ArrayLike
|
|
) -> list[Array]: ...
|
|
|
|
def dstack(tup: _np.ndarray | Array | Sequence[ArrayLike],
|
|
dtype: DTypeLike | None = ...) -> Array: ...
|
|
dtype = _np.dtype
|
|
e: float
|
|
def ediff1d(ary: ArrayLike, to_end: ArrayLike | None = ...,
|
|
to_begin: ArrayLike | None = ...) -> Array: ...
|
|
@overload
|
|
def einsum(
|
|
subscript: str, /,
|
|
*operands: ArrayLike,
|
|
out: None = ...,
|
|
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
|
|
precision: PrecisionLike = ...,
|
|
preferred_element_type: DTypeLike | None = ...,
|
|
_use_xeinsum: builtins.bool = False,
|
|
_dot_general: Callable[..., Array] = ...,
|
|
) -> Array: ...
|
|
|
|
@overload
|
|
def einsum(
|
|
arr: ArrayLike,
|
|
axes: Sequence[Any], /,
|
|
*operands: ArrayLike | Sequence[Any],
|
|
out: None = ...,
|
|
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
|
|
precision: PrecisionLike = ...,
|
|
preferred_element_type: DTypeLike | None = ...,
|
|
_use_xeinsum: builtins.bool = False,
|
|
_dot_general: Callable[..., Array] = ...,
|
|
) -> Array: ...
|
|
@overload
|
|
def einsum(
|
|
subscripts, /,
|
|
*operands,
|
|
out: None = ...,
|
|
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
|
|
precision: PrecisionLike = ...,
|
|
preferred_element_type: DTypeLike | None = ...,
|
|
_use_xeinsum: builtins.bool = ...,
|
|
_dot_general: Callable[..., Array] = ...,
|
|
) -> Array: ...
|
|
|
|
@overload
|
|
def einsum_path(
|
|
subscripts: str, /,
|
|
*operands: ArrayLike,
|
|
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
|
|
) -> tuple[list[tuple[int, ...]], Any]: ...
|
|
@overload
|
|
def einsum_path(
|
|
arr: ArrayLike,
|
|
axes: Sequence[Any], /,
|
|
*operands: ArrayLike | Sequence[Any],
|
|
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
|
|
) -> tuple[list[tuple[int, ...]], Any]: ...
|
|
@overload
|
|
def einsum_path(
|
|
subscripts, /,
|
|
*operands: ArrayLike,
|
|
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
|
|
) -> tuple[list[tuple[int, ...]], Any]: ...
|
|
|
|
def empty(shape: Any, dtype: DTypeLike | None = ...,
|
|
device: _Device | _Sharding | None = ...) -> Array: ...
|
|
def empty_like(prototype: ArrayLike | DuckTypedArray,
|
|
dtype: DTypeLike | None = ...,
|
|
shape: Any = ..., *,
|
|
device: _Device | _Sharding | None = ...) -> Array: ...
|
|
def equal(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
euler_gamma: float
|
|
def exp(x: ArrayLike, /) -> Array: ...
|
|
def exp2(x: ArrayLike, /) -> Array: ...
|
|
def expand_dims(a: ArrayLike, axis: int | Sequence[int]) -> Array: ...
|
|
def expm1(x: ArrayLike, /) -> Array: ...
|
|
def extract(condition: ArrayLike, arr: ArrayLike, *,
|
|
size: int | None = None, fill_value: ArrayLike = 0) -> Array: ...
|
|
def eye(N: DimSize, M: DimSize | None = ..., k: int | ArrayLike = ...,
|
|
dtype: DTypeLike | None = ..., *,
|
|
device: _Device | _Sharding | None = ...) -> Array: ...
|
|
def fabs(x: ArrayLike, /) -> Array: ...
|
|
finfo = _dtypes.finfo
|
|
def fix(x: ArrayLike, out: None = ...) -> Array: ...
|
|
def flatnonzero(
|
|
a: ArrayLike,
|
|
*,
|
|
size: int | None = ...,
|
|
fill_value: None | ArrayLike | tuple[ArrayLike] = ...,
|
|
) -> Array: ...
|
|
flexible = _np.flexible
|
|
def flip(
|
|
m: ArrayLike, axis: int | Sequence[int] | None = ...
|
|
) -> Array: ...
|
|
|
|
def fliplr(m: ArrayLike) -> Array: ...
|
|
def flipud(m: ArrayLike) -> Array: ...
|
|
float16: Any
|
|
float32: Any
|
|
float64: Any
|
|
float8_e4m3b11fnuz: Any
|
|
float8_e4m3fn: Any
|
|
float8_e4m3fnuz: Any
|
|
float8_e5m2: Any
|
|
float8_e5m2fnuz: Any
|
|
float_: Any
|
|
def float_power(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
floating = _np.floating
|
|
def floor(x: ArrayLike, /) -> Array: ...
|
|
def floor_divide(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def fmax(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def fmin(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def fmod(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def frexp(x: ArrayLike, /) -> tuple[Array, Array]: ...
|
|
def from_dlpack(x: Any, /, *, device: _Device | _Sharding | None = None,
|
|
copy: builtins.bool | None = None) -> Array: ...
|
|
def frombuffer(buffer: bytes | Any, dtype: DTypeLike = ...,
|
|
count: int = ..., offset: int = ...) -> Array: ...
|
|
def fromfile(*args, **kwargs): ...
|
|
def fromfunction(function: Callable[..., Array], shape: Any,
|
|
*, dtype: DTypeLike = ..., **kwargs) -> Array: ...
|
|
def fromiter(*args, **kwargs): ...
|
|
def frompyfunc(func: Callable[..., Any], /, nin: int, nout: int,
|
|
*, identity: Any = None) -> ufunc: ...
|
|
def fromstring(
|
|
string: str, dtype: DTypeLike = ..., count: int = ..., *, sep: str
|
|
) -> Array: ...
|
|
def full(shape: Any, fill_value: ArrayLike,
|
|
dtype: DTypeLike | None = ..., *,
|
|
device: _Device | _Sharding | None = ...) -> Array: ...
|
|
def full_like(a: ArrayLike | DuckTypedArray,
|
|
fill_value: ArrayLike, dtype: DTypeLike | None = ...,
|
|
shape: Any = ..., *,
|
|
device: _Device | _Sharding | None = ...) -> Array: ...
|
|
def gcd(x1: ArrayLike, x2: ArrayLike) -> Array: ...
|
|
generic = _np.generic
|
|
def geomspace(
|
|
start: ArrayLike,
|
|
stop: ArrayLike,
|
|
num: int = ...,
|
|
endpoint: builtins.bool = ...,
|
|
dtype: DTypeLike | None = ...,
|
|
axis: int = ...,
|
|
) -> Array: ...
|
|
get_printoptions = _np.get_printoptions
|
|
def gradient(f: ArrayLike, *varargs: ArrayLike,
|
|
axis: int | Sequence[int] | None = ...,
|
|
edge_order: int | None = ...) -> Array | list[Array]: ...
|
|
def greater(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def greater_equal(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def hamming(M: int) -> Array: ...
|
|
def hanning(M: int) -> Array: ...
|
|
def heaviside(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def histogram(a: ArrayLike, bins: ArrayLike = ...,
|
|
range: Sequence[ArrayLike] | None = ...,
|
|
weights: ArrayLike | None = ...,
|
|
density: builtins.bool | None = ...) -> tuple[Array, Array]: ...
|
|
def histogram2d(
|
|
x: ArrayLike,
|
|
y: ArrayLike,
|
|
bins: ArrayLike | Sequence[ArrayLike] = ...,
|
|
range: Sequence[None | Array | Sequence[ArrayLike]] | None = ...,
|
|
weights: ArrayLike | None = ...,
|
|
density: builtins.bool | None = ...,
|
|
) -> tuple[Array, Array, Array]: ...
|
|
def histogram_bin_edges(a: ArrayLike, bins: ArrayLike = ...,
|
|
range: None | Array | Sequence[ArrayLike] = ...,
|
|
weights: ArrayLike | None = ...) -> Array: ...
|
|
def histogramdd(
|
|
sample: ArrayLike,
|
|
bins: ArrayLike | Sequence[ArrayLike] = ...,
|
|
range: Sequence[None | Array | Sequence[ArrayLike]] | None = ...,
|
|
weights: ArrayLike | None = ...,
|
|
density: builtins.bool | None = ...,
|
|
) -> tuple[Array, list[Array]]: ...
|
|
def hsplit(
|
|
ary: ArrayLike, indices_or_sections: int | ArrayLike
|
|
) -> list[Array]: ...
|
|
def hstack(tup: _np.ndarray | Array | Sequence[ArrayLike],
|
|
dtype: DTypeLike | None = ...) -> Array: ...
|
|
def hypot(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def i0(x: ArrayLike) -> Array: ...
|
|
def identity(n: DimSize, dtype: DTypeLike | None = ...) -> Array: ...
|
|
iinfo = _dtypes.iinfo
|
|
def imag(x: ArrayLike, /) -> Array: ...
|
|
index_exp = _np.index_exp
|
|
|
|
@overload
|
|
def indices(dimensions: Sequence[int], dtype: DTypeLike | None = None,
|
|
sparse: Literal[False] = False) -> Array: ...
|
|
@overload
|
|
def indices(dimensions: Sequence[int], dtype: DTypeLike | None = None,
|
|
*, sparse: Literal[True]) -> tuple[Array, ...]: ...
|
|
@overload
|
|
def indices(dimensions: Sequence[int], dtype: DTypeLike | None = None,
|
|
sparse: builtins.bool = False) -> Array | tuple[Array, ...]: ...
|
|
|
|
inexact = _np.inexact
|
|
inf: float
|
|
def inner(
|
|
a: ArrayLike, b: ArrayLike, *, precision: PrecisionLike = ...,
|
|
preferred_element_type: DTypeLike | None = ...) -> Array: ...
|
|
def insert(arr: ArrayLike, obj: ArrayLike | slice, values: ArrayLike,
|
|
axis: int | None = ...) -> Array: ...
|
|
int16: Any
|
|
int32: Any
|
|
int4: Any
|
|
int64: Any
|
|
int8: Any
|
|
int_: Any
|
|
integer = _np.integer
|
|
def interp(x: ArrayLike, xp: ArrayLike, fp: ArrayLike,
|
|
left: ArrayLike | str | None = ...,
|
|
right: ArrayLike | str | None = ...,
|
|
period: ArrayLike | None = ...) -> Array: ...
|
|
def intersect1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: builtins.bool = ...,
|
|
return_indices: builtins.bool = ..., *, size: int | None = ...,
|
|
fill_value: ArrayLike | None = ...) -> Array | tuple[Array, Array, Array]: ...
|
|
def invert(x: ArrayLike, /) -> Array: ...
|
|
def isclose(a: ArrayLike, b: ArrayLike, rtol: ArrayLike = ...,
|
|
atol: ArrayLike = ..., equal_nan: builtins.bool = ...) -> Array: ...
|
|
def iscomplex(m: ArrayLike) -> Array: ...
|
|
def iscomplexobj(x: Any) -> builtins.bool: ...
|
|
def isdtype(dtype: DTypeLike, kind: DType | str | tuple[DType | str, ...]) -> builtins.bool: ...
|
|
def isfinite(x: ArrayLike, /) -> Array: ...
|
|
def isin(element: ArrayLike, test_elements: ArrayLike,
|
|
assume_unique: builtins.bool = ..., invert: builtins.bool = ...) -> Array: ...
|
|
def isinf(x: ArrayLike, /) -> Array: ...
|
|
def isnan(x: ArrayLike, /) -> Array: ...
|
|
def isneginf(x: ArrayLike, /) -> Array: ...
|
|
def isposinf(x: ArrayLike, /) -> Array: ...
|
|
def isreal(m: ArrayLike) -> Array: ...
|
|
def isrealobj(x: Any) -> builtins.bool: ...
|
|
def isscalar(element: Any) -> builtins.bool: ...
|
|
def issubdtype(arg1: DTypeLike, arg2: DTypeLike) -> builtins.bool: ...
|
|
iterable = _np.iterable
|
|
def ix_(*args: ArrayLike) -> tuple[Array, ...]: ...
|
|
def kaiser(M: int, beta: ArrayLike) -> Array: ...
|
|
def kron(a: ArrayLike, b: ArrayLike) -> Array: ...
|
|
def lcm(x1: ArrayLike, x2: ArrayLike) -> Array: ...
|
|
def ldexp(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def left_shift(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def less(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def less_equal(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def lexsort(keys: Sequence[ArrayLike], axis: int = ...) -> Array: ...
|
|
|
|
@overload
|
|
def linspace(start: ArrayLike, stop: ArrayLike, num: int = 50,
|
|
endpoint: builtins.bool = True, retstep: Literal[False] = False,
|
|
dtype: DTypeLike | None = ...,
|
|
axis: int = 0,
|
|
*, device: _Device | _Sharding | None = ...) -> Array: ...
|
|
@overload
|
|
def linspace(start: ArrayLike, stop: ArrayLike, num: int,
|
|
endpoint: builtins.bool, retstep: Literal[True],
|
|
dtype: DTypeLike | None = ...,
|
|
axis: int = 0,
|
|
*, device: _Device | _Sharding | None = ...) -> tuple[Array, Array]: ...
|
|
@overload
|
|
def linspace(start: ArrayLike, stop: ArrayLike, num: int = 50,
|
|
endpoint: builtins.bool = True, *, retstep: Literal[True],
|
|
dtype: DTypeLike | None = ...,
|
|
axis: int = 0,
|
|
device: _Device | _Sharding | None = ...) -> tuple[Array, Array]: ...
|
|
@overload
|
|
def linspace(start: ArrayLike, stop: ArrayLike, num: int = 50,
|
|
endpoint: builtins.bool = True, retstep: builtins.bool = False,
|
|
dtype: DTypeLike | None = ...,
|
|
axis: int = 0,
|
|
*, device: _Device | _Sharding | None = ...) -> Union[Array, tuple[Array, Array]]: ...
|
|
|
|
def load(file: IO[bytes] | str | os.PathLike[Any], *args: Any, **kwargs: Any) -> Array: ...
|
|
def log(x: ArrayLike, /) -> Array: ...
|
|
def log10(x: ArrayLike, /) -> Array: ...
|
|
def log1p(x: ArrayLike, /) -> Array: ...
|
|
def log2(x: ArrayLike, /) -> Array: ...
|
|
logaddexp: BinaryUfunc
|
|
logaddexp2: BinaryUfunc
|
|
logical_and: BinaryUfunc
|
|
def logical_not(x: ArrayLike, /) -> Array: ...
|
|
logical_or: BinaryUfunc
|
|
logical_xor: BinaryUfunc
|
|
def logspace(start: ArrayLike, stop: ArrayLike, num: int = ...,
|
|
endpoint: builtins.bool = ..., base: ArrayLike = ...,
|
|
dtype: DTypeLike | None = ..., axis: int = ...) -> Array: ...
|
|
def mask_indices(
|
|
n: int, mask_func: Callable, k: int = ...
|
|
) -> tuple[Array, ...]: ...
|
|
def matmul(
|
|
a: ArrayLike, b: ArrayLike, *, precision: PrecisionLike = ...,
|
|
preferred_element_type: DTypeLike | None = ...) -> Array: ...
|
|
def matrix_transpose(x: ArrayLike, /) -> Array: ...
|
|
def max(a: ArrayLike, axis: _Axis = ..., out: None = ...,
|
|
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
def maximum(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def mean(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
|
|
out: None = ..., keepdims: builtins.bool = ..., *,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
def median(a: ArrayLike, axis: int | tuple[int, ...] | None = ...,
|
|
out: None = ..., overwrite_input: builtins.bool = ...,
|
|
keepdims: builtins.bool = ...) -> Array: ...
|
|
def meshgrid(*xi: ArrayLike, copy: builtins.bool = ..., sparse: builtins.bool = ...,
|
|
indexing: str = ...) -> list[Array]: ...
|
|
mgrid: _Mgrid
|
|
def min(a: ArrayLike, axis: _Axis = ..., out: None = ...,
|
|
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
def minimum(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def mod(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def modf(x: ArrayLike, /, out=None) -> tuple[Array, Array]: ...
|
|
def moveaxis(a: ArrayLike, source: int | Sequence[int],
|
|
destination: int | Sequence[int]) -> Array: ...
|
|
multiply: BinaryUfunc
|
|
nan: float
|
|
def nan_to_num(x: ArrayLike, copy: builtins.bool = ..., nan: ArrayLike = ...,
|
|
posinf: ArrayLike | None = ...,
|
|
neginf: ArrayLike | None = ...) -> Array: ...
|
|
def nanargmax(
|
|
a: ArrayLike,
|
|
axis: int | None = ...,
|
|
out: None = ...,
|
|
keepdims: builtins.bool | None = ...,
|
|
) -> Array: ...
|
|
def nanargmin(
|
|
a: ArrayLike,
|
|
axis: int | None = ...,
|
|
out: None = ...,
|
|
keepdims: builtins.bool | None = ...,
|
|
) -> Array: ...
|
|
def nancumprod(a: ArrayLike, axis: int | None = ..., dtype: DTypeLike = ...,
|
|
out: None = ...) -> Array: ...
|
|
def nancumsum(a: ArrayLike, axis: int | None = ..., dtype: DTypeLike = ...,
|
|
out: None = ...) -> Array: ...
|
|
def nanmax(a: ArrayLike, axis: _Axis = ..., out: None = ...,
|
|
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
def nanmean(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
|
|
out: None = ...,
|
|
keepdims: builtins.bool = ...,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
def nanmedian(a: ArrayLike, axis: int | tuple[int, ...] | None = ...,
|
|
out: None = ..., overwrite_input: builtins.bool = ...,
|
|
keepdims: builtins.bool = ...) -> Array: ...
|
|
def nanmin(a: ArrayLike, axis: _Axis = ..., out: None = ...,
|
|
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
def nanpercentile(a: ArrayLike, q: ArrayLike,
|
|
axis: int | tuple[int, ...] | None = ...,
|
|
out: None = ..., overwrite_input: builtins.bool = ..., method: str = ...,
|
|
keepdims: builtins.bool = ..., *, interpolation: DeprecatedArg | str = ...) -> Array: ...
|
|
def nanprod(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
|
|
out: None = ...,
|
|
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
def nanquantile(a: ArrayLike, q: ArrayLike, axis: int | tuple[int, ...] | None = ...,
|
|
out: None = ..., overwrite_input: builtins.bool = ..., method: str = ...,
|
|
keepdims: builtins.bool = ..., *, interpolation: DeprecatedArg | str = ...) -> Array: ...
|
|
def nanstd(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ..., out: None = ...,
|
|
ddof: int = ..., keepdims: builtins.bool = ...,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
def nansum(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
|
|
out: None = ..., keepdims: builtins.bool = ...,
|
|
initial: ArrayLike | None = ...,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
def nanvar(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
|
|
out: None = ...,
|
|
ddof: int = 0, keepdims: builtins.bool = False,
|
|
where: ArrayLike | None = ...) -> Array: ...
|
|
ndarray = Array
|
|
ndim = _np.ndim
|
|
def negative(x: ArrayLike, /) -> Array: ...
|
|
newaxis = None
|
|
def nextafter(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def nonzero(a: ArrayLike, *, size: int | None = ...,
|
|
fill_value: None | ArrayLike | tuple[ArrayLike, ...] = ...
|
|
) -> tuple[Array, ...]: ...
|
|
def not_equal(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
number = _np.number
|
|
object_ = _np.object_
|
|
ogrid: _Ogrid
|
|
def ones(shape: Any, dtype: DTypeLike | None = ...,
|
|
device: _Device | _Sharding | None = ...) -> Array: ...
|
|
def ones_like(a: ArrayLike | DuckTypedArray,
|
|
dtype: DTypeLike | None = ...,
|
|
shape: Any = ..., *,
|
|
device: _Device | _Sharding | None = ...) -> Array: ...
|
|
def outer(a: ArrayLike, b: Array, out: None = ...) -> Array: ...
|
|
def packbits(
|
|
a: ArrayLike, axis: int | None = ..., bitorder: str = ...
|
|
) -> Array: ...
|
|
|
|
PadValueLike = Union[_T, Sequence[_T], Sequence[Sequence[_T]]]
|
|
def pad(array: ArrayLike, pad_width: PadValueLike[int | Array | _np.ndarray],
|
|
mode: str | Callable[..., Any] = ..., **kwargs) -> Array: ...
|
|
|
|
def partition(a: ArrayLike, kth: int, axis: int = ...) -> Array: ...
|
|
def percentile(a: ArrayLike, q: ArrayLike,
|
|
axis: int | tuple[int, ...] | None = ...,
|
|
out: None = ..., overwrite_input: builtins.bool = ..., method: str = ...,
|
|
keepdims: builtins.bool = ..., *, interpolation: DeprecatedArg | str = ...) -> Array: ...
|
|
def permute_dims(x: ArrayLike, /, axes: tuple[int, ...]) -> Array: ...
|
|
pi: float
|
|
def piecewise(x: ArrayLike, condlist: Array | Sequence[ArrayLike],
|
|
funclist: Sequence[ArrayLike | Callable[..., Array]],
|
|
*args, **kw) -> Array: ...
|
|
def place(arr: ArrayLike, mask: ArrayLike, vals: ArrayLike, *,
|
|
inplace: builtins.bool = ...) -> Array: ...
|
|
def poly(seq_of_zeros: ArrayLike) -> Array: ...
|
|
def polyadd(a1: ArrayLike, a2: ArrayLike) -> Array: ...
|
|
def polyder(p: ArrayLike, m: int = ...) -> Array: ...
|
|
def polydiv(u: ArrayLike, v: ArrayLike, *, trim_leading_zeros: builtins.bool = ...) -> tuple[Array, Array]: ...
|
|
def polyfit(x: ArrayLike, y: ArrayLike, deg: int, rcond: float | None = ...,
|
|
full: builtins.bool = ..., w: ArrayLike | None = ..., cov: builtins.bool = ...
|
|
) -> Array | tuple[Array, ...]: ...
|
|
def polyint(p: ArrayLike, m: int = ..., k: int | ArrayLike | None = ...) -> Array: ...
|
|
def polymul(a1: ArrayLike, a2: ArrayLike, *, trim_leading_zeros: builtins.bool = ...) -> Array: ...
|
|
def polysub(a1: ArrayLike, a2: ArrayLike) -> Array: ...
|
|
def polyval(p: ArrayLike, x: ArrayLike, *, unroll: int = ...) -> Array: ...
|
|
def positive(x: ArrayLike, /) -> Array: ...
|
|
def pow(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def power(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
printoptions = _np.printoptions
|
|
def prod(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
|
|
out: None = ..., keepdims: builtins.bool = ...,
|
|
initial: ArrayLike | None = ..., where: ArrayLike | None = ...,
|
|
promote_integers: builtins.bool = ...) -> Array: ...
|
|
promote_types = _np.promote_types
|
|
def ptp(a: ArrayLike, axis: _Axis = ..., out: None = ...,
|
|
keepdims: builtins.bool = ...) -> Array: ...
|
|
def put(a: ArrayLike, ind: ArrayLike, v: ArrayLike,
|
|
mode: str | None = ..., *, inplace: builtins.bool = ...) -> Array: ...
|
|
def put_along_axis(arr: ArrayLike, indices: ArrayLike, values: ArrayLike,
|
|
axis: int | None, inplace: bool = True, *, mode: str | None = None) -> Array: ...
|
|
def quantile(a: ArrayLike, q: ArrayLike, axis: int | tuple[int, ...] | None = ...,
|
|
out: None = ..., overwrite_input: builtins.bool = ..., method: str = ...,
|
|
keepdims: builtins.bool = ..., *, interpolation: DeprecatedArg | str = ...) -> Array: ...
|
|
r_: _RClass
|
|
def rad2deg(x: ArrayLike, /) -> Array: ...
|
|
def radians(x: ArrayLike, /) -> Array: ...
|
|
def ravel(a: ArrayLike, order: str = ...) -> Array: ...
|
|
def ravel_multi_index(multi_index: Sequence[ArrayLike], dims: Sequence[int],
|
|
mode: str = ..., order: str = ...) -> Array: ...
|
|
def real(x: ArrayLike, /) -> Array: ...
|
|
def reciprocal(x: ArrayLike, /) -> Array: ...
|
|
register_jax_array_methods: Any
|
|
def remainder(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def repeat(a: ArrayLike, repeats: ArrayLike, axis: int | None = ..., *,
|
|
total_repeat_length: int | None = ...) -> Array: ...
|
|
def reshape(
|
|
a: ArrayLike, shape: DimSize | Shape = ...,
|
|
newshape: DimSize | Shape | None = ..., order: str = ...
|
|
) -> Array: ...
|
|
|
|
def resize(a: ArrayLike, new_shape: Shape) -> Array: ...
|
|
def result_type(*args: Any) -> DType: ...
|
|
def right_shift(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def rint(x: ArrayLike, /) -> Array: ...
|
|
def roll(a: ArrayLike, shift: ArrayLike | Sequence[int],
|
|
axis: int | Sequence[int] | None = ...) -> Array: ...
|
|
def rollaxis(a: ArrayLike, axis: int, start: int = 0) -> Array: ...
|
|
def roots(p: ArrayLike, *, strip_zeros: builtins.bool = ...) -> Array: ...
|
|
def rot90(m: ArrayLike, k: int = ..., axes: tuple[int, int] = ...) -> Array: ...
|
|
def round(a: ArrayLike, decimals: int = ..., out: None = ...) -> Array: ...
|
|
s_ = _np.s_
|
|
save = _np.save
|
|
savez = _np.savez
|
|
def searchsorted(a: ArrayLike, v: ArrayLike, side: str = ...,
|
|
sorter: ArrayLike | None = ..., *, method: str = ...) -> Array: ...
|
|
def select(
|
|
condlist: Sequence[ArrayLike],
|
|
choicelist: Sequence[ArrayLike],
|
|
default: ArrayLike = ...,
|
|
) -> Array: ...
|
|
set_printoptions = _np.set_printoptions
|
|
def setdiff1d(
|
|
ar1: ArrayLike,
|
|
ar2: ArrayLike,
|
|
assume_unique: builtins.bool = ...,
|
|
*,
|
|
size: int | None = ...,
|
|
fill_value: ArrayLike | None = ...,
|
|
) -> Array: ...
|
|
def setxor1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: builtins.bool = ...) -> Array: ...
|
|
shape = _np.shape
|
|
def sign(x: ArrayLike, /) -> Array: ...
|
|
def signbit(x: ArrayLike, /) -> Array: ...
|
|
signedinteger = _np.signedinteger
|
|
def sin(x: ArrayLike, /) -> Array: ...
|
|
def sinc(x: ArrayLike, /) -> Array: ...
|
|
single: Any
|
|
def sinh(x: ArrayLike, /) -> Array: ...
|
|
size = _np.size
|
|
def sort(
|
|
a: ArrayLike,
|
|
axis: int | None = ...,
|
|
*,
|
|
stable: builtins.bool = ...,
|
|
descending: builtins.bool = ...,
|
|
kind: str | None = ...,
|
|
order: None = ...,
|
|
) -> Array: ...
|
|
def sort_complex(a: ArrayLike) -> Array: ...
|
|
def spacing(x: ArrayLike, /) -> Array: ...
|
|
def split(
|
|
ary: ArrayLike,
|
|
indices_or_sections: int | Sequence[int] | ArrayLike,
|
|
axis: int = ...,
|
|
) -> list[Array]: ...
|
|
|
|
def sqrt(x: ArrayLike, /) -> Array: ...
|
|
def square(x: ArrayLike, /) -> Array: ...
|
|
def squeeze(
|
|
a: ArrayLike, axis: int | Sequence[int] | None = ...
|
|
) -> Array: ...
|
|
def stack(
|
|
arrays: _np.ndarray | Array | Sequence[ArrayLike],
|
|
axis: int = ...,
|
|
out: None = ...,
|
|
dtype: DTypeLike | None = ...,
|
|
) -> Array: ...
|
|
def std(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
|
|
out: None = ..., ddof: int = ..., keepdims: builtins.bool = ..., *,
|
|
where: ArrayLike | None = ..., correction: int | float | None = ...) -> Array: ...
|
|
subtract: BinaryUfunc
|
|
def sum(
|
|
a: ArrayLike,
|
|
axis: _Axis = ...,
|
|
dtype: DTypeLike = ...,
|
|
out: None = ...,
|
|
keepdims: builtins.bool = ...,
|
|
initial: ArrayLike | None = ...,
|
|
where: ArrayLike | None = ...,
|
|
promote_integers: builtins.bool = ...,
|
|
) -> Array: ...
|
|
def swapaxes(a: ArrayLike, axis1: int, axis2: int) -> Array: ...
|
|
def take(
|
|
a: ArrayLike,
|
|
indices: ArrayLike,
|
|
axis: int | None = ...,
|
|
out: None = ...,
|
|
mode: str | None = ...,
|
|
unique_indices: builtins.bool = ...,
|
|
indices_are_sorted: builtins.bool = ...,
|
|
fill_value: StaticScalar | None = ...,
|
|
) -> Array: ...
|
|
def take_along_axis(
|
|
arr: ArrayLike,
|
|
indices: ArrayLike,
|
|
axis: int | None,
|
|
mode: str | GatherScatterMode | None = ...,
|
|
fill_value: StaticScalar | None = None,
|
|
) -> Array: ...
|
|
def tan(x: ArrayLike, /) -> Array: ...
|
|
def tanh(x: ArrayLike, /) -> Array: ...
|
|
def tensordot(a: ArrayLike, b: ArrayLike,
|
|
axes: int | Sequence[int] | Sequence[Sequence[int]] = ...,
|
|
*, precision: PrecisionLike = ...,
|
|
preferred_element_type: DTypeLike | None = ...) -> Array: ...
|
|
def tile(A: ArrayLike, reps: DimSize | Sequence[DimSize]) -> Array: ...
|
|
def trace(a: ArrayLike, offset: int | ArrayLike = ..., axis1: int = ..., axis2: int = ...,
|
|
dtype: DTypeLike | None = ..., out: None = ...) -> Array: ...
|
|
def transpose(a: ArrayLike, axes: Sequence[int] | None = ...) -> Array: ...
|
|
def trapezoid(y: ArrayLike, x: ArrayLike | None = None, dx: ArrayLike = ...,
|
|
axis: int = ...) -> Array: ...
|
|
def tri(
|
|
N: int, M: int | None = ..., k: int = ..., dtype: DTypeLike = ...
|
|
) -> Array: ...
|
|
def tril(m: ArrayLike, k: int = ...) -> Array: ...
|
|
def tril_indices(
|
|
n: int, k: int = ..., m: int | None = ...
|
|
) -> tuple[Array, Array]: ...
|
|
def tril_indices_from(arr: ArrayLike, k: int = ...) -> tuple[Array, Array]: ...
|
|
def fill_diagonal(a: ArrayLike, val: ArrayLike, wrap: builtins.bool = ..., *, inplace: builtins.bool = ...) -> Array: ...
|
|
def trim_zeros(filt: ArrayLike, trim: str = ...) -> Array: ...
|
|
def triu(m: ArrayLike, k: int = ...) -> Array: ...
|
|
def triu_indices(
|
|
n: int, k: int = ..., m: int | None = ...
|
|
) -> tuple[Array, Array]: ...
|
|
def triu_indices_from(arr: ArrayLike, k: int = ...) -> tuple[Array, Array]: ...
|
|
def true_divide(x: ArrayLike, y: ArrayLike, /) -> Array: ...
|
|
def trunc(x: ArrayLike, /) -> Array: ...
|
|
uint: Any
|
|
uint16: Any
|
|
uint32: Any
|
|
uint4: Any
|
|
uint64: Any
|
|
uint8: Any
|
|
def union1d(
|
|
ar1: ArrayLike,
|
|
ar2: ArrayLike,
|
|
*,
|
|
size: int | None = ...,
|
|
fill_value: ArrayLike | None = ...,
|
|
) -> Array: ...
|
|
class _UniqueAllResult(NamedTuple):
|
|
values: Array
|
|
indices: Array
|
|
inverse_indices: Array
|
|
counts: Array
|
|
class _UniqueCountsResult(NamedTuple):
|
|
values: Array
|
|
counts: Array
|
|
class _UniqueInverseResult(NamedTuple):
|
|
values: Array
|
|
inverse_indices: Array
|
|
def unique(ar: ArrayLike, return_index: builtins.bool = ..., return_inverse: builtins.bool = ...,
|
|
return_counts: builtins.bool = ..., axis: int | None = ...,
|
|
*, equal_nan: builtins.bool = ..., size: int | None = ...,
|
|
fill_value: ArrayLike | None = ...
|
|
): ...
|
|
def unique_all(x: ArrayLike, /, *, size: int | None = ...,
|
|
fill_value: ArrayLike | None = ...) -> _UniqueAllResult: ...
|
|
def unique_counts(x: ArrayLike, /, *, size: int | None = ...,
|
|
fill_value: ArrayLike | None = ...) -> _UniqueCountsResult: ...
|
|
def unique_inverse(x: ArrayLike, /, *, size: int | None = ...,
|
|
fill_value: ArrayLike | None = ...) -> _UniqueInverseResult: ...
|
|
def unique_values(x: ArrayLike, /, *, size: int | None = ...,
|
|
fill_value: ArrayLike | None = ...) -> Array: ...
|
|
def unpackbits(
|
|
a: ArrayLike,
|
|
axis: int | None = ...,
|
|
count: ArrayLike | None = ...,
|
|
bitorder: str = ...,
|
|
) -> Array: ...
|
|
def unravel_index(indices: ArrayLike, shape: Shape) -> tuple[Array, ...]: ...
|
|
unsignedinteger = _np.unsignedinteger
|
|
def unstack(x: ArrayLike , /, *, axis: int = ...) -> tuple[Array, ...]: ...
|
|
def unwrap(p: ArrayLike, discont: ArrayLike | None = ...,
|
|
axis: int = ..., period: ArrayLike = ...) -> Array: ...
|
|
def vander(
|
|
x: ArrayLike, N: int | None = ..., increasing: builtins.bool = ...
|
|
) -> Array: ...
|
|
def var(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
|
|
out: None = ..., ddof: int = ..., keepdims: builtins.bool = ..., *,
|
|
where: ArrayLike | None = ..., correction: int | float | None = ...) -> Array: ...
|
|
def vdot(
|
|
a: ArrayLike, b: ArrayLike, *, precision: PrecisionLike = ...,
|
|
preferred_element_type: DTypeLike | None = ...) -> Array: ...
|
|
def vecdot(x1: ArrayLike, x2: ArrayLike, /, *, axis: int = ...,
|
|
precision: PrecisionLike = ...,
|
|
preferred_element_type: DTypeLike | None = ...) -> Array: ...
|
|
def vsplit(
|
|
ary: ArrayLike, indices_or_sections: int | ArrayLike
|
|
) -> list[Array]: ...
|
|
|
|
def vstack(tup: _np.ndarray | Array | Sequence[ArrayLike],
|
|
dtype: DTypeLike | None = ...) -> Array: ...
|
|
|
|
@overload
|
|
def where(condition: ArrayLike, x: Literal[None] = ..., y: Literal[None] = ...,
|
|
/, *, size: int | None = ...,
|
|
fill_value: None | ArrayLike | tuple[ArrayLike, ...] = ...
|
|
) -> tuple[Array, ...]: ...
|
|
|
|
@overload
|
|
def where(condition: ArrayLike, x: ArrayLike, y: ArrayLike, /, *,
|
|
size: int | None = ...,
|
|
fill_value: None | ArrayLike | tuple[ArrayLike, ...] = ...
|
|
) -> Array: ...
|
|
|
|
@overload
|
|
def where(condition: ArrayLike, x: ArrayLike | None = ...,
|
|
y: ArrayLike | None = ..., /, *, size: int | None = ...,
|
|
fill_value: None | ArrayLike | tuple[ArrayLike, ...] = ...
|
|
) -> Array | tuple[Array, ...]: ...
|
|
|
|
def zeros(shape: Any, dtype: DTypeLike | None = ...,
|
|
device: _Device | _Sharding | None = ...) -> Array: ...
|
|
def zeros_like(a: ArrayLike | DuckTypedArray,
|
|
dtype: DTypeLike | None = ...,
|
|
shape: Any = ..., *,
|
|
device: _Device | _Sharding | None = ...) -> Array: ...
|
|
|
|
def vectorize(pyfunc, *, excluded = ..., signature = ...) -> Callable: ...
|