mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 03:46:06 +00:00
393 lines
14 KiB
Python
393 lines
14 KiB
Python
# Copyright 2021 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
from collections.abc import Callable
|
|
from typing import Any
|
|
import functools
|
|
import operator
|
|
|
|
from jax import lax
|
|
from jax._src import api
|
|
from jax._src import core
|
|
from jax._src import custom_api_util
|
|
from jax._src import linear_util as lu
|
|
from jax._src import source_info_util
|
|
from jax._src import traceback_util
|
|
from jax._src import tree_util
|
|
from jax._src import util
|
|
from jax._src.api_util import flatten_fun_nokwargs, resolve_kwargs
|
|
from jax._src.interpreters import ad
|
|
from jax._src.interpreters import batching
|
|
from jax._src.interpreters.batching import not_mapped
|
|
from jax._src.interpreters import mlir
|
|
from jax._src.interpreters import partial_eval as pe
|
|
from jax._src.interpreters import xla
|
|
from jax._src.tree_util import (tree_flatten, tree_map, tree_structure,
|
|
tree_unflatten, treedef_tuple)
|
|
|
|
|
|
source_info_util.register_exclusion(__file__)
|
|
traceback_util.register_exclusion(__file__)
|
|
|
|
|
|
map, unsafe_map = util.safe_map, map
|
|
zip, unsafe_zip = util.safe_zip, zip
|
|
|
|
|
|
@custom_api_util.register_custom_decorator_type
|
|
class custom_vmap:
|
|
"""Customize the vmap behavior of a JAX-transformable function.
|
|
|
|
This decorator is used to customize the behavior of a JAX function under the
|
|
:func:`jax.vmap` transformation. A ``custom_vmap``-decorated function will
|
|
mostly (see below for caveats) have the same behavior as the underlying
|
|
function, except when batched using :py:func:`jax.vmap`. When batched, the
|
|
rule defined using :py:func:`~jax.custom_batching.custom_vmap.def_vmap` will
|
|
be used.
|
|
|
|
For example:
|
|
|
|
>>> @jax.custom_batching.custom_vmap
|
|
... def f(x, y):
|
|
... return x + y
|
|
...
|
|
>>> @f.def_vmap
|
|
... def f_vmap_rule(axis_size, in_batched, xs, ys):
|
|
... assert all(in_batched)
|
|
... assert xs.shape[0] == axis_size
|
|
... assert ys.shape[0] == axis_size
|
|
... out_batched = True
|
|
... return xs * ys, out_batched
|
|
...
|
|
>>> xs = jnp.arange(3)
|
|
>>> ys = jnp.arange(1, 4)
|
|
>>> jax.vmap(f)(xs, ys) # prints xs * ys instead of xs + ys
|
|
Array([0, 2, 6], dtype=int32)
|
|
|
|
Of note, ``custom_vmap`` functions do not support reverse-mode autodiff. To
|
|
customize both vmap and reverse-mode autodiff, combine ``custom_vmap`` with
|
|
:py:class:`jax.custom_vjp`. For example:
|
|
|
|
>>> @jax.custom_vjp
|
|
... @jax.custom_batching.custom_vmap
|
|
... def f(x, y):
|
|
... return jnp.sin(x) * y
|
|
...
|
|
>>> @f.def_vmap
|
|
... def f_vmap_rule(axis_size, in_batched, xs, ys):
|
|
... return jnp.cos(xs) * ys, True
|
|
...
|
|
>>> def f_fwd(x, y):
|
|
... return f(x, y), (jnp.cos(x), jnp.sin(x), y)
|
|
...
|
|
>>> def f_bwd(res, g):
|
|
... cos_x, sin_x, y = res
|
|
... return (cos_x * g * y, sin_x * g)
|
|
...
|
|
>>> f.defvjp(f_fwd, f_bwd)
|
|
>>> jax.vmap(f)(jnp.zeros(3), jnp.ones(3))
|
|
Array([1., 1., 1.], dtype=float32)
|
|
>>> jax.grad(f)(jnp.zeros(()), jnp.ones(()))
|
|
Array(1., dtype=float32)
|
|
|
|
Note that the :py:class:`jax.custom_vjp` must be on the ouside, wrapping the
|
|
``custom_vmap``-decorated function.
|
|
"""
|
|
|
|
fun: Callable[..., Any]
|
|
vmap_rule: Callable[..., tuple[Any, Any]] | None
|
|
|
|
def __init__(self, fun: Callable[..., Any]):
|
|
functools.update_wrapper(self, fun)
|
|
self.fun = fun
|
|
self.vmap_rule = None
|
|
|
|
__getattr__ = custom_api_util.forward_attr
|
|
|
|
def def_vmap(
|
|
self,
|
|
vmap_rule: Callable[..., tuple[Any, Any]],
|
|
) -> Callable[..., tuple[Any, Any]]:
|
|
"""Define the vmap rule for this custom_vmap function.
|
|
|
|
Args:
|
|
vmap_rule: A function that implements the vmap rule. This function should
|
|
accept the following arguments: (1) an integer ``axis_size`` as its
|
|
first argument, (2) a pytree of booleans with the same structure as the
|
|
inputs to the function, specifying whether each argument is batched,
|
|
and (3) the batched arguments. It should return a tuple of the batched
|
|
output and a pytree of booleans with the same structure as the output,
|
|
specifying whether each output element is batched. See the documentation
|
|
for :py:func:`jax.custom_batching.custom_vmap` for some examples.
|
|
|
|
Returns:
|
|
This method passes the rule through, returning ``vmap_rule`` unchanged.
|
|
"""
|
|
self.vmap_rule = vmap_rule
|
|
return vmap_rule
|
|
|
|
@traceback_util.api_boundary
|
|
def __call__(self, *args, **kwargs):
|
|
args = resolve_kwargs(self.fun, args, kwargs)
|
|
fun_name = getattr(self.fun, "__name__", str(self.fun))
|
|
if not self.vmap_rule:
|
|
raise AttributeError(
|
|
f"No batching rule defined for custom_vmap function {fun_name} "
|
|
"using def_vmap.")
|
|
args_flat, in_tree = tree_flatten(args)
|
|
flat_fun, out_tree = flatten_fun_nokwargs(lu.wrap_init(self.fun), in_tree)
|
|
in_avals = [core.get_aval(x) for x in args_flat]
|
|
debug = pe.tracing_debug_info(self.fun, in_tree, out_tree, False, "custom_vmap")
|
|
jaxpr, _, consts, () = pe.trace_to_jaxpr_dynamic(flat_fun, in_avals, debug)
|
|
closed_call = core.ClosedJaxpr(pe.convert_constvars_jaxpr(jaxpr), ())
|
|
in_tree = treedef_tuple((tree_structure(consts), in_tree))
|
|
assert self.vmap_rule is not None
|
|
out_flat = custom_vmap_p.bind(*consts, *args_flat,
|
|
call=closed_call,
|
|
rule=ClosedRule(self.vmap_rule),
|
|
in_tree=in_tree,
|
|
out_tree=out_tree())
|
|
return tree_unflatten(out_tree(), out_flat)
|
|
|
|
|
|
### utils
|
|
|
|
# Define a class, instead of making a function closing over `rule`, so
|
|
# that we can override __str__
|
|
class ClosedRule:
|
|
def __init__(self, rule):
|
|
functools.update_wrapper(self, rule)
|
|
self.rule = rule
|
|
|
|
def __call__(self, axis_size, all_in_batched, *all_args):
|
|
_, args = all_args
|
|
consts_batched, in_batched = all_in_batched
|
|
assert not any(tree_util.tree_leaves(consts_batched)), consts_batched
|
|
return call_rule(self.rule, axis_size, in_batched, args)
|
|
|
|
def __str__(self):
|
|
return str(self.rule)
|
|
|
|
def ensure_list(xs):
|
|
return xs if type(xs) is list else list(xs)
|
|
|
|
def rule_name(rule):
|
|
return getattr(rule, '__name__', '<unnamed rule>')
|
|
|
|
def call_rule(rule, axis_size, in_batched, args):
|
|
return rule(axis_size, ensure_list(in_batched), *args)
|
|
|
|
def check_vmap_rule_trees(rule, original_out_tree, out_tree, out_batched_tree):
|
|
if out_tree != out_batched_tree:
|
|
raise ValueError(
|
|
'structure of output value and output batching specification returned '
|
|
f'by custom vmap rule ({rule_name(rule)}) do not match.\n'
|
|
f'Output values: {out_tree}\n'
|
|
f'Batching spec: {out_batched_tree}')
|
|
if out_tree != original_out_tree:
|
|
raise ValueError(
|
|
f'structure of output returned by custom vmap rule ({rule_name(rule)}) '
|
|
'does not match that of original custom-vmapped function.\n'
|
|
f'Original output: {original_out_tree}\n'
|
|
f'Rule output: {out_tree}')
|
|
|
|
# Like batching.bdim_at_front, but doesn't broadcast if not mapped
|
|
def maybe_bdim_at_front(x, bdim):
|
|
if bdim is not_mapped:
|
|
return x
|
|
else:
|
|
return util.moveaxis(x, bdim, 0)
|
|
|
|
# Like batching.batch except (a) not curried and (b) returns inferred output
|
|
# axes instead of accepting and matching a given spec of output axes. Assumes
|
|
# `f` is pytree-flattened
|
|
def vmap_unrestricted(f: lu.WrappedFun, *args, in_axes, axis_name, axis_size):
|
|
axis_data = batching.AxisData(axis_name, axis_size, None)
|
|
tag = core.TraceTag()
|
|
f, out_axes = batching.batch_subtrace(f, tag, axis_data, in_axes)
|
|
outs = f.call_wrapped(*args)
|
|
return outs, out_axes()
|
|
|
|
|
|
### custom_vmap_p rules
|
|
|
|
|
|
def custom_vmap_impl(*args, call, rule, in_tree, out_tree):
|
|
del rule, in_tree, out_tree
|
|
return core.jaxpr_as_fun(call)(*args)
|
|
|
|
|
|
def custom_vmap_batching(args_flat, dims, *, call, rule, in_tree, out_tree):
|
|
del call
|
|
axis_size, = {x.shape[d] for x, d in zip(args_flat, dims) if d is not None}
|
|
args_flat = map(maybe_bdim_at_front, args_flat, dims)
|
|
flat_in_batched = [d is not not_mapped for d in dims]
|
|
|
|
args = tree_unflatten(in_tree, args_flat)
|
|
in_batched = tree_unflatten(in_tree, flat_in_batched)
|
|
out, out_batched = call_rule(rule, axis_size, in_batched, args)
|
|
flat_outs, tree1 = tree_flatten(out)
|
|
flat_out_batched, tree2 = tree_flatten(out_batched)
|
|
check_vmap_rule_trees(rule, out_tree, tree1, tree2)
|
|
flat_out_dims = [0 if b else not_mapped for b in flat_out_batched]
|
|
return flat_outs, flat_out_dims
|
|
|
|
|
|
def custom_vmap_abstract_eval(*in_avals, call, **_):
|
|
return call.out_avals
|
|
|
|
|
|
def custom_vmap_jvp(primals, tangents, *, call, rule, in_tree, out_tree):
|
|
def jvp_of_rule_rule(axis_size, in_batched, primals, tangents):
|
|
in_batched_ps, in_batched_ts = in_batched
|
|
|
|
mutually_batched = tree_map(operator.and_, in_batched_ps, in_batched_ts)
|
|
extra_batched_ps = tree_map(lambda pb, tb: 0 if pb and not tb else None,
|
|
in_batched_ps, in_batched_ts)
|
|
extra_batched_ts = tree_map(lambda pb, tb: 0 if tb and not pb else None,
|
|
in_batched_ps, in_batched_ts)
|
|
|
|
out_mutually_batched = lu.Store()
|
|
flat_ps_ts, tree_ps_ts = tree_flatten((primals, tangents))
|
|
flat_extra_batched_ps_ts, tree_ps_ts2 = tree_flatten(
|
|
(extra_batched_ps, extra_batched_ts),
|
|
is_leaf=lambda x: x is None)
|
|
|
|
# TODO(frostig): assert these also equal:
|
|
# treedef_tuple((in_tree, in_tree))
|
|
# once https://github.com/jax-ml/jax/issues/9066 is fixed
|
|
assert tree_ps_ts == tree_ps_ts2
|
|
del tree_ps_ts2
|
|
|
|
def to_jvp(*primals):
|
|
out, out_batched = call_rule(rule, axis_size, mutually_batched, primals)
|
|
check_vmap_rule_trees(
|
|
rule, out_tree, tree_structure(out), tree_structure(out_batched))
|
|
out_mutually_batched.store(out_batched)
|
|
return out
|
|
|
|
def to_vmap_over_extra_batched_dims(primals, tangents):
|
|
return api.jvp(to_jvp, primals, tangents)
|
|
|
|
to_vmap_over_extra_batched_dims_flat, out_tree2 = flatten_fun_nokwargs(
|
|
lu.wrap_init(to_vmap_over_extra_batched_dims),
|
|
tree_ps_ts)
|
|
|
|
flat_out_ps_ts, flat_out_axes = vmap_unrestricted(
|
|
to_vmap_over_extra_batched_dims_flat, *flat_ps_ts,
|
|
in_axes=flat_extra_batched_ps_ts,
|
|
axis_name=core.no_axis_name, axis_size=axis_size)
|
|
|
|
n, ragged = divmod(len(flat_out_ps_ts), 2)
|
|
assert not ragged
|
|
flat_out_ps, flat_out_ts = flat_out_ps_ts[:n], flat_out_ps_ts[n:]
|
|
flat_out_axes_p, flat_out_axes_t = flat_out_axes[:n], flat_out_axes[n:]
|
|
flat_out_ps = map(maybe_bdim_at_front, flat_out_ps, flat_out_axes_p)
|
|
flat_out_extra_batched_ps = [d is not not_mapped for d in flat_out_axes_p]
|
|
flat_out_ts = map(maybe_bdim_at_front, flat_out_ts, flat_out_axes_t)
|
|
flat_out_extra_batched_ts = [d is not not_mapped for d in flat_out_axes_t]
|
|
|
|
out_ps, out_ts = tree_unflatten(
|
|
out_tree2(), [*flat_out_ps, *flat_out_ts])
|
|
out_extra_batched_ps, out_extra_batched_ts = tree_unflatten(
|
|
out_tree2(), [*flat_out_extra_batched_ps, *flat_out_extra_batched_ts])
|
|
|
|
out_batched_ps = tree_map(
|
|
operator.or_, out_mutually_batched.val, out_extra_batched_ps)
|
|
out_batched_ts = tree_map(
|
|
operator.or_, out_mutually_batched.val, out_extra_batched_ts)
|
|
|
|
return (out_ps, out_ts), (out_batched_ps, out_batched_ts)
|
|
|
|
tangents = map(ad.instantiate_zeros, tangents)
|
|
jvp_call, _ = ad.jvp_jaxpr(call, [True] * len(primals), True)
|
|
jvp_in_tree = treedef_tuple((in_tree, in_tree))
|
|
jvp_out_tree = treedef_tuple((out_tree, out_tree))
|
|
outs = custom_vmap_p.bind(
|
|
*primals, *tangents,
|
|
call=jvp_call, rule=jvp_of_rule_rule,
|
|
in_tree=jvp_in_tree, out_tree=jvp_out_tree)
|
|
assert len(outs) % 2 == 0, len(outs)
|
|
out_primals, out_tangents = util.split_list(outs, [len(outs) // 2])
|
|
return out_primals, out_tangents
|
|
|
|
|
|
custom_vmap_p = core.Primitive('custom_vmap_call')
|
|
custom_vmap_p.multiple_results = True
|
|
custom_vmap_p.def_impl(custom_vmap_impl)
|
|
custom_vmap_p.def_abstract_eval(custom_vmap_abstract_eval)
|
|
batching.primitive_batchers[custom_vmap_p] = custom_vmap_batching
|
|
ad.primitive_jvps[custom_vmap_p] = custom_vmap_jvp
|
|
xla.register_initial_style_primitive(custom_vmap_p)
|
|
mlir.register_lowering(custom_vmap_p, mlir.lower_fun(
|
|
custom_vmap_impl, multiple_results=True))
|
|
|
|
|
|
# -- custom vmap applications
|
|
|
|
|
|
def tree_split(mask, tree):
|
|
lhs = tree_map(lambda l, x: x if l else None, mask, tree)
|
|
rhs = tree_map(lambda l, x: None if l else x, mask, tree)
|
|
return lhs, rhs
|
|
|
|
def tree_merge(mask, lhs_tree, rhs_tree):
|
|
return tree_map(lambda l, x_l, x_r: x_l if l else x_r,
|
|
mask, lhs_tree, rhs_tree)
|
|
|
|
def sequential_vmap(f):
|
|
"""A special case of ``custom_vmap`` that uses a loop.
|
|
|
|
A function decorated with ``sequential_vmap`` will be called sequentially
|
|
within a loop when batched. This is useful for functions that don't natively
|
|
support batch dimensions.
|
|
|
|
For example:
|
|
|
|
>>> @jax.custom_batching.sequential_vmap
|
|
... def f(x):
|
|
... jax.debug.print("{}", x)
|
|
... return x + 1
|
|
...
|
|
>>> jax.vmap(f)(jnp.arange(3))
|
|
0
|
|
1
|
|
2
|
|
Array([1, 2, 3], dtype=int32)
|
|
|
|
Where the print statements demonstrate that this :py:func:`~jax.vmap` is being
|
|
generated using a loop.
|
|
|
|
See the documentation for :py:class:`~jax.custom_batching.custom_vmap` for
|
|
more details.
|
|
"""
|
|
f = custom_vmap(f)
|
|
|
|
@f.def_vmap
|
|
def rule(axis_size, in_batched, *args):
|
|
del axis_size
|
|
|
|
def to_map(mapped_args):
|
|
args = tree_merge(in_batched, mapped_args, bcast_args)
|
|
return f(*args)
|
|
|
|
mapped_args, bcast_args = tree_split(in_batched, list(args))
|
|
out = lax.map(to_map, mapped_args)
|
|
out_batched = tree_map(lambda _: True, out)
|
|
return out, out_batched
|
|
|
|
return f
|